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Abstract

Two key steps in many pattern recognition tasks are
image thinning and vectorization. Parallel forms of image
thinning and vectorization algorithms are developed and
analyzed in the context of a complete image raster to vector
conversion process. Two image thinning algorithms are
presented: a “‘peeling” algorithm using Arcelli’s masks and
the other a hybrid scheme that combines a ‘‘distance-
measurement” and ‘‘peeling” algorithm to achieve a better
average performance. The vectorization algorithm scans a
thinned binary image, identifies line junctions and end-
points using template matching, and performs vectoriza-
tion of curves using Ramer’s polygonal approximation algo-
rithm. Parallel techniques are shown to offer the possibility
of improved execution time as compared to serial algo-
rithms.

I. Introduction

The processing of large amounts of data, the need for
real-time computation, the use of computationally-
expensive operations, or other demands that would make a
task prohibitively expensive to perform on a conventional
computer system have forced computer architects to con-
sider parallel/distributed computer designs. Applications
that have one or more of these characteristic ‘“demands”
include image analysis for automated photo reconnaissance,
map generation, and robot (machineg) vision. Image thin-
ning and vectorization are key steps in many of these pat-
tern recognition applications. In this paper, parallel forms
of these algorithms are developed and analyzed in the con-
text of a complete image raster to vector conversion pro-
cess. These two algorithms are good candidates for parallel-
ism because the image pixel data can be easily distributed
among processors and because each pixel in the image must
be repeatedly examined. While the parallel algorithms are
more complex than their serial counterparts, they are
shown to offer the possibility of improved execution time.
Furthermore, interprocessor communication needed for
these algorithms is imited to nearest-neighbor communica-
tion which allows a variety of parallel machines to use
them.

In this paper, an fmage raster refers to a rectangular
tessellation in which pixel positions are identified by a ?:)w,
column) coordinate. Each pixel has an intensity value (grey
level). The first step in a raster to vector conversion task is
segmenting image pixels into two classes: ‘‘object” and
‘“background.” Histogramming is used to determine the dis-
tribution of grey levels in the image. Depending on the
characteristics of the histogram, the image may be able to
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be segmented by simple thresholding, by an adaptive tech-
nique such as edge-guided thresholding i,13, 23], or by more
complex classification methods [25]. Parallel algorithms for
histogramming [10, 20], edge-guided thresholding [26], and
other methods {19] have been studied. The result of such a
segmentation is a binary smage raster where the 1-valued
points correspond to ‘‘object” and the O-valued to ‘“‘back-
ground.”

The application dictates whether “‘outlines” of objects
or “‘skeletons” of objects are to be found. Both transforma-
tions reduce the amount of data to be stored by characteriz-
ing the shape of the features in the image. Generally, this
simplifies later procedures used for recognition and
classification of features. A parallel contour tracing algo-
rithm [26] can be used to find outlines. Thinning algorithms
tLl2, 9] are used to reduce elongated objects to one-pixel thick

gures. In either case, it is often desirable to reduce the
resulting curved “lines” to a set of vectors that form a
piecewise-linear approximation of the original curve. The
vectors need not match the curve exactly; they may be an
estimation of it assuming some tolerance, e.g., £1 pixel.

Two image thinning algorithms are presented; a ‘‘peel-
ing” algorithm using Arcelli’s masks [2] and the other a
hybrid scheme that combines Rosenfeld's ‘“distance-
measurement” [17] and the peeling algorithm to achieve a
better average performance. The vectorization algorithm
scans a thinned binary image, identifies line junctions and
endpoints using template matching, and performs vectori-
zation of curves using Ramer’s polygonal approximation
algorithm.

This research is motivated by several ongoing projects
at Purdue. One is the design of the PASM multimicropro-
cessor system and the implementation of a 30-processor
prototype system {12]. Another is the study of the use of
parallel processing for image processing and pattern recog-
nition with special emphasis on automated mapping appli-
cations.

Parallel processing models are given in Section II. In
Section III, parallel thinning algorithms are described.
Parallel vectorization is discussed in Section IV.

II. Parallel Processing Models

Two types of parallel processing systems are single
instruction stream - multiple data stream (SIMD) machines
and multiple instruction stream - multiple data stream
(MIMD) machines [7]. An SIMD machine typically consists
of a Control Unit (CU), an interconnection network, and
N=2" Processing Elements (PEs), where each PE is a
processor/memory pair (Figure 1). The PEs are numbered
from 0 to N—1 and each PE knows its number (address).
The CU broadcasts instructions to the processors and all
enabled processors execute the same instruction at the same
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Figure 1. Model of an SIMD/MIMD machine.

time. Each processor operates on data taken from a
memory to which only it is connected. The interconnection
network allows interprocessor communication. Examples
of such machines are the Illiac IV [5], STARAN (3], CLIP4
[6, 8], and MPP [4]. An MIMD machine has a similar organ-
Ization, but each processor may follow an independent
instruction stream. As with SIMD architectures, there is a
multiple data stream and an interconnection network.
Examples of such machines are C.mmp [27] and Cm+ [24].
A partitionable SIMD/ MIMD system is a parallel processing
system which can be structured as one or more independent
SIMD and/or MIMD machines (e.g., PASM [20], TRAC
18]).

) PASM is a partitionable SIMD/MIMD system (20
being designed to have N=1024 PE. The PAS
prototype’s interconnection network is a circuit-switched
implementation of the Extra Stage Cube network [1] which
is a fault-tolerant version of the multistage Cube network
[21). When using a circuit switched network, prior to any
message transmission between a source and a destination
PE, a physical network connection between them must be
established. Because the PEs do not share any global
memory, all inter-PE communication is done through the
interconnection network. In SIMD mode, data is exchanged
between PEs during explicitly-programmed steps that all
PEs perform simultaneously. In MIMD mode, messages are
used to request data and to achieve synchronization.
Incoming messages interrupt the destination PE and allow
it to respond to asynchronous requests.

II. Line Thinning

Depending on the scan resolution of a map, picture, or
camera image, lines may be from one to many pixels
“thick.” Practical vectorization algorithms require one-
pixel-wide lines as input, thus, line thinning is an important
step in the conversion process.

Two basic types of algorithms are being employed to
thin lines. Distance measurement is a thinning algorithm
that determines each pixel's distance from the edge of the
line to which it belongs. Pixels with locally maximum dis-
tances are retained in the thinned line; non-local maximum
pixels are removed [17]. On the first pass, the image is
scanned row-wise from the upper left-hand corner to the
lower right-hand corner. Each 1-valued pixel in the image I
is assigned a new value according to:

I(row,column) = min(I(row—1,column), [(row,column—1))+1

which calculates each pixel's distance from the left or top
side of a line. On the second pass, the image is scanned
row-wise from the lower right-hand corner to the upper
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left-hand corner. Each nonzero-valued pixel is assigned a
new value according to:

I(row,column) =min(I{row +1,column) +1,
I(row,column +1)+1, I{row,column))

which calculates each pixel’s distance from the right or bot-
tom side of a line, or the previously-calculated distance
from the left or top side if shorter. A third pass identifies
and sets to zero non-local maxima points that do not cause
the line to become disconnected. A point is not a local max-
ima if I(row, column) has a neighbor with value I{row,
column) +1. Templates (3-by-3 windows) are used to deter-
mine if the line would become disconnected if the center
point were removed. When the resulting image is used in
later processing steps, pixels that are non-zero are taken to
be 1-valued.

Peeling is another thinning algorithm in which pixels
are “‘peeled” (removed) from line edges until a one-pixel-
wide line remains. Arcelli's algorithm [2] peels pixels by
comparing each 1-valued pixel and its neighbors in the
image with a set of templates. The templates used to thin
8-connected lines are shown in Figure 2 [9]. In the tem-
plates, zeros must match 0-valued pixels, ones must match
1-valued pixels, and asterisks can match either 0- or 1-
valued pixels in the image. The algorithm works on two
images, the “‘current” image to which it compares tem-
plates and a “working” image of the same size which it
updates when templates are matched. Initially, the current
image and the working image are identical copies of the ori-
ginal input image. To begin, template Al is compared with
all 1-valued pixels and their neighbors in the current image.
If 2 match is obtained, the corresponding central pixel of
the working image is deleted (changed to a O-valued pixel).
After processing with template A1, the current image is dis-
carded, the working image becomes the new current image,
and a new working image is obtained by copying the new
current image. The process is repeated with template Bl,
then with A2, B2, A3, B3, A4, and B4, in that order, form-
ing a complete cycle. When no pixels are removed during
the processing of a complete cycle, the procedure ends.

For a fixed image size, the processing time for the peel-
ing algorithm is line-width dependent because thick lines
require more passes over the data while the distance algo-
rithm requires a fixed amount of time. The distance algo-
rithm is much faster than the peeling algorithm due to the
smaller number of operations involved for each 1-valued
pixel. Both thinning algorithms leave extraneous pixels,
i.e., those that could be removed without altering connec-
tivity or shortening lines. The peeling algorithm leaves
very few extraneous pixels, usually at complicated line
junctions. The distance algorithm often leaves lines that
are two pixels in width, which is unacceptable without
further processing. A more sophisticated peeling algorithm
which employs additional templates [95) to remove all
extraneous pixels has been programmed for the CLIP-4
SIMD computer. Its execution time is slower than Arcelli’s
original procedure because many more templates must be
applied.
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Figure 2. Arcelli's templates for thinning images [9].
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Figure 3. Data allocation and subimage border data
transfers into PE J.

Parallel distance algorithm

Consider the implementation of the distance algorith
on an N-PE machine logically arranged as an array of \/ﬁf
by-vN PEs as_shown in Figure 3. Each PE stores an
M/VN-by-M/ VN subimage block of the original M-by-M
image . Specifically, PE 0 stores the pixels in columns 0 to
(M/VN)~1of rows 0 to (M VN)-1, PE 1 stores the pixels in
columns M/ VN to 2(M/vN)-1 of rows 0 to (M/VN)-1, and
$0 on.

During the first pass of the distance algorithm, the cal-
culations for a 1-valued pixel at coordinate (row, column)
depend on the values of the pixels above and to the left of it.
Because each PE has only the data for its own subimage in
its memory, results need to be transmitted as they are cal-
culated to neighboring PEs below and to the right. When-
ever a PE obtains a result for a pixel in the last column of a
subimage, the result is passed to the PE on its right. By
analogy, results obtained for pixels in the last row of a
subimage are passed to the PE below. For the second
(reverse) pass, results are passed to PEs above and to the
left.

The straightforward implementation of the parallel
distance algorithm is inefficient since at most VN PEs can
be doing calculations at once for the forward or reverse
distance-calculating passes. Each pass requires M? calcula-
tion steps for a serial processor and

M? M

—-—=+tM

vN  WN
calculation steps for an N-PE machine. This can be derived
by calculating the time (step number) at which each pixel is
processed. If PE O begins processing the pixel in row 0,
column 0 at time O, it processes the pixel in row 0, column
(M/VN)-1 at time ( VvN)-1 and the pixel in row 1,
column 0 at time M/VN. Also at time M/VN, PE 1 may
begin processing the pixel in row 0, column M/V N because
the results from the PE on its left (PE 0) have been
obtained. It can be seen that the pixel in row M—1, column
0 is processed at time (M/vN)(M—1) and the pixel in row
M-1, column M-1 is begun M—1 time units after this (and
completed after an additional time unit). This yields the
result stated above.

In the best case with N=M? PEs (one pixel per PE),
each pass would take 2M-1 steps. The computational
speedup (1-PE computation time / N-PE computation
time) for this case would be

MM _ N
oM-1 2 2
Because the ideal computational speedup is N, this indi-
cates that the PEs are being used inefficiently. The speedup
for practical numbers of PEs (N << M?) is even worse.

Better speedups can be realized by allowing PEs to

individually process pixels that do not depend on

previously-calculated results from PEs above and to the left
of them (or below and to the right). For example, note that
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0O-valued pixels remain O-valued regardless of their neigh-
bors and 1-valued pixels such as points A and B in Figure 4
remain 1-valued since one of the pixels above or to the left
of them is known to be 0-valued.

An improved algorithm is stated as follows. Using the
data allocation discussed earlier, each PE begins by passing
its rightmost subimage column to the PE on its right and its
bottommost subimage row to the PE below it. Transfers
between different PEs occur simultaneously; e.g., when PE
J-1 sends its upper right corner pixel to PE J, PE J sends
its upper right corner pixel to PE J+1, PE J+1 sends its
upper right corner pixel to PE J+2, etc. Cube-type net-
works can perform these transfersin a single step. After the
2(M/vNjtransfers (the bottom right-hand corner is
transferred twice), PEs independently calculate distances
wherever they can do so. Points such as C, D, and E (Figure
4) require results from other PEs in order to be calculated;
they are placed in a *‘do later” list in that PE. As described
earlier, when results are obtained for rightmost columns or
bottommost rows, these are passed to the PE to the right or
below. Only nonzero-valued pixels need to be passed. As
each updated result is received, items from the “‘do later”
list are removed and calculated. An analogous procedure is
performed in the reverse direction. For sparse images (rela-
tively few l-valued points and/or thin lines) the perfor-
mance of this scheme approaches an ideal speedup.

A part-SIMD, part-MIMD mode algorithm is the best
formulation of the improved algorithm: the initial passing
of border points is done in SIMD mode while the calcula-
tions and passing of updated values are performed in MIMD
mode. SIMD mode is preferred for the initial communica-
tion of border information because the interconnection net-
work transfers are accomplished with explicitly pro-
grammed steps in the SIMD program which are executed
synchronously. This is more efficient than asynchronous
(MIMD) transfers because the destination PEs are not inter-
rupted when incoming data arrives (eliminating the over-
head due to interrupt-handling software) and there is no
possibility of interconnection network conflicts. A conflict
can occur when two or more data items wish to use the same
internal network switching element or data link simultane-
ously. MIMD mode is preferred for the calculations and
communication of updated values because it provides the
flexibility to skip certain calculations and return to them
later when the data becomes available. The ability of
PASM to dynamically switch between the SIMD and MIMD
modes of parallelism is used in this case to most efficiently
perform each part of the algorithm.
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Figure 4. Enhanced distance algorithm; 1-valued pixels
are denoted by dots or letters. Each of the
four PEs has a subimage of six by six pixels.
Pixels A and B can be processed immediately;
C, D, and E require results calculated by
other PEs.




The algorithm performance also depends on N, the
number of PEs. For a fixed input image size, as N increases,
the subimage size decreases. In general, the algorithm exe-
cution time will decrease as N increases because each PE
processes fewer pixels. However, for smaller subimages, the
ratio of pixels that are on subimage edges (and thus partici-
pate in inter-PE transfers) to the total number of pixels
increases. This increases the proportion of time spent in
overhead (transfers) and hence decreases the speedup. The
optimal number of PEs is data dependent: larger N for
sparse images; smaller N for less sparse images to reduce the
number of points placed on the “do later” lists. In the worst
case, the amount of parallelism available to the straightfor-
ward and the improved versions of the distance algorithm is
comparable. However, the actual worst-case performance
of the improved algorithm may be poorer than that of the
straightforward algorithm due to the overhead in handling
the ‘‘do later” lists.

The final pass of the distance algorithm involves the
determination and removal of non-local maxima. To begin
this pass, PEs exchange subimage border information in
SIMD mode as shown in Figure 3. Then in MIMD mode,
each nonzero-valued pixel is examined. If it is not a local
maxima and its removal would not cause disconnection of
the line, it is removed from the image. The speedup here is
data-dependent: it approaches N for those images that
result in an equitable distribution of the workload among
the PEs.

Parallel peeling algorithm

The peeling algorithm uses the same data allocation
and border information from adjacent PEs as shown in Fig-
ure 3. After the exchange of border information, each PE
thins the lines in its subimage independently. PEs begin at
the upper-left-hand corner of their subimages and scan
along the columns of row 0, then row 1, and so on. Each
time a 1-valued pixel is encountered, a template is applied
to determine whether the 1-valued pixel can be removed.
The templates were shown in Figure 2. The first set of tem-
plates matches pixels that are on the ‘‘top” of lines; the
second set matches pixels that are on the ‘‘right side” of
lines; and so on. The templates are applied in series, caus-
ing wide lines to be stripped of one layer of pixels at a time.
After the complete cycle of templates (one layer of pixels
removed from all *‘sides” of lines), PEs again exchange
border information and the complete process begins again
at the upper-left hand corner of the image. The communi-
cation of border information is required after each cycle
because a border pixel removed by a PE in one cycle will
affect the results an adjacent PE calculates in the next
cycle. The process ends when no more pixels can be
removed.

The algorithm can be structured for all-SIMD, all-
MIMD, or part-SIMD, part-MIMD mode processing. At
first glance, it would seem that the all-SIMD approach
would be very inefficient since there are a differing number
of 1-valued points in each PE, they occur at different loca-
tions within the subimage, and the templates need to be
applied only at the 1-valued points. Because it is likely that
some PE will have a 1-valued pixel at each local subimage
coordinate and because PEs are completely synchronized in
SIMD mode, PEs with 0-valued pixels will be idle while the
PEs with 1-valued pixels apply the templates at each step.
(In the MIMD algorithm, PEs would independently skip
over O-valued pixels.) However, in SIMD mode the PEs need
not perform the control instructions needed to match the
template, as would be required for the MIMD algorithm.
(Control instructions include loop counting, branching, and
local index calculations.) This is because the CU would per-
form these tasks, overlapping its operation with the PEs’
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computations. Furthermore, the exchange of border infor-
mation is performed efficiently in SIMD mode using syn-
chronized interconnection network transfers.

The protocol for communication and achieving syn-
chronization between cycles for the all-MIMD case is as fol-
lows. As each PE completes the processing for a cycle, it
transmits all of its border pixels to its neighbors. When a
PE has received border pixels from all of its neighbors, it
may begin processing the next cycle. When a PE completes
a cycle that removed no pixels, it sends all of its neighbors a
message indicating such and stops. Neighboring PEs will
then know that the border points received from that PE are
final results and will not change. Final results can be used
over and over by the neighboring PEs that are still working.
The algorithm is complete when all PEs stop.

In the part-SIMD part-MIMD scheme, the computa-
tion during each cycle is performed in MIMD mode and the
communication is done in SIMD mode. PEs synchronize
after each cycle and revert to SIMD mode to exchange
border pixels.

The all-SIMD approach performs best for densely
packed lines because a large fraction of the PEs are doing
useful work at each step, the CU and PE operations may be
overlapped, and the SIMD communication efficiency is
better than that of MIMD. Sparse images in which the data
are evenly distributed among the PEs are best processed by
the part-SIMD part-MIMD algorithm. It combines the
advantages of applying templates to only the small number
of l-valued points, high communication efficiency, and
short waiting times encountered by PEs waiting to syn-
chronize between cycles. The all-MIMD approach works
best for sparse subimages with disparate numbers of object
pixels.

Parallel hybrid thinning algorithm

Analysis of these parallel thinning algorithms
prompted the development and testing of a “hybrid” algo-
rithm consisting of both the distance and peeling
approaches. In the hybrid algorithm, the “‘distance” algo-
rithm would be used to locate the approximate ‘‘centerline”
and remove the bulk of the unwanted pixels in a fixed
number of passes. Then, the simple [2] or extended (9]
peeling algorithm would be used to remove the remaining
extraneous pixels. Because the peeling algorithm removes
only one pixel layer at a time, it is inefficient in the early
passes when lines are still thick. Therefore, the use of a
more efficient algorithm for removing pixels in the early
passes achieves a higher average performance. Unless a
priori knowledge of the image characteristics dictate use of
? cergain thinning algorithm, the hybrid approach is pre-
erred.

IV. Parallel Vectorization

Many computer image processing algorithms require
that objects in images be represented by sets of straight line
segments (vectors). Vector format is conceptually more
familiar, commonly used for display devices, and requires
significantly less storage space.
. The vectorization algorithm described here assumes a
thinned, binary image is available. If the thinning was not
ideal so that some thick junctions and spurious points
remain, the algorithm will produce extra short lines. Gap
removal, kink straightening, and other “‘beautifying” algo-
rithms are not considered here. The data allocation among
PEs is just as described for the thinning algorithm; there-
fore, each PE can process the same subimage for the com-
plete raster to vector task.

The vectorization algorithm consists of three main ele-
ments: line end/junction identification and line following
[15], topological reconstruction [15], and iterative polygonal




approximation [16f. Line ends/junctions are identified by
applying a template at each 1-valued point. A data struc-
ture which describes the graph model (vertices and edges) of
the lines in the image is constructed. Finally, sets of vectors
that approximate the lines in the image are obtained.

Line end/junction identification and line following
PEs begin with their thinned binary subimages and
subimage border data of each of their neighbors. If the
same PEs that performed the thinning are being used, each
PE already has the necessary data. A PE’s subimage with
all of its neighboring borders is called an augmented subsm-
age.
A set of templates has been constructed to allow the
rapid identification of line ends and junctions. Each tem-
plate is a 3-by-3 pixel window with a 1-valued center pixel
and the other 8 pixels either 0- or 1-valued. Thus there are
98956 different templates, each representing one of the
following cases: (1) line end, (2) line junction, (3) middle
point, or (4) indeterminate point. Figure 5 shows examples
of each type of template for the 8connected case. Figure 5a
is an example of a line end. The line junction (Figure 5b) is
defined as the meeting point of three or more distinct lines.
The template of Figure 5¢ matches a point on a line that is
neither an end or a junction. Figure 5d is a point that could

be either a junction or a middle point; however, a 3-by-3
template is insufficient to determine the type. At this stage

of the algorithm, indeterminate points are treated as junc-
tions. Later, indeterminate points that are adjacent to
other indeterminate points and junctions are examined and
re-classified as middle points or true line junctions.

Line end/junction identification and line following are
done in a single pass using the following procedure. In
MIMD mode, each PE scans its thinned binary subimage by
row starting from the upper left-hand corner. When a 1-
valued pixel is encountered in the subimage, scanning stops
and the pixel is treated as the center point of a 3-by-3 win-
dow. This pixel is called the start point. Data from the aug-
mented subimage are needed to apply the template if the
start point is on the edge of the subimage. The template is
used to classify the start point as an end, junction (or
indeterminate), or middle.

If the start point is classified as an end, the line is fol-
lowed until another end or junction is encountered. For
“middle” points, the line is followéd in each direction until
ends or junctions are encounter~d. Junction (or indeter-
minate) start points have several lines emanating from
them. Each line is followed until ends or junctions are
encountered. When a line is followed, the coordinates of all
1-valued pixels in the line are recorded. Also, each point
encountered is marked so it will not be retraced. This is
especially important when tracing closed figures; if the start
point is re-encountered, its classification is changed from
“middle” to ‘‘closed figure entry point.”

Due to the data allocation among processors, PEs will
encounter lines that continue into an adjacent PE. With
the augmented subimage data, PEs can determine whether
a line stops on the edge of their subimage (a 0-valued pixel
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Figure 5. Templates for identification of line ends and

junctions for 8-commected imagery: (a) line
end; (b) line junction; (¢) middle point; (d)
indeterminate point.

372

in the augmented subimage) or whether it continues (a 1-
valued pixel in the augmented subimage). When a line con-
tinues into another PE, the pixel on the subimage edge is
known as a ‘‘border connection point.”

The desired output of the vectorization algorithm is a
two-level structure. At the graph level, an edge and vertex
representation of the image is formed. The graph's edges
are the lines that emanate from vertices (end points, junc-
tions, and closed figure entry points). This representation
describes which vertices are adjacent (connected to each
other by a single edge) and is useful for pattern matching or
analysis of the connectivity of lines. At the more detailed
vector level, each graph edge is modeled by vectors which
give a piecewise-linear representation of the image line.
This level is required for cartographic analysis and visual
interpretation.

The graph level of the data structure is built as follows.
When an end point, junction, or closed figure entry point is
first encountered, a vnode (vertex node) structure is allo-
cated to store information about it. Border connection
points are not true vertices; however, they are given vnodes
until the PEs complete the topological reconstruction
phase. The vnodes for a vertex has entries for its global row
and column positions, its type (end, junction, border con-
nection point, closed figure entry point, indeterminate
point), a ‘“‘busy” semaphore to prevent access to the vnode
by more than one process at a time [22], and a pointer to a
list of adjnodes (adjacent node structures). Each adjnode
gives the global row and column positions of adjacent ver-
tices and has a pointer to a coordinate list that describes
the edge between the vnode point and the adjnode point.
Vnodes are kept sorted by row and column index so that
they can be accessed easily.

At the end of the line following phase, the graph level
of the output data structure is complete for all edges that
do not cross subimage boundaries. The next step, topologi-
cal reconstruction, completes the graph level of the data
structure.

Topological reconstruction

In this phase, PEs exchange information about edges
that cross subimage boundaries. Although reconnecting
lines at subimage boundaries is an extra step in the parallel
algorithm, even with serial techmiques, images are fre-
quently subdivided due to central memory restraints [14].
Such a serial scheme would have the same complications as
the parallel approach.

Several examples of edges processed during this phase
are shown in Figure 6. Consider the edge connecting ver-
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Connection of curves across subimage boun-
daries. F and G are the maximally distant
points from line segment FA for PEs 2 and 0,
respectively.

Figure 6.




tices A and B which is split between PE 0 and PE 1. Bl and
B2 are the corresponding border connection points. The
result to be obtained is to have the data structure indicate
that A is adjacent to B and vice versa. However, the data
structure currently indicates only the adjacency within a
subimage; that is, adjacency between A and Bl in PE 0 and
adjacency between B2 and Bin PE 1.

To begin this phase, each PE scans its list of border
connection point vnodes. Suppose PE 0 first encounters the
B1 vnode. When it does, it marks the Bl vnode entry busy
by setting the semaphore. This prevents other PEs from
accessing B1 while the update operation is in progress. PEO
knows that B2 is the corresponding border connection point
in PE 1 because B2 appears in PE 0’s augmented subimage.
PE 0 sends a message to PE 1 requesting the coordinates of
the vertex point adjacent to B2. In this case, PE 0 is known
as the instiating PE. PE 0 also sends the coordinates of A,
the vertex adjacent to Bl, with the request as well as the
address of the initiating PE (PE 0). PE 1 is interrupted
upon receipt of the request and processes the message. It
marks vertex B2 busy so that it does not try to initiate any
queries of its own about the edge AB. PE 1 looks up B2’s
vnode and determines its adjacent vertex, B. PE 1 then
returns B’s coordinates in a message to PE 0. PE 0 updates
the vnode entry for A indicating that B is adjacent to it; PE
1 updates vnode B indicating that A is adjacent to it. Bl
and B2 are kept as “‘placeholder” vnodes for later stages of
the algorithm.

As an alternative to the exchange of information out-
lined above, PE 1 could have initiated the query with a
request to PE 0. The final result would be identical.

The “locking” of the vnode entries was necessary in
the example above since both PE 0 and PE 1 could have
been trying to work on the same edge simultaneously. Only
one PE should be allowed to connect it.

Suppose that PE 0 had initiated its request first and
locked B1, but before PE 1 received the message and locked
B2 due to PE 0's request, it also initiated a request locking
B2 due to its own request). In this case, PE 0 would return
the message “locked” to PE 1 in response to the query
about B1. Similarly, PE 1 would return the “locked” mes-
sage to PE 0 because B2 is locked. To prevent deadlock
[22], that is, a situation in which each participating PE
needs a resource that the other is unwilling to provide, only
one PE must be allowed to continue. The situation can be
resolved by having PEs unlock their vnode entries when
they receive a ‘locked” message. Unfortunately, this
results in the edge AB not being processed. The solution is
to adopt a rule that prioritizes requests based on some cri-
terion; for example, requests initiated by lower-numbered
PEs are given priority. A variation on this method of
resolving deadlock was discussed in [26].

The edge CD in Figure 6 is processed similarly to the
way described earlier. If PE 2 initiates the query, PE 3 can-
not determine the other vertex (D) itself and passes the
request along to PE 1. PE 1 processes the request and
returns vertex D’s coordinates to PE 3 which in turn
returns them to PE 2. However, if PE 3 initiates the query,
it has neither of the coordinates of the vertices. Thus when
it is returned one vertex's coordinates, for example, “C” as
a result of querying PE 2, it passes them to PE 1 when
querying in the other direction. When PE 1 returns the
coordinates of D, PE 2 still lacks them and must be sent an
additional message. This additional message can often be
avoided if PEs delay processing the ‘‘double border point”
cases (such as B4-B5 in PE 3).

he closed figure in Figure 6 has no real vertices; each
PE sees part of an edge (a subedge) with two boundary con-
nection points. No PE knows whether its subedge is part of
a closed figure or is part of an edge that crosses multiple
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subimage boundaries {like edge CD). Some PE queries
about the vertex in one of the two directions. Eventually,
the query will come back to the initiating PE which will
realize that a closed figure has been found. The initiating
PE designates one of its border connection points as a
closed figure entry point vertex and returns the coordinates
of this vertex along the path of queries.

Polygonal Approximation

The basic goal when converting images from raster to
vector format is to represent curved lines (graph edges) by
sets of vectors that approximate the curve shapes. Approx-
imation algorithms require calculation of some numerical
criterion that quantifies the approximation’s *‘fit.” This cal-
culation can be computationally expensive for algorithms
involving minimum perimeter polygons or least squares line
fitting [16]. For many applications, conversion speed is
more important than making rigorously mathematical
approximations and finding the absolute minimum number
of vertices.

Ramer [16] described an algorithm for approximating
plane curves by polygons that is computationally efficient
and produces near minimum numbers of vertices. The fol-
lowing recursive procedure is used: a curve is approximated
by a straight line through its endpoints; a calculation is
made to see if the approximation is acceptable and if not,
the curve is broken into two curves at the point most dis-
tant from the straight-line segment. This procedure is
repeated until the entire curve is approximated by a set of
straight-line segments that satisfy the fit criterion.

There are various criteria for quantifying the approxi-
mation of curves by polygons [16]. For our algorithm, the
square of the maximum absolute distance of a curve to the
straight line segment connecting its endpoints was chosen
because of its computational simplicity. Furthermore,
sharp spikes in an image (that may be important image
information) will be preserved. Some methods of approxi-
mation such as mean squared error would not preserve this
information.

One disadvantage of the polygonal approximation is
that long curves require many calculations. Ramer sug-
gested arbitrarily breaking up curves every P points (where
P is perhaps 50 or 100) to minimize this problem [16]. In the
parallel environment, long curves are automatically seg-
mented at every subimage boundary.

There are two ways the PEs can perform the polygonal
approximations. In the first way, there is no inter-PE com-
munication: each PE vectorizes the graph subedges within
its subimage independently. Edges are arbitrarily broken
at the subimage boundaries, which does not substantially
affect the visual results although it may increase the total
number of vectors created. If edges are generally much
longer than the dimensions of a subimage, they cross multi-
ple subimage boundaries may be split more often than
necessary. This simple approach may be acceptable for
many applications. Unfortunately, the results depend on
the number of PEs used to perform the algorithm, the data
allocation among the PEs, and the actual image.

To obtain results comparable to the serial algorithm,
the second and more complex approach must be taken.
Here, PEs independently vectorize graph edges that lie
entirely within their subimages and cooperate on edges that
cross subimage boundaries. When processing an edge like
AB in Figure 6, each PE knows the two vertex endpoints
(exchanged during the topology reconstruction phase) and
is responsible for determining the maximum distance
between its part of the edge and the straight line segment
AB. The PEs exchange their maximum distances and coor-
dinates so each can decide where the edge should be split.
Since each is executing the same algorithm, they must come




to the same conclusion.

For example, consider the edge FA in Figure 6. Sup-
pose that PE 0 determines that point H is maximally dis-
tant at 8 units and PE 2 determines that point G is maxi-
mally distant at 10 units. After the exchange of the coordi-
nates and distances, each PE determines that point G is
maximally distant from line segment FA and that the edge
should be split into two vectors, FG and GA. Vector FG
can now be subdivided if necessary by PE 2 on its own.
However, the two PEs must cooperate again to determine if
GA meets the tolerance criterion. The process begins again:
PE 0 determines the maximum distance from the curve to
vector GA on its side of the subimage; PE 2 does so on its
side. If after the exchange, the tolerance criterion has not
been met, vector GA is subdivided further using the same
procedure.

To avoid use of the deadlock resolution protocol dur-
ing this phase, the exchange of maximum distance informa-
tion about a given edge is initiated by the PE having the
vertex point on that edge with the lower-valued row coordi
nate (if tie, lower-valued column coordinate). For closed
figures, the PE having the closed figure entry point initiates
the exchange.

The communication of the maximum distances for
edge CD of Figure 6 is more complex but it mimics the pro-
tocol used in the topology reconstruction phase. Suppose
that subedge C-B3 has maximum distance 10, B4-B5 has
20, and B6-D has 8. The initiating PE, PE 1, sends the dis-
tance 8 and the coordinate of the point at which it occurred
to PE 3. PE 3 compares this distance to its own and passes
the maximum of the two (distance 20) to PE 2. PE 2 com-
pares the distance to its own, records the maximum (dis-
tance 20), and returns it to PE 3. PE 3 in turn returns the
maximum distance to PE 1. Each now knows the max-
imum distance which it compares with the tolerance to
determine if a split is necessary.

Communication of the distances for the closed curve of
Figure 6 is similar to that described above. Each PE calcu-
lates the maximum distance of its subedge from the initiat-
ing PE’s *‘closed curve entry point.” The first split is made
at the maximally-distant point.

V. Conclusions

Preliminary results have been obtained by writing
serial simulations of these parallel thinning and vectoriza-
tion algorithms and by examining their performance for a
number of test images. In general, these results demon-
strate that parallel processing systems can be used to
significantly reduce the execution times for converting
images from raster to vector format. Simulations of the
hybrid thinning algorithm consisting of the part-SIMD,
part-MIMD distance and peeling algorithms showed
improvements in average performance as compared to the
distance or peeling algorithms used alone. Speedups
approaching N, the number of PEs, are obtained for the
vectorization algorithm so long as the subimage size does
not become too small in comparison with the average length
of lines in the image. For a given machine size, arbitrarily
breaking lines into vectors at PE subimage boundaries
results in better speedups than those obtained for the more
complex approach of iterative polygonal approximation
across subimage boundaries. More detailed discussion of
the parallel algorithms, including specific techniques used
to match templates, follow lines, link subedges across

subimage border points, and so on, are found in [11].
he simulations do not model some of the subtle

aspects of parallel processing such as the number of inter-
connection network conflicts during MIMD message pass-
ing, and the number of messages involved in resolving
potential deadlock situations. As the PASM prototype
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hardware becomes available, we will investigate the data-
dependent behavior of the algorithms of a complete raster
to vector conversion process and undertake the processing
of realistically-sized imagery.
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