Long-range μPIV to resolve the small scales in a jet at high Reynolds number. Fiscaletti, D., Westerweel, J., & Elsinga, G., E. Experiments in Fluids, 55(9):1-15, Springer Berlin Heidelberg, 4, 2014.
Long-range μPIV to resolve the small scales in a jet at high Reynolds number [link]Website  doi  abstract   bibtex   
The investigation of flows at high Reynolds number is of great interest for the theory of turbulence, in that the large and the small scales of turbulence show a clear separation. But, as the Reynolds number of the flow increases, the size of the Kolmogorov length scale (g) drops almost proportionally. Aiming at achieving the adequate spatial resolution in the central region of a self- similar round jet at high Reynolds numbers (Rek ? 350), a long-range lPIV system was applied. A vector spacing of 1:5g was achieved, where the Kolmogorov length scale was estimated to be 55 lm. The resulting velocity fields were used to characterize the small-scale flow structures in this jet. The autocorrelation maps of vorticity and kci (the imaginary part of the eigenvalue of the reduced velocity gradient tensor) reveal that the structures of intense vor- ticity have a characteristic diameter of approximately 10g. From the autocorrelation map of the reduced (2D) rate of dissipation, it is inferred that the regions of intense dissi- pation tend to organize in the form of sheets with a char- acteristic thickness of approximately 10g. The regions of intense dissipation have the tendency to appear in the vicinity of intense vortices. Furthermore, the joint pdf of the two invariants of the reduced velocity gradient tensor exhibits the characteristic teapot-shape. These results, based on a statistical analysis of the data, are in agreement with previous numerical and experimental studies at lower Reynolds number, which validates the suitability of long- range lPIV for characterizing turbulent flow structures at high Reynolds number. D.
@article{
 title = {Long-range μPIV to resolve the small scales in a jet at high Reynolds number},
 type = {article},
 year = {2014},
 keywords = {High Reynolds number,Long-range μPIV,Small scales},
 pages = {1-15},
 volume = {55},
 websites = {http://link.springer.com/10.1007/s00348-014-1812-7},
 month = {4},
 publisher = {Springer Berlin Heidelberg},
 id = {7ec67954-6936-3b40-80b4-1bcddac0c0ad},
 created = {2021-04-09T15:24:28.325Z},
 file_attached = {false},
 profile_id = {75799766-8e2d-3c98-81f9-e3efa41233d0},
 group_id = {c9329632-2a50-3043-b803-cadc8dbdfc3f},
 last_modified = {2021-04-09T15:24:28.325Z},
 read = {false},
 starred = {false},
 authored = {false},
 confirmed = {false},
 hidden = {false},
 source_type = {article},
 private_publication = {false},
 abstract = {The investigation of flows at high Reynolds number is of great interest for the theory of turbulence, in that the large and the small scales of turbulence show a clear separation. But, as the Reynolds number of the flow increases, the size of the Kolmogorov length scale (g) drops almost proportionally. Aiming at achieving the adequate spatial resolution in the central region of a self- similar round jet at high Reynolds numbers (Rek ? 350), a long-range lPIV system was applied. A vector spacing of 1:5g was achieved, where the Kolmogorov length scale was estimated to be 55 lm. The resulting velocity fields were used to characterize the small-scale flow structures in this jet. The autocorrelation maps of vorticity and kci (the imaginary part of the eigenvalue of the reduced velocity gradient tensor) reveal that the structures of intense vor- ticity have a characteristic diameter of approximately 10g. From the autocorrelation map of the reduced (2D) rate of dissipation, it is inferred that the regions of intense dissi- pation tend to organize in the form of sheets with a char- acteristic thickness of approximately 10g. The regions of intense dissipation have the tendency to appear in the vicinity of intense vortices. Furthermore, the joint pdf of the two invariants of the reduced velocity gradient tensor exhibits the characteristic teapot-shape. These results, based on a statistical analysis of the data, are in agreement with previous numerical and experimental studies at lower Reynolds number, which validates the suitability of long- range lPIV for characterizing turbulent flow structures at high Reynolds number. D.},
 bibtype = {article},
 author = {Fiscaletti, D and Westerweel, J and Elsinga, G E},
 doi = {10.1007/s00348-014-1812-7},
 journal = {Experiments in Fluids},
 number = {9}
}

Downloads: 0