On Transformations of Random Vectors

Jeffrey A. Fessler

COMMUNICATIONS & SIGNAL PROCESSING LABORATORY Department of Electrical Engineering and Computer Science The University of Michigan Ann Arbor, Michigan 48109-2122

Aug. 1998, LATEXed July 24, 2006

Technical Report No. 314

Approved for public release; distribution unlimited.

On Transformations of Random Vectors

Jeffrey A. Fessler

4240 EECS, University of Michigan, Ann Arbor, MI 48109-2122 email: fessler@umich.edu, phone: 734-763-1434, fax: 734-764-8041

July 24, 2006

Technical Report # 314
Communications and Signal Processing Laboratory
Dept. of Electrical Engineering and Computer Science
The University of Michigan

Abstract

This technical report treats some technical considerations related to the probability density function of a function of a random vector.

I. INTRODUCTION

Let $X \in \mathbb{R}^n$ be a continuous random vector with known pdf $p_X(x)$. In many problems it is necessary to find the pdf $p_Y(y)$ of a new random vector Y defined as a function Y = g(X) of X, where $g : \mathbb{R}^n \to \mathbb{R}^n$.

Many textbooks on probability and random variables state the following equality:

$$p_Y(y) = p_X(g^{-1}(y)) |J(y)|, \tag{1}$$

where J is the Jacobian of $g^{-1}(y)$, i.e., the determinant of the gradient of $g^{-1}(y)$.

There is considerable variation in how precisely the textbook authors state the conditions for the above equality. Most books do state the condition that g be one-to-one (and hence invertible). However, the stated conditions on differentiability vary widely.

Many engineering books make *no mention* of the need for g^{-1} to be differentiable, e.g. [1–8]. Many books assume that g^{-1} is globally differentiable e.g. [9–14], but this condition is too restrictive in some applications. Some books [15–17] assume that $g: \mathcal{S} \to g(\mathcal{S})$ is one-to-one and differentiable on some open set $\mathcal{S} \subseteq R^n$, and that the pdf of X vanishes (is zero) outside of \mathcal{S} . This is reasonably general, but still inapplicable to problems where, for example, X has a Gaussian pdf and \mathcal{S} is a proper subset of R^n , since the support of the Gaussian pdf is all of R^n .

A more general requirement is to assume that $P\{X \in \mathcal{S}\} = 1$, for which the condition that $p_X(x)$ vanishes outside \mathcal{S} is a special case. Hoel, Port, and Stone [18] provide such a theorem without proof. Bickel and Doksum [19] provide a proof of the transformation formula under the condition $P\{X \in \mathcal{S}\} = 1$, but the proof is not entirely rigorous since the integrals given in [19] can cover points outside \mathcal{S} where the Jacobian need not exist. This technical report provides a rigorous proof of (1), properly handling the technical details of the set \mathcal{S} .

This work was motivated by [20], in which a transformation function arises that is differentiable except on a set of hyperplanes of Lebesgue measure zero.

II. THEORY

The following is simply Theorem 17.2 of [15], included for convenience.

Theorem 1 Let $h: \mathcal{V} \to h(\mathcal{V})$ be a one-to-one mapping of an open set \mathcal{V} onto an open set $h(\mathcal{V})$. Suppose that (on \mathcal{V}) h is continuous and that h has continuous partial derivatives h_{ij} with Jacobian $J(y) \triangleq \det\{h_{ij}(y)\}$. Then for $\mathcal{A} \subseteq \mathcal{V}$, for any nonnegative function f

$$\int_{\mathcal{A}} f(h(y))|J(y)| \, \mathrm{d}y = \int_{h(\mathcal{A})} f(x) \, \mathrm{d}x. \tag{2}$$

The following Theorem is a generalization of (20.20) in [15]. Standard treatments *e.g.*, [14, p. 143] assume that the transformation function is globally differentiable. Our generalization allows for a (measure zero) set where the Jacobian is undefined.

Theorem 2 Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be one-to-one and assume that $h = g^{-1}$ is continuous. Assume that on an open set $\mathcal{V} \subseteq \mathbb{R}^n$ h is continuously differentiable with Jacobian J(y). Define $J_0: \mathbb{R}^n \to \mathbb{R}$ by

$$J_0(y) = \begin{cases} J(y), & y \in \mathcal{V} \\ 0, & y \in \mathcal{V}^c, \end{cases}$$
 (3)

where \mathcal{V}^c is the set complement (in \mathbb{R}^n) of \mathcal{V} .

Suppose random vector X has pdf $p_X(x)$ (with respect to Lebesgue measure) with nonzero mass in $h(\mathcal{V}^c)$, i.e., $P\{X \in h(\mathcal{V}^c)\} = \int_{\mathcal{V}^c} p_X(x) dx = 0$. Then the pdf of Y = g(X) is given by

$$\mathsf{p}_{Y}(y) = \mathsf{p}_{X}(g^{-1}(y)) |J_{0}(y)| = \begin{cases} \mathsf{p}_{X}(g^{-1}(y)) |J(y)|, & y \in \mathcal{V} \\ 0, & y \in \mathcal{V}^{c}. \end{cases}$$
(4)

Proof:

For (measurable) $\mathcal{B} \subseteq \mathbb{R}^n$

$$0 \leq \mathsf{P}\{g(X) \in \mathcal{B} \cap \mathcal{V}^c\} \leq \mathsf{P}\{g(X) \in \mathcal{V}^c\} = \mathsf{P}\{X \in g^{-1}(\mathcal{V}^c)\} = \mathsf{P}\{X \in h(\mathcal{V}^c)\} = 0.$$

Thus $P\{g(X) \in \mathcal{B} \cap \mathcal{V}^c\} = 0$, so

$$\begin{split} \mathsf{P}\{g(X) \in \mathcal{B}\} & = & \mathsf{P}\{g(X) \in \mathcal{B} \cap \mathcal{V}\} + \mathsf{P}\{g(X) \in \mathcal{B} \cap \mathcal{V}^c\} \\ & = & \mathsf{P}\{X \in h(\mathcal{B} \cap \mathcal{V})\} = \int_{h(\mathcal{B} \cap \mathcal{V})} \mathsf{p}_X(x) \, \mathrm{d}x = \int_{\mathcal{B} \cap \mathcal{V}} \mathsf{p}_X(h(y)) \, |J(y)| \, \mathrm{d}y \end{split}$$

by Theorem 1, which applies since $\mathcal{B} \cap \mathcal{V} \subseteq \mathcal{V}$. (The set $h(\mathcal{V})$ is open since by assumption \mathcal{V} is open and h is continuous.) Thus by (3):

$$\mathsf{P}\{g(X) \in \mathcal{B}\} = \int_{\mathcal{B} \cap \mathcal{V}} \mathsf{p}_X(h(y)) \left| J_0(y) \right| \mathrm{d}y = \int_{\mathcal{B}} \mathsf{p}_X(h(y)) \left| J_0(y) \right| \mathrm{d}y - \int_{\mathcal{B} \cap \mathcal{V}^c} \mathsf{p}_X(h(y)) \left| J_0(y) \right| \mathrm{d}y,$$

since \mathcal{B} is the union of the disjoint sets $\mathcal{B} \cap \mathcal{V}$ and $\mathcal{B} \cap \mathcal{V}^c$. The second integral above is zero since $|J_0(y)|$ is zero for $y \in \mathcal{V}^c$ by (3). Thus

$$\mathsf{P}\{g(X) \in \mathcal{B}\} = \int_{\mathcal{B}} \mathsf{p}_X(h(y)) |J_0(y)| \, \mathrm{d}y,$$

for $\mathcal{B} \subseteq \mathbb{R}^n$, proving that (4) is a pdf of q(X).

REFERENCES 3

REFERENCES

- [1] R. G. Brown and P. Y. C. Hwang. *Introduction to random signals and applied Kalman filtering*. Wiley, New York, 3 edition, 1997.
- [2] G. R. Cooper and C. D. McGillem. Probabilistic methods of signal and system analysis. Holt, ..., 1971.
- [3] C. W. Helstrom. *Probability and stochastic processes for engineers*. Macmillan, New York, 1991.
- [4] D. C. Montgomery and G. C. Runger. Applied statistics and probability for engineers. Wiley, New York, 1994.
- [5] A. Papoulis. Probability, random variables, and stochastic processes. McGraw-Hill, New York, 2 edition, 1984.
- [6] Y. Viniotis. Probability and random processes for electrical engineers. McGraw-Hill, Boston, 1998.
- [7] R. Walpole and R. H. Myers. *Probability and statistics for engineers and scientists*. Prentice-Hall, New York, 5 edition, 1993.
- [8] R. E. Ziemer. Elements of engineering probability and statistics. Prentice-Hall, NJ, 1997.
- [9] J. Auñón and V. Chandrasekar. *Introduction to probability and random processes*. McGraw-Hill, New York, 1997.
- [10] A. Leon-Garcia. *Probability and random processes for electrical engineering*. Addison-Wesley, New York, 2 edition, 1994.
- [11] P. Z. Peebles, Jr. *Probability, random variables, and random signal principles*. McGraw-Hill, New York, 3 edition, 1993.
- [12] J. A. Rice. Mathematical statistics and data analysis. Brooks/Cole, Monterey, Calif, 1988.
- [13] S. Ross. A first course in probability. Macmillan, Englewood Cliffs, NJ, 4 edition, 1994.
- [14] H. Stark and J. W. Woods. *Probability, random processes, and estimation theory for engineers*. Prentice-Hall, Englewood Cliffs, NJ, 1986.
- [15] R. Billingsley. *Probability and measure*. Wiley, New York, 2 edition, 1986.
- [16] A. M. Mood, F. A. Graybill, and D. C. Boes. *Introduction to the theory of statistics*. McGraw-Hill, New York, 3 edition, 1974.
- [17] D. Stirzaker. *Elementary probability*. Cambridge University Press, Cambridge, 1994.
- [18] P. G. Hoel, S. C. Port, and C. J. Stone. *Introduction to probability theory*. Houghton Mifflin, Boston, 1971.
- [19] P. J. Bickel and K. A. Doksum. *Mathematical statistics*. Holden-Day, Oakland, CA, 1977.
- [20] J. A. Fessler, H. Erdoğan, and W. B. Wu. Exact distribution of edge-preserving MAP estimators for linear signal models with Gaussian measurement noise. *IEEE Trans. Im. Proc.*, 9(6):1049–56, June 2000.