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Abstract
This technical report treats some technical considersatielated to the probability density function of a function
of a random vector.

. INTRODUCTION

Let X € R" be a continuous random vector with known pdf(x). In many problems it is necessary to find the pdf
py (y) of a new random vectdr defined as a functioli = g(X) of X, whereg : R" — R".
Many textbooks on probability and random variables state the followingliggua

py (¥) = px (97" W) [J(W)I, (1)

whereJ is the Jacobian of ' (y), i.e., the determinant of the gradient gf! ().

There is considerable variation in how precisely the textbook authors statottditions for the above equality.
Most books do state the condition thatbe one-to-one (and hence invertible). However, the stated conditions on
differentiability vary widely.

Many engineering books make mentiorof the need fow ' to be differentiablee.g.[1-8]. Many books assume
that g~ is globally differentiablee.g.[9—14], but this condition is too restrictive in some applications. Some books
[15-17] assume that : S — ¢(S) is one-to-one and differentiable on some opensset R”, and that the pdf o
vanishes (is zero) outside 6% This is reasonably general, but still inapplicable to problems where xemple, X
has a Gaussian pdf atlis a proper subset at”, since the support of the Gaussian pdf is allf.

A more general requirement is to assume @k € S} = 1, for which the condition thapx (x) vanishes outside
S is a special case. Hoel, Port, and Stone [18] provide such a theoreouwyittoof. Bickel and Doksum [19] provide
a proof of the transformation formula under the conditiiX € S} = 1, but the proof is not entirely rigorous since
the integrals given in [19] can cover points outsilerhere the Jacobian need not exist. This technical report provides
a rigorous proof of (1), properly handling the technical details of th&se

This work was motivated by [20], in which a transformation function arisasithdifferentiable except on a set of
hyperplanes of Lebesgue measure zero.
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[l. THEORY
The following is simply Theorem 17.2 of [15], included for convenience.

Theorem 1 Leth : V — h(V) be a one-to-one mapping of an open Bainto an open sdi()). Suppose that (oW)
h is continuous and thdt has continuous partial derivativés; with Jacobian/(y) = det{h;;(y)}. Thenford C V,
for any nonnegative functiofi
J rwwwiay= [ ses. @
h(A)
The following Theorem is a generalization of (20.20) in [15]. Standaratrimentse.g, [14, p. 143] assume that
the transformation function is globally differentiable. Our generalization allftasw a (measure zero) set where the
Jacobian is undefined.

Theorem 2 Letg : R* — R" be one-to-one and assume that= ¢! is continuous. Assume that on an open set
YV C R™ h is continuously differentiable with Jacobial{y). DefineJy : R — IR by

n ={ g@ Ve ©

where)* is the set complement (R™) of V.
Suppose random vectof has pdfpx (z) (with respect to Lebesgue measure) with nonzero masgif), i.e
P{X € h(V)} = [,c px(z)dz = 0. Then the pdf ot = ¢(X) is given by

ov (1) =l ) L) = { DXV CDVWI v ER @

Proof:
For (measurablelf C R"™

0<P{g(X)e BNV} <P{g(X)eV}=P{Xeg'(V)} =P{X e h(V)} =0
ThusP{g(X) e BNV} =0, so0
P{g(X)e B} = P{g(X)eBnV}+P{g(X)e BNV}

— P{X enBnV)} = /h o A= /B (b))l dy

by Theorem 1, which applies sind@n V C V. (The seth(V) is open since by assumption is open andh is
continuous.) Thus by (3):

PX) €8} = [ o) [l dy = [ ox(hu) owldu= [ px(hl) )] o,

sinceB is the union of the disjoint sef§ NV andB N V. The second integral above is zero singgy)| is zero for
y € V° by (3). Thus

LX) € B = [ px(hiw) Do)l do,
for B C R™, proving that (4) is a pdf of(X). O
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