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ABSTRACT
Smart glasses allow for gaze gesture passwords as a hands-free form
of mobile authentication. However, pupil movements for password
input are easily observed by attackers, who thereby can derive the
password. In this paper we investigate closed-eye gaze gesture pass-
words with EOG sensors in smart glasses. We propose an approach
to detect and recognize closed-eye gaze gestures, together with a
7 and 9 character gaze gesture alphabet. Our evaluation indicates
good gaze gesture detection rates. However, recognition is chal-
lenging specifically for vertical eye movements with 71.2%-86.5%
accuracy and better results for opened than closed eyes. We further
find that closed-eye gaze gesture passwords are difficult to attack
from observations with 0% success rate in our evaluation, while
attacks on open eye passwords succeed with 61%. This indicates
that closed-eye gaze gesture passwords protect the authentication
secret significantly better than their open eye counterparts.

CCS CONCEPTS
• Security and privacy → Authentication; Graphical / visual
passwords; •Human-centered computing→ Gestural input;Mo-
bile computing; Mobile devices.
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1 INTRODUCTION
Modern mobile devices have access to diverse types of private
data [30], which is why access to them is often protected with dif-
ferent types of authentication [31]. Compared to classic computers,
mobile devices feature more frequent but shorter user interaction
sessions [17, 18] in a broader range of situations. Further, classic
mobile device authentication, like PIN, password, or unlock pattern,
are vulnerable to diverse attacks from shoulder surfing [28] over
smudge attacks [2] to thermal attacks [1]. This, and the different
nature of mentioned situations, make users benefit from having a
multitude of authentication approaches available that are appro-
priate for diverse everyday situations (cf. [12, 13]). The overall
authentication should be unobtrusive, provide different choices in
a flexible way, and ideally automatically combine different authen-
tication data sources [16, 19].

Smart glasses allow for such additional forms of authentication:
eye-facing cameras built into the glasses frames, which observe
pupil movements [24], can be utilized for gaze password input and
authentication. A key issue with pupil based gaze passwords are
observation-based attacks: pupil movements can easily be observed
by attackers watching the user’s eyes during authentication [8]. One
option to avoid pupils being visible to attackers is to close eyelids
when performing gaze passwords. The underlying assumption is
that eye movements are more difficult to observe with closed eyelids
than with pupils being visible. However, this also renders pupil
based gaze extraction unusable. So far, only one recent approach has
considered closed-eye gaze altogether [14]. Their approach utilizes
eye-facing cameras built into smart glasses and extracts closed-eye
gaze gestures with optical flow from movements observed on the
eyelids. However, their work focuses only on user input and does
not consider potential application in mobile authentication and
corresponding security aspects.

Closed-eye gaze extraction with cameras, as in [14], bears the
disadvantage that eye movements have to be extracted from optical
recordings of closed eyelids, which in turn might be impacted by
illumination of the eyelids, and in general seems difficult from a
technical perspective. Hence, being able to use other data sources
for sensing closed-eye gaze gestures would be beneficial. Electroocu-
lography (EOG) sensors are one such option that can be built into
smart glasses frames. In contrast to cameras, EOG sensors require
skin contact. Bulling et al. [7] have investigated EOG-based gaze
extraction with EOG goggles. However, their approach utilizes sen-
sor positions unavailable with regular glasses frames, e.g. above
and below the eye, which would require the frame to be extended
towards the form factor of goggles. With regular glasses, positions
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Figure 1: Gaze gestures in related work: horizontal, vertical,
and diagonal gestures without [8] and with [7] considering
the size of the gesture (left and center), as well as with de-
fined start and/or end point [23] (right).

available for sensors that require skin contact are those where the
frame naturally touches the skin, such as on the nose and behind
the ears.

In this work we investigate smart glasses authentication with
closed-eye gaze gesture passwords that are sensed with EOG sen-
sors embedded in the glasses frames. Our approach utilizes closed-
eye gaze gestures adapted from related work (cf. [7, 14, 23]) but
employs them for authentication. EOG sensors are embedded in the
glasses frames in the bridge and the nose pads, so that they naturally
touch the user’s skin, just as regular glasses would. While those
restricted sensor positions impair the EOG sensing capabilities over
previous work, such as [7], we deem those restriction important
to not impair usability in daily usage by extending the frame be-
yond regular glasses. The central hypotheses of this paper are a)
closed-eye gaze passwords with EOG sensors embedded in smart
glasses frames are feasible without extending the glasses frame
form beyond regular glasses, and b) closed-eye gaze gesture pass-
words are more difficult to observe by attackers than their open-eye
counterparts. Summarizing, the contributions of this paper are:

• We propose a methodology to extract closed-eye gaze ges-
tures from EOG sensors embedded in smart glasses. We only
utilize sensor positions around the nose where the frame
naturally touches the skin.

• We propose a 7 and 9 character gaze gesture alphabet and
protocol for the chosen EOG sensor positions.

• We evaluate our approach for detection and recognition rates
as well as success of observation-based attacks of closed- and
open-eyes gaze gestures, with 15 subjects and 81 gaze gesture
passwords, containing a total of 380 gaze gestures, as well
as 18 attackers and 36 observation-based attacks.

2 RELATEDWORK
In this section we review relevant previous work on both gaze ges-
tures as well as on authentication based on them, with an overview
of approaches and key attributes in Tab. 1 and gaze gesture exam-
ples in Fig. 1.

2.1 Gaze Gestures
There has been numerous priorwork on open-eye gaze gestures [15].
EyeWrite [35] uses gaze gesture input for text composition. The
concept is based on EdgeWrite [34], in which each character is re-
placed by a gesture. The alphabet therefore contains 26+10 gestures

for numeric characters and further gestures for punctuation and
text control. The approach is designed to work with a stationary
Tobii ET-1750 eye tracker in the form factor of a computer monitor.
A set of 12 gaze gestures is used in [23]. Each gaze gesture in their
alphabet consists of left, right, up, down, and optional diagonal
movements. They evaluate their approach with a PC setup, and
compare it to dwell-based gaze input in subsequent work [21]. The
duration of L, triangle, line, rectangle, and circle based gaze gestures
is investigated in [15]. The paper compares the duration it takes
to perform gaze gestures on an empty space with no background
to using a helping structure in the form of the intended shape as
background. Their results indicate that performing gaze gestures
with a blank background without any helping structure is quicker
to perform. In [11], an alphabet of 8 gaze gestures is used. Each
gesture is an unidirectional stroke into a certain direction (left,
right, up, down, and the four diagonals in between). The authors
utilize a setup with a computer monitor and a camera with attached
infrared light to perform pupil tracking and extract gaze gestures.
The same alphabet is used in [10] for gaze gesture input to mobile
devices.

All those approaches have in common that they rely on optical
pupil tracking, hence on opened eyes, for gaze gesture extraction.
While cameras can be built into smart glasses frames [24], pupils
are not visible with closed eyes, which prevents those approaches
from being applied to closed-eye gaze gestures. Recently, in [14] a
different path was investigated: the extraction of closed-eye move-
ments from eye-facing cameras embedded in smart glasses frames.
Instead of tracking pupils, optical flow is utilized to extract the
direction of gestures from closed eyelids. Four different alphabets
with 5-9 possible gestures were tried, where each gesture is either a
big or small, uni- or bidirectional stroke into a certain direction (left,
right, up, down), or a squint (similar to blinking eyes while eyes
stay closed). In contrast, our work differs by focusing on passwords
over user input only, as well as in using EOG sensors instead of
cameras as data source.

EOG recognition has been utilized for gaze gestures in prior work.
As it does not rely on pupil tracking it seems to be a viable option for
extracting closed-eye gaze gestures, but has not been investigated
yet. Related work on EOG-based gaze gestures with open eyes [5]
uses an alphabet related to the one in [11], consisting of 8 gestures
(left, right, up, down, and four diagonals). In subsequent work they
expand user input to also have small and big eye movements in left,
right, up, and down direction [7]. By combining two movements
they thereby encode a total of 16 different characters for user input.

When considering smart glasses, EOG sensors bring a significant
drawback. In contrast to optical sensors, EOG sensors need to touch
the skin, which limits possible sensor positions with regular glasses
frames to around the nose and close to the ears (similar to, for ex-
ample, the J iNS M

E

ME device [22]). Those locations cause sensors
to be positioned horizontally to each other, but not vertically. While
this allows for horizontal eye movement sensing, vertical eye move-
ment sensing is more difficult, as it naturally would benefit from
sensors above and below the eye, similar to the goggles utilized
in [6]. However, adding sensors above and below the eyes would
make the device significantly more cumbersome due to increased
size and weight, and would change the frame form factor from
glasses to goggles.
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Table 1: Overview of gestures and alphabets in previous work on open-eyed gaze gesture user input and authentication.

Gaze gest.
user input

Modality Gesture alpha-
bet

Gesture
duration

Error rate Attack suc-
cess rate

Remarks

Drewes and
Schmidt [11]

Optical,
stationary

RLUD1379 0.6 s – – Gestures consist of one stroke. Use IR lights and IR cameras.

Drewes et
al. [10]

Optical,
mobile

RLUD1379 <0.9 s – – Mobile devices in a stationary setup. Fix head and use of external camera
for eye tracking.

Wobbrock et
al. [35]

Optical,
stationary

Full alphanu-
meric

– – – EyeWrite: EdgeWrite [34] with gaze. Gestures consists of multiple con-
nected strokes.

Bulling et
al. [5, 6]

EOG, mo-
bile

RLUD1379 0.4-1.0 s 5%-14% – Mobile EOG googles. Gestures consist of one stroke, simpler gesture
alphabet.

Bulling et
al. [7]

EOG, mo-
bile

LlRrUuDd-
NnJjFfBb

– 23.9% FNR, 29.5% FPR – Mobile EOG googles. Gestures consist of one stroke, more complex
alphabet.

Istance et
al. [23]

Optical,
stationary

TBLRCN 0.5-0.9 s – – Gaze input to PC gaming. Gestures start and stop in center and consist
of either 2 or 3 strokes.

Findling et
al. [14]

Optical,
mobile

LRUDS to
LlRrUuDdS

– 8.4-17.2% detection,
8.1-0.3% recognition

– Extend gaze gesture alphabets with closed-eye gaze gestures. Evaluate 4
gaze gesture protocols.

Gaze gest.
auth.

Modality Gesture alpha-
bet

Auth. du-
ration

Error rate Attack suc-
cess rate

Remarks

De Luca et
al. [9]

Optical,
stationary

Numeric 0-9 54 s 9.5% – EyePIN: numeric gestures from EdgeWrite [34] with gaze. Gestures con-
sist of multiple connected strokes.

De Luca et
al. [8]

Optical,
stationary

RLUD1379 12.5 s – 55%
(3 tries)

EyePassShapes: PassShapes [33] with gaze. Gestures consist of one
stroke.

Hossain et
al. [20]

EOG, sta-
tionary

LRUD1379+blink – – – 5 point EOG sensor setup. Gestures consist of one stroke.

Khamis et
al. [25]

Optical,
mobile

Left-right 3.1 s 23%-42% 19%-44% GazeTouchPass: concatenate touch screen characters (numeric 0-9) with
left-right gaze gesture characters.

Khamis et
al. [26]

Optical,
mobile

Left-right 10.8 s – 4.2%-
16.7%

GazeTouchPIN: combine touch screen list row selection with left-right
gaze gesture for columns selection in a Nx2 character grid.

2.2 Authentication with Gaze Gestures
The first gaze gesture based authentication was proposed by De
Luca et al. with EyePIN [9], in which users enter a numeric PIN with
gaze gestures. The underlying alphabet is based on EdgeWrite [34],
in which each numeric character is represented by a gesture drawn
with a pen. EyePIN utilizes only numeric characters of this alpha-
bet and replaces the pen with gaze for gesture input. It has been
designed to work with a stationary monitor and eye tracking setup
and uses the commercial ERICA eye tracker in its evaluation. To
begin and end recording of a gaze gesture, users press a button on
the keyboard. The evaluation compares input based on dwell (fixate
point for given time), look-and-shoot (fixate point and press a key),
and gaze gestures, and find gestures to be slowest (mean 54 s) with
the smallest error rate (9.5%).

In subsequent work, De Luca et al. combine the gaze aspects
of EyePIN with the gesture aspects of PassShapes [33] to Eye-
PassShapes [8]. PassShapes is a graphical password scheme with
an alphabet of 8 directions: left, right, up, down, (LRUD), and the
four diagonals in between, labeled clockwise by the correspond-
ing numbers on a keypad (1379). PassShapes is designed to work
with a (touch)screen and a pen. A password thereby consists of
a series of gestures, which are separated by pen-up events. Eye-
PassShapes utilizes the same alphabet as PassShapes, and simi-
larly to EyePIN, replaces PIN with gaze gestures. Like EyePIN,
EyePassShapes is designed for a stationary monitor and eye track-
ing setup, and users press a keyboard button to begin and end gaze
recording. They comparatively evaluate PIN, EyePIN, PassShapes,
and EyePassShapes authentication. Their findings indicate that Eye-
PassShapes is quicker (12.5 s) than EyePIN, but slower than PIN
or PassShapes, and that the attackability with 3 input tries from
attackers beforehand observing users’ eyes during authentication

(55%) is lower than with PIN or PassShapes, but higher than with
EyePIN.

GazeTouchPass [25] and GazeTouchPIN [26] both combine gaze
with touch for authentication on handheld mobile devices. Both
extract eye movements with the camera built into the mobile device
which is facing the user. GazeTouchPass utilizes both numeric char-
acters (0-9, entered via an onscreen keyboard) and characters from
gaze (looking left or right). A password thereby is a serial combi-
nation of numeric and gaze characters. In contrast, GazeTouchPIn
incorporates both touchscreen and gaze input to select one charac-
ter for a password. In a Nx2 grid, touch selects the desired of N rows,
which contains two characters. Gaze then selects either the right or
left character (by looking either right or left). A password is thereby
a series of characters where each character was composed by both
touch and gaze. GazeTouchPass reports an average authentication
duration of 3.1 s for a four-character password, 58%-77% error free
authentication attempts, and attackers’ success from previously
observing users during authentication to be 19%-44%, depending
on the attack details. In comparison, GazeTouchPIN reports an av-
erage authentication duration of 10.8 s with attack success rates of
4.2%-16.7%, depending on the type of attack.

Previous work on EOG-based gaze gesture authentication is
sparse. Hossain et al. [20] propose to use EOG for eye movement
based authentication. While their gaze gesture alphabet of 9 char-
acters is named differently, it contains the same gaze gestures as
the LRUD1379 alphabet of [8], plus eye blinking as an additional
character. Their setup uses a stationary BIOPAC MP36 system with
5 wet electrodes around the right eye (atop, below, right of it), left of
the left eye, and an ground electrode on the middle of the forehead.
While wet electrodes are not applicable with smart glasses and in
daily usage, an interesting aspect of their research is that they are
able to detect eye blinking by a corresponding zero crossing in
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Figure 2: Overview of processing in our approach to recognize EOG-based closed-eye gaze gestures passwords.

Figure 3: EOG sensor positions with our approach, on the
nose pads and the bridge of the frame of the glasses (red).

horizontal and vertical voltage, and that they can differentiate be-
tween voluntary blinks (stronger movement) and unintended blinks
(weaker movement). For detecting eye movements they perform
peak detection and combine information in horizontal and vertical
peaks to determine the corresponding direction. While their re-
search outlines the technical aspects, it does not evaluate detection
and authentication rates or attackability of their approach.

Summarizing, there is numerous work on gaze gestures from
optical sources that utilizes pupil tracking for gaze direction extrac-
tion. Some approaches have been employed in authentication and
have been evaluated on mobile devices [8]. However, closed-eye
gaze gestures have only been investigated once so far [14] for user
input, not for authentication. Gaze gesture user input based on EOG
sensing has been investigated with goggles [7] that go beyond the
frame form factor of regular glasses. EOG gaze gesture authenti-
cation has been proposed in [20], but in a non-mobile setup, using
wet electrodes, and has not yet been evaluated for authentication or
attack success rates. On the intersection of those prior approaches
there is room for further work, which combines mobile authentica-
tion in smart glasses with closed-eye gaze gestures and EOG-based
sensing.

3 APPROACH
Our approach to EOG-based closed-eye gaze gesture passwords
with smart glasses consists of two major parts: enrollment and
authentication (Fig. 2). Internally, both utilize a processing chain to
sense, detect, and extract gaze gestures. In this section we describe
the processing details of the corresponding steps as well as the gaze
gesture alphabet and protocol utilized in our approach.

3.1 Gaze Gesture Sensing and Preprocessing
For sensing EOG with glasses in an unobtrusive way, sensors can
only be embedded in the frame where the glasses naturally touch

the user’s skin. Those positions are around the nose (nose pads and
bridge) as well as behind the ears (bows). For our approach, we
utilize the bridge as well as the left and right nose pad of the frame
as sensor positions (Fig. 3). This alignment allows for sensing hori-
zontal eye movements well, as the corresponding muscle voltage
is clearly visible from sensor positions next to the eyes. However,
vertical eye movements are more difficult to sense, as the vertical
difference between the left and right sensors to the central sensor
is small, and the muscles corresponding to vertical eye movements
are not directly located under or next to those sensor positions.

Once a series of gaze gestures is obtained, we filter the corre-
sponding horizontal and vertical EOG voltage time series for noise
reduction. For this we employ a Saviztky-Golay filter (SG-filter) [27],
as it preserves the signal form better than running mean or median
filters, which would tend to more strongly smooth minima and
maxima. In our approach we utilize a filter with a window length
of 0.3 s and a degree of 1.

3.2 Closed-Eye Gaze Gesture Protocol
For our EOG-based closed-eye gaze gesture passwords we utilize
a gaze gesture alphabet and protocol adapted from prior work
(cf. [7, 8, 14, 23]). At first, we considered an unrestricted series
of gaze gestures for our passwords, similar to [7, 8]. However, in
preliminary evaluations we identified EOG-based sensing of closed-
eye gaze gestures in vertical direction to be difficult, especially
towards and around the upper part of the field of vision. Multiple
participants showed trembling eyelids when moving their eyes
towards the upper boundary of their field of vision. This resulted
in larger EOG voltage overlayed with significant noise, for which
filtering and smoothing seemed to be unable to recover usable
information for subsequent processing. While vertical components
in gaze gestures outside the upper part of the field of vision still
seemed difficult to sense and recognize correctly with our sensor
setup, we deem having both horizontal and vertical components
important and expect to be able to recover at least parts of the
information for further processing. For this reason we still include
horizontal, vertical, and diagonal gaze gestures, similar to [14, 23],
but leave out gaze gestures towards the upper boundary of the field
of vision.

Our gaze alphabet thereby includes a total of 9 gaze gestures in
the lrud1379s variant (Fig. 4). Four horizontal and vertical and four
diagonal gaze gestures, as in [8, 14, 23]: left (l), right (r), up (u), down
(d), left-down (1), right-down (3), left-up (7), and right-up (9), as
well as a squint/flick gesture (s) as in [14]. In our evaluation we also
utilize a lr1379s variant, which is a subset of the 9 character version
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Figure 4: Graphical depiction of gaze gestures in our closed-
eye gaze gesture passwords, including horizontal (l, r), verti-
cal (u, d), diagonal (1, 3, 7, 9), and a squint/flick (s) gesture.

Figure 5: Filtered EOG time series for a "r17r" closed-eye gaze
gesture password. Detected peaks are marked in red.

(a) horizontal (b) vertical

Figure 6: Multiple samples of a left (r) EOG-based closed-eye
gaze gesture, in horizontal and vertical direction.

and leaves out the u and d gestures. Gaze passwords always start
in the center of users’ vision, but can end after any gaze gesture in
any position. When users are prompted for a gaze password, once
they close their eyes, subsequent movements of the closed eyelids
are recognized as closed-eye gaze gestures.

3.3 Gaze Gesture and Feature Extraction
For gaze gesture detection and extraction we utilize a simple para-
metric peak detection. We at first sum the absolutes of the filtered
horizontal and vertical eye movements in the sample. Then we
detect peaks in the signal, so that each peak is the highest value
within 0.5 s and has a value of at least 170mV for both horizontal
and vertical axis combined (Fig. 5). We then segment a 0.5 s window
around each peak to extract the filtered time series for each detected
gaze gesture. Each extracted gaze gesture sample therefore consists
of two 0.5 s filtered time series, for the corresponding EOG-sensed
eye movement, in horizontal and vertical direction (Fig. 6).

For feature reduction we at first normalize data by centering
it to mean=0 and scaling it to std=1. We then employ principal
component analysis (PCA), of which we keep only the most im-
portant principal components which together explain 95% of the
variance in the data. Due to gaze gestures being simple patterns
in their respective time series, as well as due to those time series
being expected to show a high correlation between their values at
time t and t + 1, we thereby expect PCA to be effective in feature
reduction. The transformation parameters for centering, scaling,
as well as PCA are determined from the enrollment data of each
individual user, and are applied the same way to data of subsequent
authentication attempts.

3.4 Recognition: Enrollment & Authentication
Enrollment consists of two steps: gaze gesture model training and
setting of the gaze password. Users at first record multiple samples
for each gaze gesture. Those samples are detected and segmented,
preprocessed, and their features are extracted. Together with their
known labels they form the basis of training a gaze gesture recog-
nition model for this user. This model is able to distinguish gaze
gestures of this user and is stored for further usage. Note that model
training has to be done only once: the password can be changed
later on without changing the model. Users then set their gaze
gesture password by recording it. The gestures contained in the
password are extracted, recognized by the previously stored model,
and its salted hash is stored for comparison during authentication.
As we are interested in the extraction and recognition of closed-eye
gaze gestures, we declare further details of cryptographic aspects,
like choice of salt, hash function, and storage out of scope of our
work.

For authentication, users perform their closed-eye gaze gesture
password. The contained gaze gestures are detected, extracted, pre-
processed, and their features are extracted – with the parametriza-
tion as determined during enrollment. The gaze gesture recognition
model created during enrollment is then employed to recognize the
type of gaze gestures. Finally, for the resulting password, composed
from the extracted gaze gestures, the salted hash is computed and
compared to the stored password hash to yield an accept/reject
authentication decision.

4 EVALUATION
In this section we describe our evaluation setup, including the data
recording, the obtained dataset, and the usage of the data in the
evaluation procedure. Results and findings are discussed in Sec. 5.

4.1 Recording Device
For our evaluation data recording we utilize J

i

NS M

E

ME smart
glasses [22]. They feature three contact-based, dry EOG electrodes:
two on the nose pads and one at the nose bridge of the frame,
with an EOG sampling frequency of 100Hz and 12 bit quantization.
All three electrodes touch the skin when wearing the glasses in
a normal fashion. The device thereby yields EOG time series in
horizontal and vertical direction. However, as the positioning of
the left and right electrodes provide for a more robust signal in the
horizontal direction, horizontal eye movements are sensed more
reliably than vertical eye movements.
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Table 2: Our evaluation data for closed and open eyes. For
password samples: amount of subjects, amount of password
samples and total contained gaze gestures, and themean and
std of password length in characters and duration in s. For
attack samples: amount of subjects, passwords attacked, at-
tackers, and amount of attacks.

Eyes Subjects Passwords Gaze gestures PW length Dur. [s]
Closed 14 38 177 4.66/0.48 10.8/0.2
Open 15 43 203 4.75/0.45 10.0/0.2
Eyes Subjects Passwords Attackers Attacks

Closed 18 18 18 18
Open 18 18 18 18

4.2 Evaluation Data
Our evaluation data comprises of two parts. The first part is a
set of EOG-based gaze gesture passwords as sensed by the smart
glasses, which we use to evaluate the performance of our gaze
gesture authentication approach. The second part is a set of videos
of users performing gaze gesture password authentication, filmed
with an external camera, which we use to quantify the success of
observation-based attacks.

4.2.1 Gaze Gesture Password Dataset. The EOG gaze gesture pass-
word dataset comprises of 15 subjects. Each subject choses one
or two gaze gesture passwords, containing 4-5 gaze gestures each.
Password input was recorded 2-5 times per subject and password,
both for closed and opened eyes, where subjects did pause for at
least 0.5 s between individual eye movements. This results in a
total of 81 password samples, containing a total of 380 gaze ges-
tures (Tab. 2). Participants were students and employees of Aalto
University with a mean age of 28.5 years (std 5.2).

4.2.2 Observation-Based Attack Dataset. The observation-based
attack dataset comprises of a total of 14 password videos from 7
different users, assessed by 18 different attacker participants. Each
of the 7 users was filmed twice, one time for closed and one time for
opened eyes, while performing one of their gaze gesture passwords.
The recording environment was an office space with light sources
being ceiling lamps and windows on one side of the room. Eye
movements were filmed with the 16MP video camera embedded in
a Huawei P20 LITE, from 1-1.5m distance to the user’s face. The
resulting attack videos have 1080p resolution with 30 frames per
second (Fig. 7). Attackers utilizing such devices for their attacks is
deemed realistic since they are easily available.

Recording from a close distance of 1-1.5m to the user might raise
suspicion; however, users are unable to recognize attackers during
the short time of password input since their eyes are closed. Fur-
thermore, recordings in close proximity to the user also simulates
stronger attackers, who would utilize more expensive and higher
quality cameras from a larger distance.

To simulate observation-based attacks, 18 randomly chosen par-
ticipants of our study were asked to watch two randomly selected
videos, each showing one user performing on of their password –
one for closed eyes, and one for open eyes. Attackers could watch
the video as many times as they liked, and then were asked to derive
the gaze gesture password from what they saw in the video. This
resulted in a total of 36 observation-based attacks: 18 for closed eyes

(a) Password input, eyes closed (b) Password input, eyes opened

Figure 7: Perspective of a gaze gesture password attack:
videos showing users during their gaze gesture password in-
put form the basis of observation-based attacks.

and 18 for open eyes (Tab. 2). Attacker participants were students
and employees of Aalto University with a mean age of 28.5 years
(std 5.2), who all also did participate in the first study.

4.3 Evaluation Procedure
In our evaluation we investigate closed and opened eyes for gaze
gesture passwords alongside each other and compare their results.

For our authentication evaluation, we at first apply gaze ges-
ture processing as specified in Sec. 3 and report the corresponding
detection rate. Based on detected gestures from all passwords, we
investigate dimensionality reduction outcomes and highlight the
amount of principal components needed to explain 95% variance in
the data. To determine a suitable gaze gesture recognition model
we rely on double cross validation (CV). We use the first CV loop to
train, evaluate, and select a model type and its hyperparameter set
from a list of model types and exponential hyperparameter grids,
including k-nearest neighbor (KNN), linear discriminant analysis
(LDA), classification tree (CT), and a linear (l-SVM) and radial sup-
port vector machine (rbf-SVM). The second CV loop utilizes user
data to train the corresponding model with the previously deter-
mined model type and hyperparameter set, and to determine the
corresponding normalization and transformation parameters. The
trained model is then tested on gaze password samples from the left
out partition. From this CV loop we report the gaze gesture recog-
nition rates of the left out gaze password samples in the form of
gesture confusion matrices, as well as the resulting authentication
success rates.

In our attack evaluation, to compute the attack success rates,
we compare the passwords attackers derived from observing users
performing gaze password authentication to the actual password of
that user. We count an attack as successful if the attacker correctly
derived all contained gaze gestures in their correct order, and as
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(a) Closed eyes (b) Open eyes

Figure 8: Amount of variance captured by the first 20 PCs
for closed and opened eyes.

Table 3: Amount of principal components required to ex-
plain 80%-99% variance of gaze gestures for closed and
opened eyes.

Eyes 80% 90% 95% 98% 99%
Closed 3 5 6 7 9
Open 4 5 6 10 13

unsuccessful otherwise. From those results we report gaze gesture
attack success rates for closed and opened eyes.

5 RESULTS AND DISCUSSION
5.1 Gaze Gesture Extraction Results
Over all gaze gesture password samples in our evaluation data set,
for closed eyes we were able to detect all gaze gestures correctly.
For open eyes one "1" gesture was missed, which was below the
detection threshold. We believe that those good results are caused
by participants pausing at least 0.5 s in between subsequent gaze
gestures in their passwords in our data. If this pause is omitted or
shortened in evaluation data of future work we expect a higher
amount of detection errors.

5.2 Feature Extraction Results
After extracting gaze gestures from our evaluation data, to deter-
mine the amount of components required for representing gaze
gestures, we normalize all data and apply PCA. With a cumula-
tive sum over principal components in descending order, PCA is
able to capture 95% of the variance in all data with just 6 compo-
nents for both closed and open eye gaze gestures (Fig. 8 and Tab. 3).
In the principal component feature space (Fig. 9) especially the s
gesture is well distinguished. Other gestures show clustering-like
patterns – but they still partially overlap, which will cause errors
in subsequent recognition of gaze gesture types.

5.3 Gaze Gesture Recognition Results
When utilizing all 9 gaze gestures of our lrud1379s protocol, the
outer CV loop for model tuning and selection indicates a signifi-
cant confusion of the vertical-only gestures u and d. This is why
we also evaluate the 7-character lr1379s version of our protocol,
which leaves out the u and d gesture. The best model type for both
the lrud1379s and the lr1379s version is a rbf-SVM (Tab. 4). For the

Figure 9: Scatter of closed-eye gaze gesture samples in their
first four principal component feature dimensions.

Table 4: Model evaluation results from CV-based gaze ges-
ture recognition. The results depict the accuracy [%] as
mean/standard deviation for the best hyperparameter set
per model type. The best result for closed and open eyes is
emphasized in black.

Eyes Alphabet KNN LDA CT l-SVM rbf-SVM
Closed lrud1379s 72.3/10.3 56.5/9.1 61.0/17.3 71.8/6.5 74.5/7.2
Open lrud1379s 75.8/8.8 60.6/5.8 59.1/11.4 73.2/7.3 80.3/9.0

Closed lr1379s 76.8/10.1 69.0/12.6 67.1/11.9 76.1/9.6 80.6/11.5
Open lr1379s 82.5/6.8 62.0/10.8 69.0/9.5 81.9/7.4 88.3/6.2

lrud1379s version, the optimal hyperparameter set from an exponen-
tial grid of base 3 is C = 33,γ = 3−3 for closed and C = 33,γ = 3−4
for opened eyes. For the lr1379s version, the optimal hyperparame-
ter set is C = 33,γ = 3−3 for closed and C = 35,γ = 3−6 for opened
eyes. We therefore use those model configurations for subsequent
training and recognition of gaze gestures in the second CV loop.

With the selected model configurations, the outer CV loop con-
firms that vertical-only gaze gestures are challenging to be recog-
nized correctly with our EOG sensor setup. With closed eyes, no d
gestures are recognized correctly, and the majority of u gestures and
1 gestures are recognized wrongly. The latter is mostly confused
with being a l gesture, which has the same horizontal but a differ-
ent vertical component. With open eyes, only 21% of u gestures
are recognized correctly, while 69% of d gestures are recognized
correctly. In comparison, utilizing the lr1379s 7-character gaze ges-
ture subset achieves better results. The majority of confusion is in
between gaze gestures that have the same horizontal but different
vertical components, such as 1 being confused as l (50% and 32%
with closed and opened eyes), or 9 as r (44% with closed eyes, but
only 8% with opened eyes). The overall gaze gesture recognition
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(a) Closed eyes, lrud1379s (b) Open eyes, lrud1379s

(c) Closed eyes, lr1379s (d) Open eyes, lr1379s

Figure 10: Gaze gesture confusion for closed and opened
eyes from the outer CV evaluation.

rate for the lrud1379s version is 71.2% and 76.3% for closed and
opened eyes, while for the lr1379s it is 80.0% and 86.5%.

5.4 Gaze Gesture Authentication Results
With the second CV loop we also evaluate the resulting gaze gesture
password authentication success rate. This is the rate for which
users can successfully authenticate with their gaze gesture pass-
words, based on the model trained from their training data. If the
detected and recognized gaze gestures in a password sample fully
agree in type, amount, and order with the actually contained gaze
gestures, the authentication is counted as pass, and as fail otherwise.
Due to the gaze gesture confusion encountered during evaluating
the gaze gesture recognition, the resulting authentication success
rate, hence passing the authentication, is low. With the lrud1379s
alphabet, 36.8% (closed eyes) and 28.6% (opened eyes) of legitimate
attempts pass authentication, while with the lr1379s subset, 44.7%
(closed eyes) and 54.8% (opened eyes) of legitimate attempts pass
authentication. While this result is not yet acceptable for employing
the corresponding authentication, due to the gaze gesture patterns
observed during our evaluation, we believe that future work will
be able to achieve better results by investigating the exact sensor
position in more detail as well as by employing and fine tuning
more sophisticated processing of sensed gaze gestures.

5.5 Observation-Based Attack Results
Evaluation results from the observation-based attack dataset indi-
cate that closed-eye gaze gesture passwords seem to be difficult
to attack: 0% of the observation-based attacks (0/18) on closed-eye
gaze gesture password videos succeeded. In contrast, with open-eye

gaze gesture password videos, the observation-based attack success
rate was 61% (11/18). This clearly confirms that it is more difficult
to attack closed-eye gaze gestures from observing users’ eyes dur-
ing password input. As a consequence, this makes closed-eye gaze
an interesting option to consider for security and authentication
related purposes in general.

5.6 Discussion
The combination of EOG sensor positions with the gaze gestures
utilized in our study results in low authentication success rates,
hence is not yet usable for mobile authentication in its current form.
The challenge arises from the EOG sensor positions available with
regular glasses frames, without extending the form factor of the
glasses towards goggles. Gaze gesture alphabets that would only
utilize horizontal eye movements would have a significantly smaller
set of possible gaze gestures, hence would reduce the size of the
password space of the corresponding gaze gesture passwords. In
our setup, EOG sensors on the nose pads of the glasses allow for
sensing horizontal eye movements in a robust way. The third EOG
sensor, which is included in the bridge of the glasses, is positioned
a little higher than the two other sensors. However, utilizing the
resulting vertical voltage difference for recognizing vertical eye
movements is challenging. This is due the muscles for vertical eye
movements not being directly under or next to those sensors, as well
as horizontal eye movements also affecting the resulting voltage
difference – which both cause noisy data. For this reason, with the
sensor setup, gaze gesture alphabet, and processing utilized in our
work, we have to reject hypothesis a).

Despite the overall gaze gesture authentication success rates
with our setup ranging from 28.6%-54.8% only, recognition of in-
dividual gaze gestures reached up to 100%, with an average 74.5%-
88.6% (including vertical gestures), depending on the configuration.
Observable trends include confusion of gestures that had same hori-
zontal components but different vertical components, as well as that
recognition in general seems more accurate for open than for closed
eyes. We argue that those results indicate that exploring further
combinations of gaze gestures and EOG sensor positions, together
with appropriate processing of sensed data, would likely allow for
improved gaze gesture recognition rates, hence also for better au-
thentication success rates – while at the same time allowing for a
reasonable password space size.

Observation-based attack results clearly indicate that closed-
eye gaze gestures are more difficult to attack than open-eye gaze
gestures, hence, that hypothesis b) can be accepted. With our evalu-
ation and datasets, attackers – who are aware of the authentication
mechanism and the corresponding gaze gesture alphabet – were
unable to derive the user’s password for any attack attempt with
closed-eye gaze gestures, while for open eyes the observation-based
attack success rate is 61%. Our findings of gaze gestures being easy
to observe for attackers by watching the user’s pupils during au-
thentication is in line with findings in previous work [9]. In contrast
to those results for open eyes, our closed-eye results confirm intu-
ition in that gaze eye movements are more difficult to observe when
eyelids are closed. For gaze gesture authentication, this means that
closed eyes better protect the corresponding authentication secret
than open eyes. We thereby conclude that closed-eye gaze gestures
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should in general be considered when dealing with security and
authentication critical aspects, such as mobile authentication in
environments, where attackers would be able to observe users’ eyes
and their movements.

Limitations of our study include that user-chosen knowledge-
based authentication secrets have been shown to in general have
limited entropy [3, 32]. Since they are knowledge-based, this also
applies to gaze gesture passwords. However, there exist ways to
facilitate users choosing stronger passwords [4, 29], which could
also be investigated for both closed and open eye gaze gesture
passwords in future work. In the present work we focuses on the
technical aspects of EOG-based closed-eye gaze gestures for smart
glasses and declare analyzing the user chosen gaze gesture pass-
word space inside the theoretical password space out of scope at
this time. Our work defines the process of prompting users for
their gaze gesture password as an external process. Once users are
prompted for a gaze password by this external process, the subse-
quent eye movements are considered to be gaze gestures. Details on
how this process prompts users for their password are left for future
investigation. Finally, our work does not investigate the usability
of closed and open eye gaze gestures in our approach as perceived
by users. This is declared out of scope due to the focus on technical
aspects, however is left for future work as an interesting aspect to
investigate and evaluate.

6 CONCLUSION
In this paper we presented an approach to sense closed-eye gaze
gestures with EOG sensors for password authentication with smart
glasses. EOG sensors are embedded in the bridge as well as the
left and right nose pad of the frame, which does not extend the
form factor of the frame beyond that of regular glasses. We utilized
gaze gesture alphabets consisting of 7 and 9 gestures, which leave
out gestures that go towards the upper boundary of users’ vision.
Our processing senses EOG timeseries in horizontal and vertical
direction, then detects and recognizes gaze gestures in them. We
evaluated gaze gesture detection and recognition rates with 81
password samples of 15 users, containing a total of 380 gaze gestures.
Results show an average recognition accuracy of 71.2% and 76.3% for
closed and open eyes, when including "up" and "down" as the only
pure vertical gaze gestures, and 80.0% and 86.5% when excluding
those two gestures. We found the challenging aspects of recognition
to be the combination of the utilized sensor positions – which make
robust recognition of vertical eye movements difficult – with using
gaze gestures that (partially) contain vertical eye movements. While
the setup used in this work is not yet ready for being employed in
mobile authentication, we argue that with fine tuning EOG sensor
positions in smart glasses and evaluating different corresponding
gaze gesture sets, combinations can be found that allow for more
robust sensing of vertical gaze gestures as well.

We further evaluated the success of observation-based attacks, in
which attackers observe the eyelids or pupils during password input,
with 18 attackers and a total of 36 attack attempts. Results clearly
show that closed-eye gaze gesture passwords are more difficult to
attack than their open eye counterparts. Not a single closed-eye
attack succeeded, while for open eyes the attack success rate in
our evaluation is 61%. Closed-eye gaze gestures seems to protect

authentication secrets better than their open eye counterparts. As a
consequence, we argue that closed-eye gaze should be considered in
future security and authentication related gaze aspects, especially
in situations in which attackers are potentially able to observe users’
eyes.

Future work could investigate different combinations of EOG
sensor positions in smart glasses – without extending the form
factor beyond glasses – with corresponding gaze gesture alphabets.
It could further investigate and compare the usability of closed and
open eye gaze gestures, as well as the easiness of observation-based
attacks (observing eye movements during password input and to
derive the password from it) – as perceived by attackers. It could
also investigate and evaluate options for prompting users for gaze
gesture passwords and limiting user input to gaze gestures relevant
for authentication. Furthermore, investigating and comparing the
password spaces of user chosen closed and open eye gaze gestures
could be in the focus of future work as well.
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