Binding of inositol stereoisomers to model amyloidogenic peptides. Li, G., Rauscher, S., Baud, S., & Pomès, R. The Journal of Physical Chemistry B, 116(3):1111-9, 1, 2012.
Binding of inositol stereoisomers to model amyloidogenic peptides. [pdf]Paper  Binding of inositol stereoisomers to model amyloidogenic peptides. [link]Website  doi  abstract   bibtex   
The self-aggregation of proteins into amyloid fibrils is a pathological hallmark of numerous incurable diseases such as Alzheimer's disease. scyllo-Inositol is a stereochemistry-dependent in vitro inhibitor of amyloid formation. As the first step to elucidate its mechanism of action, we present molecular dynamics simulations of scyllo-inositol and its inactive stereoisomer, chiro-inositol, with simple peptide models, alanine dipeptide (ADP) and (Gly-Ala)(4). We characterize molecular interactions and compute equilibrium binding constants between inositol and ADP as well as, successively, monomers, amorphous aggregates, and fibril-like β-sheet aggregates of (Gly-Ala)(4). Inositol interacts weakly with all peptide systems considered, with millimolar to molar affinities, and displaces the conformational equilibria of ADP but not of the (Gly-Ala)(4) systems. However, scyllo- and chiro-inositol adopt different binding modes on the surface of β-sheet aggregates. These results suggest that inositol does not inhibit amyloid formation by breaking up preformed aggregates but rather by binding to the surface of prefibrillar aggregates.

Downloads: 0