Relacionando Modelagem de Tópicos e Classificação de Sentimentos para Análise de Mensagens do Twitter Durante a Pandemia da COVID-19. Pinto, M. A. S., Junior, A. F. L. J., Busson, A. J. G., & Colcher, S. 2020. Conference Name: Anais Estendidos do XXVI Simpósio Brasileiro de Sistemas Multimídia e Web Publisher: SBC
Relacionando Modelagem de Tópicos e Classificação de Sentimentos para Análise de Mensagens do Twitter Durante a Pandemia da COVID-19 [link]Paper  Relacionando Modelagem de Tópicos e Classificação de Sentimentos para Análise de Mensagens do Twitter Durante a Pandemia da COVID-19 [link]Year  doi  abstract   bibtex   10 downloads  
Resumo In 2020, COVID-19 pandemic is one of the most talked-about subjects on social networks. This subject has generated discussions of great importance about politics, economics, medical advances, people’s awareness, preventive techniques, etc. Using sentiment analysis and topic modeling techniques, in this paper, we aim to present an analysis of the messages from the social network Twitter during the pandemic of COVID-19. For this, we use a tweets dataset to train a sentiment classifier and then use the NMF algorithm to perform the interest topic generation.
@article{pinto_relacionando_2020,
	title = {Relacionando Modelagem de Tópicos e Classificação de Sentimentos para Análise de Mensagens do Twitter Durante a Pandemia da {COVID}-19},
	rights = {Copyright (c)},
	issn = {2596-1683},
	url = {https://sol.sbc.org.br/index.php/webmedia_estendido/article/view/13064},
	doi = {10.5753/webmedia_estendido.2020.13064},
	abstract = {Resumo
					In 2020, {COVID}-19 pandemic is one of the most talked-about subjects on social networks. This subject has generated discussions of great importance about politics, economics, medical advances, people’s awareness, preventive techniques, etc. Using sentiment analysis and topic modeling techniques, in this paper, we aim to present an analysis of the messages from the social network Twitter during the pandemic of {COVID}-19. For this, we use a tweets dataset to train a sentiment classifier and then use the {NMF} algorithm to perform the interest topic generation.},
	pages = {61--64},
	journaltitle = {Anais Estendidos do Simpósio Brasileiro de Sistemas Multimídia e Web ({WebMedia})},
	author = {Pinto, Matheus Adler Soares and Junior, Antonio Fernando Lavareda Jacob and Busson, Antonio José G. and Colcher, Sérgio},
	urlyear = {2020},
	year = {2020},
	langid = {portuguese},
	note = {Conference Name: Anais Estendidos do {XXVI} Simpósio Brasileiro de Sistemas Multimídia e Web
Publisher: {SBC}},
}

Downloads: 10