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Abstract. Finding concepts that are similar to a given concept can
prove useful in constructing user-friendly interfaces for querying DL-
ontologies—the concrete use case being a query answering system with
an enhanced user interface that suggests semantically relevant keywords
(based on concept similarity) during query formulation. Most investiga-
tions on the similarity of concepts rely on ad-hoc and non-robust con-
structions referring to syntactical relationships in the concept hierarchy.
A more promising approach to concept similarity is first to ground the
concepts in a topological, geometrical, or more generally a spatial seman-
tics and then to use the corresponding proximity or nearness relations
provided by the spatial semantics for deciding concept similarity. Such
an approach would not only describe a semantical justification for sim-
ilarity of concepts but also provide a more cognitive semantics in the
style of Gärdenfors conceptual spaces that advance the comprehension
by non-professional users of DL-systems. This paper discusses some pos-
sible directions for a spatially oriented semantics for DLs, starting off
from conceptual spaces and the region connection calculus.

Keywords: concept similarity, conceptual space, region connection cal-
culus, cognitive semantics

1 Introduction

The cognitive hurdles that users who are not experts in logics have to overcome
in order to use a DL based system (by e.g. constructing an appropriate ontology
and using it for query answering), is quite high compared to those of other
software systems. Hence there is a good reason (and there has been some work)
to support non-experts with more intuitive means of accessing the services of a
DL system within an enhanced user interface. Such an enhanced interface for
query answering systems is also one of the aims in the FP7 EU project OPTIQUE
(http://www.optique-project.eu/).

One well proven concept of supporting users in query construction (e.g.,
conjunctive queries in an ontology based data access (OBDA) scenario) is to
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suggest the user who did not get expected results with a new query containing
concepts relevant to those in the original query. While in most search engines
the relevancy is determined by statistics, a semantical relevancy condition based
on concept similarity would be more appropriate for query answering in OBDA.

Although concept similarity is a well investigated topic in knowledge repre-
sentation and reasoning, most of the proposals have a more syntactic flavor in
that they measure the distances within the concept hierarchy. This seems to be
a mere ad-hoc and non-robust construction that can lead to changes in the sim-
ilarity relation in case the hierarchy is extended with further concepts. In this
paper, we try to lay the foundations for a semantically deeper notion of concept
similarity by interpreting the extensions of concepts with objects in some spatial
theory (be it some geometrical, topological or region oriented theory such as the
based on RCC and presented in [22]). The nearness (or proximity) relations of
the spatial theory can then be used to define concept similarity.

Using a spatial foundation for concepts has not only positive effects for more
intuitive query formulations (via concept similarity) but also for a better under-
standing of ontologies. In DL Tboxes we may assert subsumption relationships
between concept (and role) descriptions and possibly further constraints such as
functionality and transitivity assertions for roles. Though this enables the user to
model a domain and thereby still keep the reasoning services (such as satisfiabil-
ity, subsumption testing etc.) feasible, there are two main problems concerning
its application by non-expert users. The first and main point is that the logical
notation with concept descriptions and its semantics does not seem to reflect
the cognitive mental concepts by the users, as Gärdenfors argues [12]. Gärden-
fors’ concepts have geometrical aspects [12,13], which are not reflected within
the logical notation. Moreover, the logical notation is not fine-grained enough
to distinguish between grammatical categories. Adjectives, verbs and nouns are
represented by predicate symbols (in FOL) or concept names and roles (in DL).
Complex concept constructions, such as a small elephants, cannot be properly
handled by simple concept conjunction due to context dependence.

The other point is that the lack of spatial aspects of concepts in standard
DL reduces the expressibility of some natural relationships. Rather than just
giving general inclusion (GCI) axioms for concepts one should be able to have a
more geometrical or topological view with which one can leverage intuitions on
concept similarity. Some examples are given by [32]. Having the binary relations
of the RCC [25] at our disposal, we can formulate prototype relationships such as:
ItalianRestaurant {NTPP}Restaurant . Here, NTPP stands for the non-tangential
proper part relation between regions (see Section 3). Intuitively, this says more
than the GCI italianReastaurant v Restaurant, namely it does not only say
that all italian restaurants are restaurants but that the former are prototypical
[29,30] instances of the latter. Here, “(proto)typical” instances means that these
are situated closer to the center rather than the boundary of regions.

In contrast, saying Bistro {TPP} Restaurant not only expresses that bistros
are restaurants but that there are also bistros that are not typical restaurants.



For simple concept descriptions as in the examples above, where only atomic
concepts are used, we may have pretty strong intuitions on the meanings of the
asserted spatial/topological relationships. Furthermore, we may clearly see the
constraints in the common use of spatial relationships (e.g. the relations of RCC)
and purely logical ones (e.g. subsumption). For example, saying that a concept
is subsumed by another can be seen to imply that the former is a part of the
latter, i.e., stand in the relation {TPP, NTPP, EQ}.

For more complex descriptions, the intuitions may loose their strength. For
example, taking the negation constructor, we may formulate that A v ¬B entails
that A and B are disjoint, A{DC}B—and vice versa. But for a GCI where the
negated concepts occur on the left-hand side, ¬A v B, there is no immediate
connection to an RCC relationship between regions in pure RCC8 networks. In
particular, if ¬A and B are chosen as convex regions, then A must be empty or
a non-convex (unbounded) region with a hole.

In this paper we discuss possible spatial interpretations of DL concepts. The
kind of transformation of DL concepts and subsumption relations we have in
mind has to be such that non-logical users may rely on their spatial intuitions
for a better understanding of the mechanisms of the DL axioms which they
build. Clearly, we could try to reduce some kind of translation or transformation
of DL services to the satisfiability check in RCC8 networks. And in fact, the
proof showing NP-hardness of satisfiability testing of RCC8 networks shows a
reduction of 3SAT to it [28]. But this is a rather technical transformation that
does not enlighten the cognitive semantics of concepts. As a first technical result
we show how these ideas can be applied to a member of the DL-Lite family. The
resulting proposition states that every consistent DL has a model where all basic
concepts are interpreted with convex regions.

The structure of the paper is as follows: After this introduction we give
overviews of the well known conceptual spaces of Gärdenfors’ cognitive seman-
tics (Section 2) and the widely known member of calculi for qualitative spatial
reasoning, the region connection calculus (Section 3). Then mainly technical sec-
tion (Section 4) shows the existence of models with convex regions for DL-Lite
ontologies. The subsequent sections discuss related work, state the conclusion,
and give an outlook on future work.

2 Conceptual Spaces

Gärdenfors’ conceptual spaces (see the textbook [12] or a summary in [13]) are
the main elements of a cognition oriented semantics of language which tries
to fill the gap between sub-conceptual semantics on the low level of neuronal
networks and the higher symbolic level of logical languages, in particular DLs.
The overall aim of such cognitive semantics is to understand the connections
between linguistic expressions and their mental representations by users, and as
such it may prove beneficial for designing human machine interfaces (in particu-
lar interfaces for query answering in DL systems) that is sensitive for the mental
representations of the users.



Conceptual spaces are geometrical in nature. This may not come as a sur-
prise for a cognitively oriented model of semantics because human reasoning is
essentially spatial in many cases, as we have argued before. As such, conceptual
spaces are not only relevant for spatial (and temporal) reasoning, as argued in
[17], but generally for representing and reasoning with concepts. We will give a
short introduction to the main notions involved in conceptual spaces. Though
our technical result will not directly rely on conceptual spaces (but rather on
regions as represented by the region connection calculus), the main constraint
of convexity is motivated within this framework.

2.1 Main Definitions for Conceptual Spaces

To understand the ingredients of conceptual spaces, we consider the concept of a
color. The color of an object is determined by three quality dimensions, chromat-
icness (saturation), brightness, and hue. The first two of these are isomorphic to
R with the usual ordering while the latter is isomorphic to a circle in the plane.
Other examples of quality dimensions are force, height, width.

Defining the color of an object calls for assigning it a point in the space
induced by the three quality dimensions, which, by the way, has the form of a
spinner; one cannot assign the object a value on one dimension without giving it a
value on the other dimensions. Gärdenfors says that this set of quality dimensions
is integral. The complementary notion is that of separability. The space made up
of a set of integral quality dimensions that are separable from all other quality
dimensions is called a domain. Note that according to this definition, a domain
is identified by its dimension. But the important component of such a domain
is the betweenness relation. The betweenness relation B(x, y, z) is a ternary
relation read as point y is between points x and z. This notion generalizes that
of a metric d which induces a betweenness relation by setting Bd(x, y, z) iff
d(x, z) = d(x, y) + d(y, z).

The betweenness relation is the basis for defining convex sets X in a domain:
X is convex iff for all pairs of points contained in X one has also all points
lying in between them in X, formally: for all x, z ∈ X: If B(x, y, z), then also
y ∈ X. Convex sets are in a way well-shaped and as such are candidates for
the mental pendants of concepts. Gärdenfors defines a (natural) concept to be
a set of convex regions in possibly multiple domains. To be more precise, a
concept is represented as a set of convex regions in a number of domains, together
with information about how the regions in different domains are correlated. The
additional constraint in the definition is due to the fact that though the quality
dimensions in different domains may be separable they may not be independent
in the sense that increasing the value in the one may lead to an increase in the
latter. For example, take the concept of an apple. One of the domains in this
concept is the color domain, and the (convex) region corresponding is the red-
yellow-orange region. Another domain is the taste domain with the region of the
sweet and sour dimension. Now, there are connections between the color of an
apple and its sweetness, though the quality dimensions are in different domains.



In this paper, we will only work with Gärdenfors concepts having exactly one
domain. Gärdenfors calls them properties.

2.2 The Benefit of Convexity

What are the reasons to define concepts on the basis of convex regions? The
main reason is that of “cognitive economy” [12, p. 70], as learning and reasoning
with concepts on convex regions seems to demand less cognitive capacities, or,
more technically, less resources such as space (memory) and time.

Technical underpinnings of this observation can be found in different areas in
which convex regions seem to ease the computation; one example from the area of
qualitative spatial and temporal reasoning can be found in [16]. The author gives
an analytical and spatial characterization of the tractable subclass Ord-Horn [19]
of the Allen calculus for reasoning on time intervals [2]; in essence, the tractable
classes are (pre-)convex relations in an appropriate lattice of the basis relations.
A quite different example stems from DLs with concrete domains, where the
convexity on predicates over a domain is part of the admissibility conditions [5],
which, if not fulfilled, may lead to undecidability of subsumption testing. And
last but not least note that there is a whole subfield of numerical optimization
called convex optimization [9], in which algorithms such as the simplex algorithm
in linear programming are investigated.

2.3 Conceptual Space Semantics for DLs?

Can we give a conceptual space semantics (abbreviated CSS in the following)
for DLs such that, e.g., we can show: If a DL ontology has a (DL) model, then
it has a CSS model. Or if that is not the case, can we characterize those DLs
that have a DL model and not a CSS model? This paper will not give an answer
to these questions, but will show the challenges in defining a CSS for DLs. As
a result, we will “downgrade” the complexity of the semantics to one based on
RCC (see next section) but keep the convexity constraint.

The first idea of interpreting concept descriptions with CSS concepts seems
natural. But it is not at all clear whether a DL concept expressions has to be
interpreted by CSS properties or CSS concepts. Even, if we ignore the prob-
lem of defining correlations between different CSS domains (that are needed for
defining CSS concepts), it is not clear how to map DL concept constructors to
constructors on CSS concepts and vice versa.

The only real concept constructor defined in [12] is that of combining con-
cepts, which has similarities with concept conjunction, but is quite a bit more
complicated [12, p.122], as it tries to explain adjective noun combinations such
as small elephant which cannot be handled by intersecting of the components’
extensions (small elephants may be bigger than big mosquitos). Nonetheless, re-
stricting the combinations to simple noun-noun combinations with “and” may
allow the interpretation by intersection of convex regions. As the intersection
of convex regions is again a convex region, the operator would be well-defined.



The dual operator of concept-disjunction could be realized by adding a convex-
closure operator and defining concept disjunction as the convex closure of the
union of the convex regions.

But the main problem with cognitive oriented semantics is the handling of
negation and quantifiers [12, p.202]. The idea of using the convex hull operator
on the complement of a convex region does not work here: If the convex set is
bounded, then the complement of it will not be convex. Hence, the convex hull
of this set will give the whole domain—resulting in the implausible result that
some objects belong to a concept and its negation. But, may be this is a hint
on the fact that indeed the negation of a concept (represented by a bounded
convex region) should not be seen as a “natural” (convex) concept. The concept
of an apple is differently handled than the concept of a non-apple. Nonetheless,
for pairs of concepts such as mortal/immortal it may be the case that they both
can be represented by (unbounded) convex regions.

Even worse is the handling of roles and the quantifiers formed by them.
Actually, the only types of roles which Gärdenfors [12, p. 90] handles, are those
defined in some domain as a subset over two dimensions. Two examples discussed
by him are the representation of the “longer than” and the “is a heir of” relation.
The main point is to show that these can be represented as convex regions in
some conceptual CSS domain. The longer relation can be reduced to length
operators and their comparison on R. Drawing the pairs of lengths in the 2-dim
area shows that all pairs of relations standing in this relation form the area
above the line y = x, and as such constitute a convex region. But, regarding
concepts in this space, CSS roles would have the same “type” as CSS concepts,
whilst in DLs roles have higher dimension than concepts. Similar comments are
in order for the heirity relation (though this is defined on a completely different
structure, namely the genealogy tree).

3 Region Connection Calculus

The region connection calculus (RCC)[25] is a well known axiomatic calculus for
qualitative spatial reasoning with binary relations on regions. Despite its early
invention there is still recent relevant work on RCC in the spatial sessions of AI
related conferences (see e.g. [8], [32], [14]). RCC8 is the most expressive members
in the family of RCCi calculi each of which is identified by its set of i base
relations. Every set of base relations has the JEPD property (jointly exhaustive,
pairwise disjoint) meaning that any pair of regions may stand in exactly one of
the base relations. As we will rely on the base relations of RCC8—henceforth
denoted BRCC8—we give their intended meanings informally in the following
figure. DL relevant work on weaker members of RCC can be found in [23]. The
formal definitions of the RCC8 base relations are given in an axiomatic system
AxRCC8 which relies on one primitive (reflexive and symmetric) relation, namely
the connectedness relation.

The base relations induce an algebra of 28 general relations in a relation alge-
bra where a general relation is is represented as a set {r1, . . . , rk} of base relations
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Fig. 1. Base relations of RCC8 and their intended meanings

ri ∈ BRCC8. The intended meaning of stating a general relation {r1, . . . , rk} be-
tween regions X and Y , denoted by X{r1, . . . , rk}Y is that X is related to Y in
one of the base relations ri (1 ≤ i ≤ k) (but we do not know exactly which). As we
will use it in the following, we abbreviate the part-of relations {TPP,NTPP,EQ}
by P. Giving relations between pairs of regions results in a network. Such a net-
work may be consistent with the axiom system AxRCC8, but may also become
inconsistent (as is the case for X{TPP}Y, Y {NTPP}Z,X{TPP}Z. Consistent
networks are also called satisfiable.

The set of regularly closed sets in R2 with the usual topology forms a model
of AxRCC8 that is complete for testing satisfiability of RCC8 networks in the
sense that any satisfiable network has a model with the regions interpreted by
non-empty regularly closed sets. One can even show that a realization in R for
any d ≥ 1 (in particular d = 1) is possible by interpreting regions as (sets) of d-
dimensional polytopes [27, Theorem 15]. Regarding the motivation for convexity
in the conceptual space approach, we plan to interpret regions as convex sets (in
some euclidean space Rd). And there is a recent result of [32] that sheds a good
light on our plan: Every satisfiable RCC8 network is satisfiable by interpreting
regions as convex regions in some Rd, d ≥ 1. More concretely, a network with
2d+1 variables can be satisfied in with convex regions in Rd. Note that we
cannot fix d, i.e., the domain of convex regions in Rd, for a fixed dimension d
is not complete for testing satisfiability of RCC networks (as shown by [11]).
Regarding the conceptual space approach this means that we cannot tell in
advance how many quality dimensions we need in order to represent concepts.

4 Convex Interpretations for DL-Lite Concepts

If we want to introduce a geometrical (or more concrete) a region-based interpre-
tation of concepts into DL ontologies, then we have to detail out the interplay
between subsumption and the binary relations between regions as well as the
interplay of concept constructions and the constructions on regions. Though a
universal translation that holds for arbitrary DLs would be preferable, the re-



strictions on the spatial target of the translation calls for different translations.
We will look here first at a translation for ontologies into a fragment of a mem-
ber of the DL-Lite family [4], namely the fragment entitled DL-LiteRp , which
allows for role hierarchies and inverses of roles but not for negations of roles.
(The superscript ‘p’ should remind the reader that we are working with positive
roles only.)

Definition 1 (DL-LiteRp). Let RN be the set of role symbols and P ∈ RN ,
CN be a set of concept symbols, and A ∈ CN , Const be a set of individual
constants and a, b ∈ Const.

R −→ P | P− B −→ A | ∃R
Cl −→ B Cr −→ B | ¬B
Tbox: Cl v Cr, R v R
Abox: A(a), P (a, b)

Note that we do not allow for GCIs of the form A v ∃R.C; but these can be
modelled equisatisfiably by A v ∃Rnew, ∃R−new v C,Rnew v R [10, p.286].

Most of the results concerning DL-Lite (in particular those concerning FOL
rewritability) are based on a chase construction (originating in database theory).
If, e.g., the TBox contains the axiom A1 v A2 and the ABox contains A1(a)
but not A2(a), then it is enriched by the atom A2(a). This procedure is applied
stepwise to yield a monotonically increasing (with respect to set inclusion) se-
quence of Aboxes starting with the original Abox. The resulting union of Aboxes
is termed chase(O) and induces a canonical model can(O) for the Abox and the
positive axioms of the Tbox, which are used in the chasing process. (For details
cf. [10].) All we have know concerning the canonical structure can(O) is that if
a DL ontology has a model, then can(O) is a model of O.

We seek a translation of DL-LiteRp ontologies into RCC8 networks such that
the consistency for DL-Lite can be reduced to the satisfiability test of RCC8
networks. We ignore the computational aspects at this stadium. Actually, in
the original RCC8 network, an empty region is not allowed; thus unsatisfiability
of the RCC8 network would imply only incoherence of the ontology—where
incoherence means that a concept name in the ontology can be proved to be
equivalent to ⊥. This can be handled in the following two ways: We can extend
RCC such that the empty region is allowed (as done by [15]), thereby considering
the realizability of RCC8 networks by regular closed sets and defining the empty
region r∅ as a region fulfilling DC(r∅, r∅). We do not follow this solution (because
we loose the JEPD property, as the empty region stand in DC and EQ relation to
itself.) But we assume that for all concept symbols there is a verifier in the Abox,
such that inconsistency testing and incoherence testing give the same results. We
call such ontologies verifier complete.

The main restriction of the logic DL-LiteRp is that the negation symbols
occur only on the right-hand sides of GCIs; hence we do not have to give an
interpretation for the negations of concepts but only for basic concepts B. Let
Base(RN,CN) denote the basic concepts over RN and CN . Now, we can define
CSS interpretations and the notion of a CSS model of an DL-LiteRp ontology.



Definition 2. A CSS interpretation for an (ordinary) DL interpretation I =
(∆I , ·I) is a structure with a domain ∆I and an interpretation function ·I such
that

– I is a DL interpretation in the usual sense (respecting the semantics of the
inverse operation and of existentials) ∆I is Rn for some n ∈ N \ {0}.

– Every basic concept B is interpreted by a convex region (B)I in ∆I w.r.t.
the euclidean metric.

A CSS model of a DL-LiteRp ontology O is an CSS interpretation which is a DL
model of O.

In order to reduce the consistency test of DL-Lite ontologies to the satisfi-
ability test of RCC8 networks we give a translation. With basic concepts and
constants B we associate its corresponding region XB and translate the GCIs
and the Abox axioms as follows.

B1 v B2  XB1{P}XB2

B1 v ¬B2  XB1{DC}XB2

A(a) Xa{P}XA

P (a, b) Xa{P}X∃P , Xb{P}X∃P
−

P1 v P2  X∃P1{P}X∃P2 , X∃P
−
1 {P}X∃P

−
2

P1 v P−2  X∃P1{P}X∃P
−
2 , X∃P

−
1 {P}X∃P2

similarly for P−1 v P2 and P−1 v P
−
2

Additionally, for every pair of basic concepts B and constant c we add the con-
straint XB{DC}Xc, and for all c1, c2 also add Xc1{DC}Xc2 (this implements the
unique name assumption). For an ontology O let XO denote its corresponding
RCC network. The main technical result is given in the following theorem.

Theorem 1. A verifier complete DL-LiteRp ontology O is consistent iff it has
a CSS model.

Proof. If O has an CSS model and all CSS models are DL models, we directly get
a DL model for O. The proof of the other direction is more complicated. Assume
that O has a DL model. We show that XO must be satisfiable by interpreting
concepts by unions of polyeders in R. (This is in accordance with [27].) As O
has a model, the canonical structure can(O) built by the chase construction is
also a model. This model may be infinite. Let all constants occurring in can(O)
be placed in an arbitrary ordering on the integer points of R starting at 0.
Now interpret Xc by a small interval of width 0.5 with middle point c. For
every concept A let XA be the union of all c such that A(c) occurs in the
chase. Let X∃P be the union of all Xc such that P (c, c1) or P−(c1, c) occurs

in the chase for some constant c1. Similarly for XP−
. Now, this construction

respects all constraints in XO. But as [32] show, then XO must be satisfiable
with convex regions. From this RCC model we get an CSS model as follows:



Interpret all concept symbols A by the convex regions. Interpret every constant
with an arbitrary point in the convex region for it and interpret the roles R by
the cartesian product XR × XR−

. This is possible due to the fact that we do
not allow for role negation in DL-LiteRp .

This theorem is essential to build more interesting logics that are able to
model prototype relationships as those mentioned in the introduction. For ex-
ample, adding the RCC8 base relations TPP,NTPP,EC to DL-LiteRp forces us to
leave the general DL semantics and constrain it to CSS interpretations. But note
that we can still investigate properties (such as FOL rewritability) by consid-
ering the narrower set of CSS interpretations. These investigations are planned
for future work.

5 Related Work

Ideas on specifying spatial semantics for a logical language can be traced back
to work of McKinsey and Tarski [18] who develop topological semantics for
propositional modal logics and show that that topologically valid formula are
just the valid formulas of the modal logic S4. The relevance of these results for
the region connection calculus is explicated by [21] and was first pointed out by
a modal logical interpretation of RCC8 networks by Bennett [6]. A one-to-one
translation of the topological semantics to description logics is prima facie not
possible, though there are well known connections between description logics
and multi-modal logics [31].

In the motivation for this paper we also stated the observation that spatial
semantics ease the understanding of logical systems by non-expert users. This
assumption finds its justification also in the area of diagrammatic reasoning
[3] which deals with the mechanisms of human reasoning with graphical means
(mainly in two dimensions). And indeed, the CSS interpretations for the DL-
Lite fragment in this paper have strong connections to Venn diagrams, which can
be used for doing syllogistic reasoning (in principle reasoning over the monadic
function free universal fragment of predicate logic).

Convexity has an important role in conceptual spaces and also the spatial
semantics proposed in this paper. We deal with convexity only on the semantic
level. Clearly one can also introduce a primitive predicate for convexity in the
language level as done for euclidean logics in [24] and [20]. But the high expres-
sivity of such logics comes at the prize of bad computational complexity that
does not fit into the general DL approach.

With respect to the use of conceptual spaces there are already approaches in
the recent literature that try to incorporate these cognitive ideas into ontologies
as described by [26] on the basis of their formalization in [1]. The conceptual
space markup language (CSML) described in [26] is embedded into a hybrid
approach using DL ontologies on top of which intended conceptual spaces are
constructed with CSML. This is different from our approach as it provides means
to directly build the conceptual space within an CSML ontology while our ap-
proach uses them on the semantic level (and only in its rougher version of convex



regions in euclidean spaces.) The authors of [26] sketch a possible mapping of
the CSML ontology into OWL as part of an current research objective. But note
that this mapping has the reverse direction to our semantics, and moreover the
mapping is mostly a form of reification that hides the semantics in the domain.

6 Conclusion and Outlook

A spatial semantics for DLs may prove useful in building intuitive interfaces for
use by non-experts, the point in case being the suggestion of similar concept.
This paper was intended to discuss possible approaches for defining adequate
spatial semantics for DLs that could be the basis for concept similarity. As a first
technical result following the survey and discussion we provide spatial semantics
on the basis of convex regions for a member of DL-Lite family and show that
the spatial interpretations of this logic are complete for satisfiability testing.

But still the type of semantics presented here has to prove its benefits. The
main question is whether the ideas for interpreting DL-Lite basic concepts with
convex regions can be extended to more expressive DLs. In Section 2 we hinted
already on the challenges with incorporating negation and quantifiers. In future
work we will deal with these challenges in the RCC framework.

By allowing boolean constructors on regions we get the more expressive logic
BRCC8 [33]. Again, the negations of convex regions are not necessarily convex.
Hence, we may get additional constrains (unboundedness) on concepts; as far as
known to us, there is (still) no result corresponding to the result of [32] stating
the completeness of convex regions for satisfiability testing of RCC networks.

Quite more problematic is the incorporation of quantifiers into the RCC
framework. Here, we have to find intuitions on what it means to apply the ∃R
operator on a region? What kind of region do we expect to get (in contrast e.g.
to ∀R)? One idea inspired by mathematical morphology [7] is to find (for each
role symbol R) a structuring element BR. Then one could define dilation and
erosion operators based on B or more concretely its translation for a concrete
element x, Bx as follows.

DB(X) = {x ∈ Rn | Bx ∩X 6= ∅} and EB(X) = {x ∈ Rn | Bx ⊆ X}

Here, “B defines a neighborhood that is considered at each point” [7]. Note
that the dilation operator amounts to exists operators whilst erosion operators
amounts to all quantifiers.

If at least the union (or sum) operator is added to RCC8, one can use the
framework of [22] to define a notion of concept similarity based on the nearness
relations between regions. The general idea is to partition the domain into a
tree structured hierarchy of so called level determining (ld) concepts that make
up the underlying structure for the similarity comparison of arbitrary concepts.
Then one considers a concept C1 to be similar to a concept C2 iff C1 and C2 are
contained (RCC relation P) in the same upper ld concept, or at least C1 touches
(RCC relation EC) the upper ld concept of C2.
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22. Özçep, O.L., Grütter, R., Möller, R.: Nearness rules and scaled proximity. In:
Raedt, L.D., Bessiere, C., Dubois, D. (eds.) Proceedings of ECAI 2012. pp. 636–
641 (2012)
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