
Automation of Higher-Order Logic

Authors: Christoph Benzmüller and Dale Miller

Readers: Peter Andrews, Jasmin Blanchette, William Farmer,
Herman Geuvers, and Bruno Woltzenlogel Paleo

Venue: The Handbook of the History of Logic, eds. D. Gabbay & J. Woods
Volume 9: Logic and Computation, editor Jörg Siekmann

Contents

1 Introduction 2
1.1 Formalizing set comprehension as λ-abstraction . . . . . . . . . . 3
1.2 Packing more into inference rules . . . . . . . . . . . . . . . . . . 3
1.3 Plan of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Formalization of quantificational logic 4
2.1 Earliest work on higher-order logic . . . . . . . . . . . . . . . . . 5
2.2 Different notions of higher-order logic . . . . . . . . . . . . . . . 7

3 Church’s simple theory of types (classical higher-order logic) 8
3.1 The λ-calculus as computation (middle and late 1930s) . . . . . . 8
3.2 Mixing λ-calculus and logic . . . . . . . . . . . . . . . . . . . . . 9
3.3 Simple types and typed λ-terms . . . . . . . . . . . . . . . . . . . 9
3.4 Formulas as terms of type o . . . . . . . . . . . . . . . . . . . . . 11
3.5 Elementary type theory . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Simple type theory . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Variants of elementary and simple type theory . . . . . . . . . . 14
3.8 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.9 Church used different syntax not adopted here . . . . . . . . . . 15

4 Meta-theory 16
4.1 Semantics and cut-elimination . . . . . . . . . . . . . . . . . . . . 16
4.2 Cut-simulation properties . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Higher-order substitutions and normal forms . . . . . . . . . . . 19
4.4 Encodings of higher-order logic into first-order logic . . . . . . . 19

5 Skolemization and unification 20
5.1 Skolemization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Unification of simply typed λ-terms . . . . . . . . . . . . . . . . 21

Preprint submitted to Elsevier March 9, 2014



5.3 Mixed prefix unification problems . . . . . . . . . . . . . . . . . . 22
5.4 Pattern unification . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . 24

6 Challenges for automation 24
6.1 Instantiation of predicate variables . . . . . . . . . . . . . . . . . 24
6.2 Induction invariants . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Equality, extensionality, and choice . . . . . . . . . . . . . . . . . 27

7 Automated theorem provers 28
7.1 Early systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.2 The TPTP THF initiative . . . . . . . . . . . . . . . . . . . . . . 30
7.3 TPTP THF0 compliant higher-order theorem provers . . . . . . 30
7.4 Recent applications of automated THF0 provers . . . . . . . . . 32

8 Conclusion 33

1. Introduction

Early efforts to formalize mathematics in order to make parts of it more rig-
orous and to show its consistency started with the codification of parts of logic.
There was work on the logical connectives by, for example, Boole and Pierce, and
later work to formalize additionally quantifiers (Frege, Church, Gentzen, etc.).
Once the basic concepts of logic—logical connectives, (first-order) quantifica-
tion, and inference rules—were formalized, the consistency of various first-order
logics was established by Gödel’s completeness theorem (1930a) and Gentzen’s
cut-elimination theorem (1969a; 1969b). Equipped with such logical systems,
logicians turned to the formalizations of mathematics that had been started by
Peano (1889) and Hilbert (1899) and attempted to encode the objects of math-
ematics, such as real numbers, sets, groups, etc., by building them on top of
logic.

There are several ways to undertake such formalizations. One early and suc-
cessful approach involved building various theories for, say, Zermelo-Fraenkel
set theory, as first-order logic extended with axioms postulating the existence of
certain sets from the existence of other sets. Instead of sets, one could also ex-
plore the use of algebra and universal properties to develop a categorical theory
of mathematics. This chapter addresses yet another approach to formalizing
mathematical concepts on top of quantification logic: one can use higher-order
quantification instead of only first-order quantification. In the syntax of first-
order logic, there are terms and predicates: the terms denote individuals of
some intended domain of discourse, and predicates denote some subset of that
domain. Inspired by set theory, it is also natural to ask if certain predicates
hold of other predicates, e.g., is a given binary relation transitive or not. Other
natural notions, such as Leibniz’s equality—which states that x is equal to y if
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every predicate true of x is also true of y—would naturally be written as the
formula ∀P Px ⊃ Py.1

Such higher-order quantification was developed first by Frege and then by
Russell in his ramified theory of types, which was later simplified by others,
including Chwistek and Ramsey, Carnap, and finally Church in his simple theory
of types (STT), also referred to as classical higher-order logic.

1.1. Formalizing set comprehension as λ-abstraction

Church’s STT (Church, 1940), which is the focus of this chapter, based
both terms and formulas on simply typed λ-terms and the equality of terms
and formulas is given by equality of such λ-terms. The use of the λ-calculus
had at least two major advantages. First, λ-abstractions over formulas allow
the explicit naming of sets and predicates, something that is achieved in set
theory via the comprehension axioms. For example, if ϕ(x) is a formula with
one free variable x, then the set comprehension axiom provides the existence of
the set {x ∈ A | ϕ(x)}, for some set A. Typed λ-abstraction achieves this in a
simple step by providing the term λx.ϕ(x): here, the variable x is given a type
that, in principle, can be identified with the same set A. Second, the complex
rules for quantifier instantiation at higher-types is completely explained via the
rules of λ-conversion (the so-called rules of α-, β-, and η-conversion) which were
proposed earlier by Church (1932,1936).

Higher-order substitution can be seen (from the inference step point-of-view)
as one step, but it can pack a significant computational influence on a for-
mula: normalization of λ-terms can be explosive (and expressive), in particular,
since λ-terms may contain logical connectives and quantifiers. Bindings are also
treated uniformly for all structures and terms that have bindings. For example,
if p is a variable of predicate type and A is the formula ∀p B(p), then the uni-
versal instantiation of A with the term, say, t, namely the formula [t/p]B, can
be a formula with many more occurrences of logical connectives and quantifiers
than there are in the formula B(p).

1.2. Packing more into inference rules

Given that fewer axioms are needed in STT than in axiomatic set theory,
and that the term and formula structure is enriched, some earlier researchers
in automated theorem proving were attracted to STT since traditionally such
early provers were not well suited to deal with large numbers of axioms. If
small theories could be achieved by making the notion of terms and formula
more complex, this seemed like a natural choice. Thus, if one extended, say,
first-order resolution with a more complex form of unification (this time, on
λ-terms), then one might be addressing theorems that would otherwise need
explicit notions of sets and their axioms.

1Occasionally we use the notation in this paper to separate the body of quantified formulas
or λ-abstractions from the binder, and parentheses may be avoided if the formulas structure
is obvious. An alternative notation for ∀P Px ⊃ Py would thus be ∀P (Px ⊃ Py).
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Gödel (1936) pointed out that higher-order logic (actually, higher-order
arithmetic) can yield much shorter proofs than are possible in first-order logic.
Parikh (1973) proved this result years later: in particular, he proved that there
exist arithmetical formulas that are provable in first-order arithmetic, but whose
shortest proofs in second-order arithmetic are arbitrarily smaller than any proof
in first-order. Similarly, Boolos (1987) presented a theorem of first-order logic
comprising about 60 characters but whose shortest proof (allowing the intro-
duction and use of lemmas) is so large that the known size of the universe could
not be used to record it: on the other hand, a proof of a few pages is possible
using higher-order logic.

The embedding of λ-conversion within inference rules that is available within
STT is related to modern approaches to making inference rules more expressive
by placing computation into them. A modern updating of this approach is found
in the work on deduction modulo (Dowek et al., 2003; Cousineau and Dowek,
2007) where functional programming style computations on formulas and terms
are permitted within inference steps. Indeed, the connection between Church’s
approach to using higher-order quantification and λ-terms can be closely simu-
lated using deduction modulo (Burel, 2011a). Recent developments in focused
proof systems (Andreoli, 1992; Liang and Miller, 2009) provides a means of
defining large scale inference rules that include possibly non-deterministic com-
putation (Miller, 2011).

1.3. Plan of this chapter

We refer the reader looking for more details about higher-order logic and
STT to the textbook of Andrews (2002) and to the handbook and encyclope-
dia articles by Andrews (2001), Andrews (2009), Enderton (2012), and Leivant
(1994). Another recommended article has been contributed by Farmer (2008).
Here we shall focus on the issues surrounding theorem proving, particularly,
automated theorem proving in subsets and variants of Church’s STT. In par-
ticular, in Section 2, we describe some of the history and the background of
formal treatments of quantification and the closely associated notions of bind-
ing and substitution. In Section 3, we present the technical description of STT.
The meta-theory of STT, including general models and cut-elimination, are ad-
dressed in Section 4. Skolemization, unification, pre-unification, and pattern
unification, which are central concepts for proof automation, are discussed in
Section 5. Section 6 then addresses core challenges for higher-order automated
theorem provers, such as substitutions for predicate variables and the automa-
tion of extensionality. An overview of interactive and automatic theorem provers
of (fragments of) STT is presented in Section 7. We conclude briefly in Section 8.

2. Formalization of quantificational logic

Quantification is a key feature of natural language and its treatment has been
widely studied by linguists and logicians. A core interest has been to appro-
priately match informal use of quantificational expressions in natural languages
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with their formal treatment in logic formalisms. In that context, quantifica-
tion also plays a pivotal role. However, the focus is on the widely adopted
traditional notion of universal and existential quantification only.2 A crucial
question is what kind of objects an existential or universal quantifier may range
over, or, in other words, what kind of objects the universe may contain. In
classical first-order logic these objects are strictly of elementary nature, like the
person ‘Bob’ or the number ‘5’; we call them first-order objects. Not allowed
are quantifications over properties of objects (these are identified with sets of
objects) or functions. In higher-order logic, quantification is not restricted to
only elementary objects: quantification over sets or functions of objects is gen-
erally allowed. Peano’s induction principle for the natural numbers is a good
example. Using quantification over first-order objects (∀x) and over properties
(i.e., sets) of first-order objects (∀P ), this principle can be elegantly expressed
in higher-order logic by the axiom

∀P P0 ⊃ (∀x (Px ⊃ P (s x)) ⊃ ∀y Py),

where s denotes the successor function. This formula belongs to second-order
logic, since the variable P ranges only over sets of first-order objects. In higher-
order logic one may move arbitrarily up in this hierarchy; that is, quantifications
over sets of sets of objects, etc, are allowed. First-order and second-order logic
are, in this sense, fragments of higher-order logic.

There are significant theoretical and practical differences between first-order
logic and higher-order logic regarding, for example, expressive power and proof
theory. These fundamental differences—some of which will be outlined in the
next sections—have alienated many logicians, mathematicians, and linguists. A
(rather unfortunate) consequence has been that the community largely focused
on the theory and mechanization of first-order logic. In particular automation
of higher-order logic, the topic of this article, has often been considered as too
challenging, at least until recently.

2.1. Earliest work on higher-order logic

Publication of Frege’s (1879) Begriffsschrift is commonly considered the
birth of modern symbolic logic. The Begriffsschrift presents a 2-dimensional
formal notation for predicate calculus and develops an adequate and still rele-
vant notion of formal proof. Frege’s notation for universal quantification appro-
priately marks both the bound variable and the scope of quantification. Most
importantly, quantification in Frege’s notation is not restricted to first-order

2Traditional quantification and generalized quantification are contrasted in the text by
Westerst̊ahl (2011); see also the references therein.
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objects, and in his notation the above induction axiom can be formalized as:3

P y P(y)

x P(s(x))

P(x)

P(0)

Thus, the quantification over predicate, relation and function symbols is explic-
itly allowed in the language of the Begriffsschrift. A representative example of
such quantification is Frege’s statement (76) in the Begriffsschrift, which de-
scribed the transitive closure of a relation.

The fact that Frege’s logic of the Begriffsschrift is indeed higher-order can
also be retraced by following some of his substitutions for relation symbols.
For example, in his derivation of statement (70), Frege substitutes a relation
symbol f with a function of one argument. In modern notation his concrete
instantiation can be expressed by the lambda term λz Fz ⊃ ∀a fza ⊃ Fa. The
support for such kind of higher-order substitutions is another distinctive feature
of higher-order logic. Frege carries out this substitution and he implicitly applies
normalization. He does not give, however, a sufficiently precise definition of how
such substitutions are applied.

It was Bertrand Russell (1902; 1903) who first pointed out that unrestricted
quantification, as considered by Frege, in connection with the comprehension
principles,4 enables the encoding of paradoxes and leads to inconsistency. The
most prominent such paradox, widely known as Russell’s paradox , involves the
set of all non-self-containing sets. Russell (1908) suggested a few years later a
ramified theory of types as a paradox-free basis for the formalization of mathe-
matics that differentiates between objects and sets (or functions) consisting of
these kinds of objects. On one hand, Russell was trying to avoid the paradoxes
that had plagued earlier work and he attributed some of the paradoxes to a vi-
cious circle principle in which some mathematical objects are defined in terms
of collections that include the object being defined. In modern terms, Russell
wanted to disallow impredicative definitions and ramified types were one way
to avoid such impredicativity. On the other hand, Russell was trying to reduce
mathematics to logic and since ramification made it difficult to encode mathe-
matics, Russell introduced the axiom of reducibility which essentially collapses
ramifications and allows one to still make impredicative definitions (Ramsey,
1926; Chwistek, 1948).

The ramified theory of types was subsequently selected by Russell & White-

3Here y P(y) corresponds to ∀y Py and

P(s(x))

P(x) to Px ⊃ Psx; the rest is obvious.
The vertical bar on the left marks that the entire statement is asserted.

4The comprehension principles assure the existence of abstractions over formula
expressions; an example for a type restricted comprehension axiom (schema) is
∃uα1→...→αn→o ∀x1 . . . ∀xn (ux1 . . . xn) = bo.
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head as the logical foundation for the Principia Mathematica (Whitehead and
Russell (1910, 1912, 1913)). They shared the philosophical standpoint of logi-
cism, initiated by the work of Frege, and they wanted to show that all math-
ematics can be reduced to logic. The Principia succeeded to a significant ex-
tent and an impressive number of theorems of set-theory and finite and infinite
arithmetic, for example, were systematically derived from the Principia’s logical
foundations. However, the Principia was also criticized for its use of the axiom
of reducibility and its use of the axiom of infinity, which asserts that a set with
infinitely many objects exists. It thus remained debatable what Principia ac-
tually demonstrated: was it a reduction of mathematics to logic or a reduction
of mathematics to some (controversial) set theory?

In the 1920s, a number of people suggested a simple theory of types as an
alternative to Russell’s ramified type theory.5 These suggestions led to the
seminal paper by Church (1940), which will be addressed in some detail in the
next section. The terms simple theory of types and classical higher-order logic
typically refer to the logic presented in Church (1940).

It should be remarked that the idea of employing a type hierarchy can, to
some extent, be attributed to Frege: in his writings he usually mentions explic-
itly the kind of objects—predicates, predicates of predicates, etc.—a quantified
variable is representing (cf. Quine (1940)).

In summary, higher-order logic is an expressive formalism that supports
quantification over predicate, relation, and function variables and that supports
complex substitutions of such variables. Such a rich language has several pitfalls
with which to be concerned. One such pitfall involves providing a technically
precise and sound notion of substitution involving bindings. Another (more
important) pitfall involves the careful treatment of self-referential, impredicative
definitions since these may lead to inconsistencies. A possible solution to the
latter pitfall is to consider syntactical restrictions based on type hierarchies and
to use these to rule out problematic impredicative definitions.

2.2. Different notions of higher-order logic

The notion of higher-order when applied to logic formalisms is generally
not as unambiguous as the above text might suggest. We mention below three
different groups of people who appear to use this term in three different ways.

Philosophers of mathematics often distinguish between first-order logic and
second-order logic only. The latter logic, which is used as a formal basis for all of
mathematics, involves quantification over the domain of all possible functions.
In particular Kurt Gödel’s work draws an important theoretical line between
first- and second-order logic. Shortly after proving completeness of first-order
logic (1929; 1930b), Gödel presented his celebrated first incompleteness theo-
rem (1931). From this theorem it follows that second-order logic is necessarily

5In Church (1940), Church attributes the simple theory of types to Chwistek, Ramsey,
and, ultimately, Carnap. Simple type theory corresponds to the ramified theory of type plus
the axiom of reducibility.
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incomplete: that is, truth in higher-order logic can not be recursively axiom-
atized. Thus, higher-order logic interpreted in this sense consists largely of a
model-theoretic study, typically of the standard model of arithmetic (cf. Shapiro
(1985)).

Proof-theoreticians take logic to be synonymous with a formal system that
provides a recursive enumeration of the notion of theoremhood. A higher-order
logic is understood no differently. The distinctive characteristic of such a logic,
instead, is the presence of predicate quantification and of comprehension (i.e.,
the ability to form abstractions over formula expressions). These features, es-
pecially the ability to quantify over predicates, profoundly influence the proof-
theoretic structure of the logic. One important consequence is that the simpler
induction arguments of cut-elimination that are used for first-order logic do not
carry over to the higher-order setting and more sophisticated techniques, such
as the “candidats de réductibilité” due to Jean-Yves Girard (1971), must be
used. Semantical methods can also be employed, but the collection of models
must now include non-standard models that use restricted function spaces in
addition to the standard models used for second-order logic.

Implementers of deduction systems usually interpret higher-order logic as
any computational logic that employs λ-terms and quantification at higher-order
types, although not necessarily at predicate types. Notice that if quantification
is extended only to non-predicate function variables,6 then the logic is similar
to a first-order one in that the cut-elimination process can be defined using
an induction involving the sizes of (cut) formulas. However, such a logic may
incorporate a notion of equality based on the rules of λ-conversion and the
implementation of theorem proving in it must use (some form of) higher-order
unification.

3. Church’s simple theory of types (classical higher-order logic)

3.1. The λ-calculus as computation (middle and late 1930s)

The λ-calculus is usually thought of as a framework for computing functions.
In the setting of STT, however, where the discipline of simple types is applied,
those functions are greatly limited in what they can compute. A typical use
of λ-conversion in STT is to provide the function over syntax that instantiate
a quantified formula with a term. If one wants to describe the function that,
for example, returns the smallest prime divisor of an integer, one would specify
relational specifications of primality, division, etc., and then show that such re-
lations are, in fact, total functions. Thus, the foundations that STT provides to
mathematics is based on relations: this is in contrast to, say, the function-centric
foundation of Martin-Löf type theory (Martin-Löf, 1982). It is worth pointing
out that although typed λ-calculi are considered the quintessential proof struc-
ture for intuitionistic logic, Church, as the father of the λ-calculus, has shown

6This is meant to also exclude nested predicates as in ∀F(ι→o)→ι.
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little interest in intuitionistic logic himself: in particular, his development of
STT was based on classical logic.

3.2. Mixing λ-calculus and logic

Church applied his λ-calculus to the description of not only quantificational
structures and higher-order substitution but also many familiar mathematical
constructions. For example, the usual notion for membership x ∈ P , i.e., “x
is a member of the set P”, can be written instead using the notion Px which
is familiar from first-order logic, i.e., “the predicate P is true of x”. Thus, the
concept of set is represented not as a primitive concept itself but is constructed
using logic. Of course, to allow interesting constructions involving sets, we need
a higher-order logic that allows operations on predicates that can mimic similar
operations on sets. For example, if predicates A and B denote sets then the
expressions λx Ax ∧ Bx and λx Ax ∨ Bx denote the intersection and union of
the sets described by these predicates. Furthermore, λC ∀x Cx ⊃ Ax describes
the power-set of A (i.e., the set of sets C that are subsets of A). We can even
use λ-abstractions to make more abstractions possible: the notion of set union,
for example, can be defined as the λ-abstraction λA λB λx Ax ∧ Bx and the
notion of power-set can be λA λC ∀x Cx ⊃ Ax.

As Kleene and Rosser (1935) discovered, a direct mixing of the λ-calculus
with logic can lead to an inconsistent logic. One of the simplest presentations
of an inconsistency arising from mixing the untyped λ-calculus with (classical)
logic is called Curry’s paradox (Curry, 1942). Let y be a formula and let r be the
λ-abstraction λx.xx ⊃ y. Via λ-conversion rr is equal and, hence, equivalent to
rr ⊃ y. Hence, we have the two implications rr ⊃ (rr ⊃ y) and (rr ⊃ y) ⊃ rr.
From the former we get (by contracting assumptions) rr ⊃ y, and hence, by
modus ponens with the latter we know rr. By a further modus ponens step we
thus get y. Since y was an arbitrary formula, we have proved a contradiction.

One way to avoid inconsistencies in a logic extended with the λ-calculus
is to adopt a variation of Russell’s use of types (thereby eliminating the self
application rr in the above counterexample). When Church modified Russell’s
ramified theory of types to a “simple theory” of types, the core logic of this
chapter was born (Church, 1940). Mixing λ-terms and logic as is done in STT
permits capturing many aspects of set theory without direct reference to axioms
of set theory.

There are costs to using the strict hierarchy of sets enforced by typing: no
set can contain both a member of A as well as a subset of A. The definition of
subset is based on a given type: asking if a set of integers is a subset of another
set of integers is necessarily different than asking if a binary relation on integers
is a subset of another set of binary relations on integers.

3.3. Simple types and typed λ-terms

The primitive types are of two kinds: o is the type of propositions and the
rest are the types of basic domains of individuals: thus we are adopting a many-
sorted approach to logic. However, analogously to Church (1940), we shall just
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admit one additional primitive type, namely, ι, for the domain of individuals
which correspond to the domain of first-order variables. (Admitting more than
this one additional primitive type is no challenge.) The set of type expressions
is the least set containing the primitive types and such that (γ → τ) is a type
expression whenever γ and τ are type expressions. Here, types of the form
(γ → τ) denote the type of functions with domain type γ and codomain type τ .
If parentheses are omitted, we shall assume that the arrow constructor associates
to the right: i.e., δ → γ → τ denotes (δ → (γ → τ)). The order ord(τ) of a type
τ is defined by structural recursion:7 if τ is a primitive type, then ord(τ) = 0;
otherwise ord(γ → τ) = max(ord(γ) + 1, ord(τ)). Thus, the order of ι→ ι→ ι
is 1 and the order of (ι→ ι)→ ι is 2.

Let Σ be a set of typed constants, i.e., tokens with a subscript that is a simple
type and denote by Στ the subset of Σ of constants with subscript τ . Lowercase
letters with subscripts, e.g., cτ , are syntactic variables ranging over constants
with subscript τ . For each type τ , let Vτ be an infinite set of variables x1τ , x

2
τ , . . .,

all with subscript τ . The uppercase letters X, Y , and Z with type expression
subscripts are syntactic variables ranging over particular variables: e.g., Xτ is
a syntactic variable ranging over the particular variables in Vτ . Subscripts of
syntactic variables may be omitted when they are obvious or irrelevant in a
particular context. Given the constants in Σ and variables in Vτ (τ ∈ T ), we
can now define the binary relation of a term with a type as the least relation
satisfying the following clauses.

1. If cτ ∈ Σ then cτ is a term of type τ .

2. If Xτ ∈ Vτ then Xτ is a term of type τ .

3. If Xτ is a variable with subscript τ and Mγ is a term of type γ, then
(λXτ Mγ) is a term of type (τ → γ).

4. If Fτ→γ is a term of type (τ → γ), and Aτ is a term of type τ , then
(Fτ→γ Aτ ) is a term of type γ.

The uppercase letters A, B, C, and M with type expression subscripts, e.g.,
Mτ , are syntactic variables ranging over terms of their displayed type. The
parentheses in (λXτ Mγ) and (Fτ→γ Aτ ) can be omitted if it is clear from context
how to uniquely insert them.

Each occurrence of a variable in a term is either bound by a λ or free. We
consider two terms A and B to be equal (and write A ≡ B), if they are the
same up to a systematic change of bound variable names (i.e., we consider α-
conversion implicitly). A term A is closed if it has no free variables.

A substitution of a term Aα for a variable Xα in a term Bβ is denoted by
[A/X]B. Since we consider α-conversion implicitly, we assume that the bound

7Different notions of ‘order’ have actually been discussed in the literature. We may, e.g.,
start with ord(ι) = 0 and ord(o) = 1.
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variables ofB are appropriately renamed to avoid variable capture. For example,
[x1ι /x

2
ι ]λx

1 x2 is equal to, say, λx3 x1, which is not equal to λx1 x1.
Two important relations on terms are given by β-reduction and η-reduction.

A β-redex (λXA)B (i.e., the application of an abstraction to an argument) β-
reduces to [B/X]A (i.e., the substitution of an actual argument for a formal
argument). If X is not free in C, then λX(CX) is an η-redex and it η-reduces
to C. If A β-reduces to B then we say that B β-expands to A. Similarly, if
A η-reduces to B then we say that B η-expands to A. For terms A and B of
the same type, we write A≡βB to mean A can be converted to B by a series
of β-reductions and expansions. Similarly, A≡βηB means A can be converted
to B using both β- and η-conversion. For each simply typed λ-term A there is
a unique β-normal form (denoted A↓β) and a unique βη-normal form (denoted
A↓βη). From this fact we know A ≡β B (A ≡βη B) if and only if A↓β ≡ B↓β
(A↓βη ≡ B↓βη).

The simply typed λ-terms of Church (1940) are essentially the ones in com-
mon use today (cf. Barendregt (1997); Barendregt et al. (2013)). One subtlety
is that all variables and constants carry with them their type as part of their
name: that is, constants and variable are not associated with a type which could
vary with different type contexts. Instead, constants and variables have fixed
types just as they have fixed names: thus, the variable fι→ι has the name fι→ι

and the type ι→ ι. This handling of type information is also called Church-style
(as opposed to Curry-style). In this paper we often omit the type subscript if
it can easily be inferred in the given context.

3.4. Formulas as terms of type o

In most presentations of first-order logic, terms can be components of for-
mulas but formulas are never components of terms. Church’s STT allows for
this later possibility as well: formulas and logical connectives are allowed within
terms. Such a possibility will greatly increase both the expressive strength of the
logic and the complexities of automated reasoning in the logic. STT achieves
this intertwining of terms and formulas by using the special primitive type o
to denote those simply typed terms that are the formulas of STT. Thus, we
introduce logical connectives as specific constant constructors of type o. Since
Church’s version of STT was based on classical logic, he chose for the primitive
logical connectives ¬o→o for negation, ∨o→o→o for disjunction, and for each type
γ, a symbol ∀(γ→o)→o. Other logical connectives, such as ∧o→o→o, ⊃o→o→o, and
∃(γ→o)→o (for every type γ), can be introduced by either also treating them as
primitive or via definitions. A formula or proposition of STT is a simply typed
λ-term of type o and a sentence of STT is a closed proposition (i.e., containing
no free variables). In order to make the syntax of λ-terms converge more to
the conventional syntax of logical formulas, we shall adopt the usual conven-
tions for quantified expressions by using the abbreviations ∀xγ .B and ∃xγ .B for
∀(γ→o)→oλxγ .B and ∃(γ→o)→oλxγ .B, respectively. Similarly, the familiar infix
notion B ∨ C, B ∧ C, and B ⊃ C abbreviate the expressions ((∨o→o→oB)C),
((∧o→o→oB)C), and ((⊃o→o→o B)C), respectively.
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Beyond the logical connectives and quantifiers of classical logic, STT also
contains the constant ι(γ→o)→γ for each simple type γ. This constant is axiom-
atized in STT so that ι(γ→o)→γB denotes a member of the set that is described
by the expression B of type γ → o. Thus, ι(γ→o)→γ is used variously as a
description operator or a choice function depending on the precise set of ax-
ioms assumed for it. Choice selects a member from B if B is non-empty and
description selects a member from B only if B is a singleton set.

3.5. Elementary type theory

Church (1940) gives a Frege-Hilbert style logical calculus for deriving formu-
las. The inference rules can be classified as follows.

I–III. One step of α-conversion, β-reduction, or β-expansion.

IV. Substitution: From Fτ→oXτ , infer Fτ→oAτ if X is not free in F .

V. Modus Ponens: From A ⊃ B and A, infer B.

VI. Generalization: From Fτ→oXτ , infer ∀(α→o)→oFτ→o if X is not free in F .

In addition to the inference rules, Church gives various axiom schemas. Consider
first the following axiom schemas.

1–4. Classical propositional axioms

5τ . For every simple type τ , ∀(τ→o)→oFτ→o ⊃ FX.

6τ . For every simple type τ , ∀Xτ (po ∨ Fτ→oX) ⊃ p ∨ ∀(τ→o)→oF .

These axioms (together with the inference rules above) describe the theorems
of what is often called elementary type theory (ETT) (Andrews, 1974): these
axioms simply describe an extension of first-order logic with quantification at
all simple types and with the term structure upgraded to be all simply typed λ-
terms. In the last century, much of the work on the automation of higher-order
logic focused on the automation of the elementary type theory.

3.6. Simple type theory

In order to encode mathematical concepts, additional axioms are needed
which, in turn, requires that we introduce expressions for denoting equality and
natural numbers.

Equality. Equality for terms of type τ , Aτ
.
=
τ
Bτ , is defined using Leibniz’s

formula ∀Pτ→o PA ⊃ PB. By Aτ 6
.
=
τ
Bτ we mean ¬(Aτ

.
=
τ
Bτ ).

Natural numbers. An individual natural number n is denoted by the Church
numeral encoding n-fold iteration (Church, 1936). Thus, the following denote
the λ-calculus encoding of zero, one, two and three (here, τ is any simple type).

λfτ→τλxτ x

λfτ→τλxτ fx

λfτ→τλxτ f(fx)

λfτ→τλxτ f(f(fx))

12



Notice that if we denote by τ̂ the type (τ → τ) → τ → τ , then all these terms
are of type τ̂ . The λ-abstraction λnτ̂λfτ→τλxτ .f(nfx) is denoted Sτ̂→τ̂ and
has the property that it computes the successor of a number encoded in this
fashion. The set of all natural numbers (based on iteration of functions over
type τ) can be defined as the λ-abstraction

λnτ̂∀pτ̂→o (p0τ̂ ⊃ ((∀xτ̂ px ⊃ p(Sτ̂→τ̂x)) ⊃ pn))

of type τ̂ → o. This expression uses higher-order quantification to define the
set of all natural numbers as being the set of terms n that are members of all
sets that contain zero and are closed under successor. It is unfortunate that the
encoding of numbers is dependent on a specific type: in other words, there is a
different set of natural numbers for every type τ . The polymorphic type system
of Girard (1971, 1986) and Reynolds (1974) fixed this problem by admitting
within λ-terms the ability to abstract and apply types.

Adding the following axioms to those of the elementary type theory yields
Church’s simple theory of types (STT).

7. There exists at least two individuals: ∃XιYι X 6
.
=
ι
Y .

8. Infinity: The successor function on Church numerals at type (ι→ ι)→ ι→ ι
is injective.

9τ . Description: Fτ→oXτ ⊃ (∀Yτ FY ⊃ X
.
= Y ) ⊃ F (ι(τ→o)→τF ).

10τ→γ. Functional extensionality: (∀Xτ FX
.
= GX) ⊃ F .

=
τ→γ

G.

11τ . Choice: Fτ→oXτ ⊃ F (ι(τ→o)→τF ).

Church also mentions the possibility of including an additional axiom of
extensionality of the form P ⇔ Q ⊃ P

.
=
o
Q. In fact, Henkin (1950) includes

this axiom as part of his Axiom 10 (and he excludes axioms 7–9τ ). We follow
Henkin and include the following axiom as part of Axiom 10.

10o. Boolean extensionality: P ⇔ Q ⊃ P .
=
o
Q.

The description axioms (Axioms 9τ ) allow us to use ι(τ→o)→τ to extract the
unique element of any singleton set. If we assume the description axioms, then
we can prove that every functional relation corresponds to a function. That is,
we can prove

(∀xτ∃yγ rτ→γ→oxy ∧ ∀zγ (rxz ⊃ y .
= z)) ⊃ ∃fτ→γ∀xτ rx(fx).

This fact may be used to justify restricting the relational perspective for the
foundation of mathematics since functions are derivable from relations in STT.

The choice axioms (Axioms 11τ ) are strictly stronger than the description
axioms (see Andrews (1972a)), i.e., choice implies description. Many interactive
theorem provers include a choice operator, but the systematic inclusion of choice
(or description) into automated procedures has only happened recently (see also
Section 6).

Finally, Axioms 7 and 8 guarantee that there will be infinitely many indi-
viduals. There are many ways to add an axiom of infinity and Church’s choice
is convenient for developing some basic number theory using Church numerals.
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3.7. Variants of elementary and simple type theory

Besides the various subsets of STT that involve choosing different subsets of
the axioms to consider, other important variants of ETT and STT have been
developed.

Adding to ETT the axioms of Boolean and functional extensionality (Ax-
ioms 10o and 10τ→β), and possibly choice, gives a theory sometimes called
extensional type theory (ExTT): equivalently STT without description, infinity
and axiom 7. This is the logic studied by Henkin (1950), and it is the logic
that is automated by the theorem provers described in Section 7.3. One can-
not prove from ETT alone that η-conversion preserves the equality of terms: a
fact that is provable, however, using ExTT. Also, Boolean extensionality can
be considered without including functional extensionality and vice versa. Most
modern implementations of ETT generally treat the equality of typed λ-terms
up to βη-conversion. By doing this some weak form of extensionality is thus au-
tomatically guaranteed. However, this should not be confused with supporting
full functional and Boolean extensionality (cf. the discussion of non-functional
models and extensionality in Section 4.1).

While Church axiomatized the logical connectives of STT in a rather conven-
tional fashion (using, for example, negation, conjunction, and universal quantifi-
cation as the primitive connectives), Henkin (1963) and Andrews (1972a, 2002)
provided a formulation of STT in which the sole logical connective was equality
(at all types). Not only was a formulation of logic using just this one logical
connective perspicuous, it also improved on the semantics of Henkin’s general
models (Henkin, 1950).

Probably the most significant other variant of STT is one that replaces the
classical logic underlying it with intuitionistic logic: several higher-order logic
systems (e.g., Coq) are based on such a variant of STT. Intuitionistic variants
of STT are easily achieved by changing the logical axioms of STT from those
for classical logic to those for intuitionistic logic.

A logic of unity. ETT (and analogously ExTT or STT) provides a framework
for considering propositional logic and first-order logic as fragments of higher-
order logic. In the era of computer implementations of logic, this unifying aspect
of ETT is of great value: an implementation of aspects of ETT immediately can
be seen as an implementation that is also effective for these two kinds of simpler
logics.

3.8. An example

Consider formalizing the most basic notions of point-set topology in STT.
First, we formalize some simple set-theoretic concepts using the following typed
constants and λ-expressions.

empty set ∅ι→o λx.x 6 .= x (or λx.⊥)
membership ∈τ→(τ→o)→o λxλC Cx

subset ⊆(ι→o)→(ι→o)→o λAλB∀x Ax ⊃ Bx
intersection ∩(ι→o)→(ι→o)→ι→o λAλBλx Ax ∧Bx
family union

⋃
((ι→o)→o)→ι→o λDλx∃C DC ∧ Cx
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We now define the symbol open((ι→o)→o)→(ι→o)→o so that (open C S) holds
when C is a topology (a collection of open sets) on S. Informally, this should
hold when C is a set of subsets of S such that C contains the empty set as well
as the set S and it is closed under (binary) intersections and arbitrary unions.
Formally, the symbol open can be defined as the λ-abstraction

λCλS.(∅ ∈ C) ∧ (S ∈ C) ∧ [∀A∀B.(A ∈ C ∧B ∈ C ⊃ (A ∩B) ∈ C]
∧ [∀B.(B ⊆ C) ⊃ (

⋃
B) ∈ C]

A simple fact about open sets is the following. Assume that C is a topology for
S. If G is a subset of S and all elements of G are also members of an open set
(i.e., of a member of C) that is a subset of G, then G itself is open. We can
formalize this theorem as the following formula in STT.

∀C∀S∀G. (open C S) ⊃ [∀x. x ∈ G ⊃ ∃S. S ∈ C ∧ x ∈ S ∧ S ⊆ G] ⊃ (G ∈ C)

This formula is provable in STT if we employ the functional extensionality axiom
10ι→o in order to show that the two predicates G and⋃

(λH. (open C H) ∧ (H ⊆ G))

(both of type ι → o) are equal. Since it is an easy matter to prove that this
second expression is in C, Leibniz’s definition of equality immediately concludes
that G must also be in C.

One weakness of using STT for formalizing an abstract notion of topology is
that we provided above a definition in which open sets were sets of individuals:
that is, they were of type ι → o. Of course, it might be interesting to consider
topologies on other types, for example, on sets of sets. We could adopt the
technique used in Church (1940) of indexing most notions with types, such
as, for example, ⊆τ . More expressive logics with richer treatment of types
and their quantification are desirable: examples of such logics include Girard’s
System F (Girard, 1986), Reynold’s polymorphic λ-calculus (Reynolds, 1974),
and Andrews’s transfinite type system (Andrews, 1965).

3.9. Church used different syntax not adopted here

Church’s introduction of λ as a prefix operator to denote function abstrac-
tion and the use of juxtaposition to denote function application is now well
established syntax. On the other hand, Church used a number of syntactic
conventions and choices that appear rather odd to the modern reader. While
Church used a simplification of the dot notation used in Whitehead and Russell
(1910, 1912, 1913), most uses of dots in syntax have been dropped in modern
systems, although a dot is sometimes retained to separate a bound variable from
the body of a λ-term. Church similarly used concatenation to denote function
types, but most modern systems use an arrow. The use of omicron as the type
for propositions survives in some systems while many other systems use Prop
(the latter is used more frequently in systems for ETT, while the former seems
more prominent in systems for ExTT; see also the distinction between types
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prop and bool in the Isabelle system; more provers for ETT and ExTT are
presented in Section 7). Similarly, the connectives ∀(γ→o)→o and ∃(γ→o)→o are
often replaced by the binders ∀ and ∃, respectively, although they are often used
to denote quantification at the level of types in certain strong type systems.

4. Meta-theory

Church (1940) proved that the deduction theorem holds for the proof sys-
tem consisting of the axioms and inference rules described in Section 3. The
availability of the deduction theorem means that the familiar style of reasoning
from assumptions is valid in STT. Church also proved a number of theorems
regarding natural numbers and the possibility of defining functions using prim-
itive recursive definitions. The consistency of STT and a formal model theory
of STT were left open by Church.

4.1. Semantics and cut-elimination

We outline below several major meta-theoretic results concerning STT and
closely related logics.

Standard models. Gödel’s incompleteness theorem (Gödel, 1931) can be ex-
tended directly to ETT (and ExTT or STT) since second-order quantification
can be used to define Peano arithmetic: that is, there is a “true” formula of ETT
(or any extension of it) that is not provable. The notion of truth here, however,
is that arising from what is called the standard model of ETT (resp. any exten-
sion of it) in which a functional type, say, γ → τ , contains all functions from
the type γ to the type τ . Moreover, the type o is assumed to contain exactly
two truth values, namely true and false.

Henkin models. Henkin (1950) introduced a broader notion of general model
in which a type contains “enough” functions but not necessarily all functions.
Henkin then showed soundness and completeness. More precisely, he showed
that provability in ExTT coincides with truth in all general models (the stan-
dard one as well as the non-standard ones). Andrews (1972b) provided an
improvement on Henkin’s definition of general models by replacing the notion
that there be enough functions to provide denotations for all formulas of ETT
with a more direct means to define general models based on combinatory logic.
Andrews (1972a) points out that Henkin’s definition of general model technically
was in error since his definition of general models admitted models in which the
axiom of functional extensionality (10τ→β) does not hold. Andrews then showed
that there is a rather direct way to fix that problem by shifting the underly-
ing logical connectives away from the usual Boolean connectives and quantifiers
for a type-indexed family of connectives {Qτ→τ→o}τ in which Qτ→τ→o denotes
equality at type τ .
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Non-functional models and extensionality. Henkin models are fully extensional,
i.e., they validate the functional and Boolean extensionality axioms 10τ→γ and
10o. The construction of non-functional models for ETT has been pioneered
by Andrews (1971). In Andrews’s so-called v-complexes, which are based on
Schütte’s semi-valuation method (Schütte, 1960), both the functional and the
Boolean extensionality principles fail. Assuming β-equality, functional exten-
sionality 10τ→γ splits into two weaker and independent principles η (F

.
=

λX FX, if X is not free in term F ) and ξ (from ∀X.F .
= G infer λX F

.
= λX G,

where X may occur free in F and G). Conversely, βη-conversion, which is built-
in in many modern implementations of ETT, together with ξ implies functional
extensionality. Boolean extensionality, however, is independent of any of these
principles. A whole landscape of respective notions of models structures for
ETT between Andrews’s v-complexes and Henkin semantics that further illus-
trate and clarify the above connections is developed in Benzmüller et al. (2004);
Brown (2004); Benzmüller (1999a), and an alternative development and discus-
sion has been contributed by Muskens (2007).

Takeuti’s conjecture. Takeuti (1953) defined GLC (“generalize logical calculus”)
by extending Gentzen’s LK with (second-order) quantification over predicates.
He conjectured cut-elimination for the GLC proof system and he showed that
this conjecture proved the consistency of analysis (second-order arithmetic).
Schütte (1960) presented a simplified version of Takeuti’s GLC and gave a se-
mantic characterization of the Takeuti conjecture. This important conjecture
was proved by Tait (1966) for the second-order fragment using Schütte’s se-
mantic results. The higher-order version of the conjecture was later proved by
Takahashi (1967) and by Prawitz (1968). The proof of strong normalization for
System F given by Girard (1971) also proves Takeuti’s conjecture as a conse-
quence. Andrews (1971) used the completeness of cut-free proofs (but phrased in
the contrapositive form as the abstract consistency principle (Smullyan, 1963))
in order to give a proof of the completeness of resolution in ETT. Takeuti (1975)
presented a cut-free sequent calculus with extensionality that is complete for
Henkin’s general models. The abstract consistency proof technique, as used by
Andrews, has been further extended and applied to obtain cut-elimination re-
sults for different systems between ETT and ExTT by Brown (2004), Benzmüller
et al. (2004, 2008a), and Brown and Smolka (2010). For a different semantic ap-
proach to proving cut-elimination for intuitionistic variants of STT see Hermant
and Lipton (2010).

Candidates of reducibility. In the setting of the intuitionistic variants of STT,
the proofs themselves are of interest since they can be seen as programs that
carry the computational content of constructive proofs. Girard (1971, 1986)
proved the strong normalization of such proofs (expressed as richly typed λ-
terms). To achieve this strong normalization result, Girard introduces the can-
didats de reductibilité technique which is, today, a common technique used to
prove results such as cut-elimination for higher-order logics.
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Herbrand’s theorem for ETT. In Andrews et al. (1984), Andrews introduced a
notion of proof called a development that resembles Craig-style linear reason-
ing in which a formula can be repeatedly rewritten until a tautologous formula
is encountered. Three kinds of formula rewritings are possible: instantiate a
top-level universal quantifier (with an eigenvariable), instantiate a top-level ex-
istential quantifier (with a term), or duplicate a top-level existential quantifier.
Completeness of developments for ETT can be taken as a kind of Herbrand
theorem for ETT. Miller (1983, 1987) presented the rewrites of developments
as a tree instead of a line. The resulting proof structure, called expansion trees,
provides a compact presentation of proofs for higher-order classical logic. Ex-
pansion trees are a natural generalization of Herbrand disjunctions to formulas
which might not be in prenex normal form and where higher-order quantification
might be involved.

4.2. Cut-simulation properties

Cut-elimination in first-order logic gives rise to the subformula property :
that is, cut-free proofs are arrangements of formulas which are just subformulas
of the formulas in the sequent at the root of the proof. In ETT (and ExTT or
STT), however, cut-free proofs do not necessarily satisfy this subformula prop-
erty. To better understand this situation remember that predicate variables may
be instantiated with terms that introduce new formula structure. For this rea-
son, the subformula property may break (cf. Section 6.1). However, at the same
time this offers the opportunity to mimic cut-introductions by appropriately
selecting such instantiations for predicate variables. For example, a cut formula
ϕ may be introduced by instantiating the law of excluded middle ∀P.P ∨ ¬P
with ϕ and by applying disjunction elimination (i.e., the rule of cases). In other
words, one may trivially eliminate cut-rule applications by instead working with
the axiom of excluded middle.8 As shown by Benzmüller et al. (2009), effective
cut-simulation is also supported by other prominent axioms, including com-
prehension, induction, extensionality, description, and choice. Also arbitrary
(positive) Leibniz equations can be employed for the task.

Cut-simulations have in fact been extensively used in literature. For exam-
ple, Takeuti showed that a conjecture of Gödel could be proved without cut
by using the induction principle instead (Takeuti, 1960); McDowell and Miller
(2002) illustrate how the induction rule can be used to hide the cut rule; and
Schütte (1960) used excluded middle to similarly mask the cut rule.

In higher-order logic, cut-elimination and cut-simulation should always be
considered in combination: a pure cut-elimination result may indeed mean little
if at the same time axioms are assumed that support effective cut-simulation.

Church’s use of the λ-calculus to build comprehension principles into the
language can therefore be seen as a first step in the program to eliminate the
need for cut-simulating axioms. Further steps have recently been achieved, and

8For automating higher-order logic it is thus very questionable to start with intuitionistic
logic first and to simply add the law of excluded middle to arrive at classical logic.
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tableaux and resolution calculi have been presented that employ primitive equal-
ity and which provide calculus rules (as opposed to an axiomatic treatment) for
extensionality and choice (cf. Section 6.3). These calculus rules do not support
cut-simulation.

4.3. Higher-order substitutions and normal forms

One of the challenges posed by higher-order substitution is that the many
normal forms on which theorem provers often rely are not stable under such
substitution. Clearly, a formula in βη-normal form may no longer be in βη-
normal form after a λ-term instantiates a higher-order free variable in it. Sim-
ilarly, many other normal forms—e.g., negation normal, conjunctive normal,
and Skolem normal—are not preserved under such substitutions. In general,
this instability is not a major problem since often one can re-normalize after
performing such substitutions. For example, one often immediately places terms
into βη-normal form after making a substitution. Since there can be an explo-
sion in the size of terms when such normalization is made, there are compelling
reasons to delay such normalization (Liang et al., 2005). Andrews (1971), for
example, integrates the production of conjunctive normal and Skolem normal
forms within the process of doing resolution.

4.4. Encodings of higher-order logic into first-order logic

Given the expressiveness of first-order logic and that theoremhood in both
first-order logic and ETT (and ExTT or STT) is recursively enumerable, it
is not a surprise that provability in the latter can be formalized in first-order
logic. Some of the encodings have high-enough fidelity to make it possible to
learn something structural about ETT from its encoding. For example, Dowek
(2008) and Dowek et al. (2001) use an encoding of ETT in first-order logic
along with Skolemization in first-order logic in order to explain the nature of
Skolemization in ETT.

Mappings of second-order logic into many-sorted first-order logic have been
studied by Enderton (1972). Henschen (1972) presents a mapping from higher-
order logic and addresses the handling of comprehension axioms. For (type
restricted) ExTT with Henkin-style semantics, complete translations into many-
sorted, first-order logic have been studied by Kerber (1991, 1994).

Modern interactive theorem provers such as Isabelle nowadays employ trans-
lations from polymorphic higher-order logic into (unsorted or many-sorted) first-
order logic in order to employ first-order theorem provers to help prove subgoals.
Achieving Henkin completeness is thereby typically not a main issue. The focus
is rather on practical effectiveness. Even soundness may be abandoned if other
techniques, such as subsequent proof reconstruction, can be employed to iden-
tify unsound proofs. Relevant related work has been presented by Hurd (2003),
Meng and Paulson (2008), and Blanchette et al. (2013b).
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5. Skolemization and unification

In the latter sections of this chapter, we describe a number of theorem provers
for various subsets of STT. They all achieve elements of their automation in
ways that resemble provers in first-order logic. In particular, when quantifiers
are encountered, they are either instantiated with eigenvariables (in the sense of
Gentzen (1969a)) or, dually, instantiated by new free variables called logic vari-
ables: such variables denote a term that is determined later via unification. To
simplify the relationship between eigenvariables and logic variables and, hence,
simplify the implementation of unification, it is customary to simplify quantifiers
prior to performing proof search. In classical first-order logic theorem provers,
Skolemization provides such simplification and unification does not need to deal
with eigenvariables at all.

While such a simplification of quantificational structure is possible in classi-
cal higher-order theorem provers, some important issues arise concerning quan-
tifier alternation, Skolemization, and term unification that are not genuine issues
in a first-order setting. We discuss these differences below.

5.1. Skolemization

A typical approach to simplifying the alternation of quantifiers in first-order
logic is to use Skolemization. Such a technique replaces an assumption of the
form, say, ∀xτ∃yδ Pxy with the assumption ∀xτ Px(fx), where f is a new
constant of type τ → δ. The original assumption is satisfiable if and only if
the Skolemized formula is satisfiable: in a model of the Skolemized formula, the
meaning of the Skolem function f is a suitable choice function.

Lifting Skolemization into higher-order logic is problematic for a number
of reasons. First, for a logic such as ETT which does not accept the axiom of
choice, Skolem functions should not be allowed, at least not without restrictions.
For example, the resolution system for ETT introduced by Andrews (1971) used
Skolem functions to simplify quantifier alternations. While Andrews was able
to prove that resolution was complete for ETT, he did not provide the converse
result of soundness since some versions of the axiom of choice could be proved
(Andrews, 1973). As was shown by Miller (1983, 1992), the soundness of Skolem
functions can be guaranteed by placing suitable restrictions on the occurrences
of Skolem functions within λ-terms. In particular, consider an assumption of the
form ∀xτ∃yδ→θ Pxy and its Skolemized version ∀xτ Px(fx), where f is a new
Skolem function of type τ → δ → θ. In order for a proof not to “internalize” the
choice function named by f , every substitution term t used in that proof must
be restricted so that every occurrence of f in t must have at least one argument
and any free variable occurrences in that argument must also be free in t. Thus
it is not possible to form an abstraction involving the Skolemization-induced
argument and, in that way, the Skolem function is not used as a general choice
function.

A second problem with using Skolemization is that there are situations where
a type may have zero or one inhabitant prior to Skolemization but can have
an infinite number of inhabitants after Skolemization (Miller, 1992). Such a
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change in the nature and number of terms that appear in types before and after
Skolemization introduces new constants is a serious problem when a prover
wishes to present its proofs in forms that do not use Skolemization (such as
natural deduction or sequent calculus).

A third problem using Skolemization is that in the unification of typed λ-
terms, the treatment of λ-abstractions and the treatment of eigenvariables are
intimately related. For example, the unification problems ∃wι.(λxι.x) = (λxι.w)
and ∃wι∀xι.x = w are essentially the same: since the second (purely first-order)
problem is not provable in first-order logic (since it is true only in a singleton
domain), the original unification problem also has no solutions. Explaining the
non-unification of terms λxι.x and λxι.w in terms of Skolemization and choice
functions seems rather indirect.

5.2. Unification of simply typed λ-terms

Traditionally, the unification of simply typed λ-terms can be described as
proving the formula

∃x1τ1 . . . ∃x
n
τn . t1 = s1 ∧ · · · ∧ tm = sm (n,m ≥ 0).

If we make the additional assumption that no variable in the quantifier pre-
fix is free in any of the terms s1, . . . , sm then this formula is also called a
matching problem. The order of the unification problem displayed above is
1 + max{ord(τ1), . . . , ord(τn)}; thus, if n = 0 that order is 1. Andrews showed
(Andrews, 1974, Theorem 2) that such a formula is provable in ETT if and only
if there is a substitution θ for the variables in the quantifier prefix such that
for each i = 1, . . . , n, the terms tιθ and sιθ have the same normal form. Such a
substitution as θ is called a unifier for that unification problem. Such unifica-
tion problems have been studied in which the common normal form is computed
using just β-conversion or with βη-conversion: thus one speaks of unification
or matching modulo β or modulo βη. This theorem immediately generalizes a
similar theorem for first-order logic.

Although Guard and his student Gould investigated higher-order versions of
unification as early as 1964 (Guard, 1964; Gould, 1966), it was not until 1972
that the undecidability of such unification was demonstrated independently by
Huet (1973a) and Lucchesi (1972). Those two papers showed that third-order
unification was undecidable; later Goldfarb (1981) showed that second-order
unification was also undecidable. The decidability of higher-order matching
was shown after several decades of effort: it was first shown for second-order
matching in Huet and Lang (1978); for third-order matching in Dowek (1992);
and for fourth-order matching in Padovani (2000). Finally, Stirling (2009) has
shown that matching at all orders is decidable.

Following such undecidability results for unification, the search for unifica-
tion procedures for simply typed λ-terms focused on the recursive enumeration
of unifiers. The first such enumeration was presented in (Pietrzykowski and
Jensen, 1972; Pietrzykowski, 1973; Jensen and Pietrzykowski, 1976). Their enu-
meration was intractable in implemented systems since when it enumerated a
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unifier, subsequent unifiers in the enumeration would often subsume it, thus
leading to a highly redundant search for unifiers.

Huet (1975) presented a different approach to the enumeration of unifiers.
Instead of solving all unification problems, some unification pairs (the so-called
flex-flex pairs) were deemed too unconstrained to schedule for solving. In such
problems, the head of all terms in all equalities are existentially quantified.
For example, the unification problem ∃fι→ι∃gι→ι.fa = ga is composed of only
flex-flex pairs and it has a surprising number of unifiers. In particular, let t
be any βη-normal closed term of type ι and assume that the constant a has
n occurrences in t. There are 2n different ways to abstract a from t and by
assigning one of these to f and possibly another to g we have a unifier for
this unification problem. Clearly, picking blindly from this exponential set of
choices on an arbitrary term is not a good idea. An important design choice
in the semi-decision procedure of Huet (1975) is the delay of such unification
problems. In particular, Huet’s procedure computed “pre-unifiers”; that is,
substitutions that can reduce the original unification problem to one involving
only flex-flex equations. Huet showed that the search for pre-unifiers could be
done, in fact, without redundancy. He also showed how to build a resolution
procedure for ETT on pre-unification instead of unification by making flex-flex
equations into “constraints” on resolution (Huet, 1972, 1973b). The earliest
theorem provers for various supersets of ETT—TPS (Andrews et al., 1996),
Isabelle (Paulson, 1989), and λProlog (Nadathur and Miller, 1988; Miller and
Nadathur, 2012)—all implemented rather directly Huet’s search procedure for
pre-unifiers.

The unification of simply typed λ-terms does not have the most-general-
unifier property: that is, there can be two unifiers and neither is an instance of
the other. Let g be a constant of type ι→ ι→ ι and a a constant of type ι. Then
the second-order unification problem ∃fι→ι.fa = gaa has four unifiers in which f
is instantiated with λw.gww, λw.gwa, λw.gaw, and λw.gaa. A theorem prover
that encounters such a unification problem may need to explore all four of these
unifiers during the search for a proof. It is also possible for a unification problem
to have an infinite number of unifiers that are not instances of one another. Such
is the case for the unification problem ∃fι→ι.λx.f(hx) = λx.h(fx), where h is
a constant of type ι → ι. All the following instantiations for f yield a unifier:
λw.w, λw.hw, λw.h(hw), λw.h(h(hw)), . . ..

For more details about Huet’s search procedure for unifiers, we recommend
Huet’s original paper (Huet, 1975) as well as the subsequent papers by Snyder
and Gallier (1989) and Miller (1992), and the handbook chapter by Dowek
(2001). Here we illustrate some of the complexities involved with this style of
unification.

5.3. Mixed prefix unification problems

As we motivated above, it is natural to generalize unification problems away
from a purely existential quantifier prefix to one that has a mixed quantifier
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prefix, i.e., a unification problem will be a formula of the form

Q1x
1
τ1 . . . Qnx

n
τn . t1 = s1 ∧ · · · ∧ tm = sm (n,m ≥ 0).

Here, Qι is either ∀ or ∃ for i = 1, . . . , n. There is, in fact, a simple technique
available in higher-order logic that is not available in first-order logic which
can simplify quantifier alternation in such unification problems. In particular, if
∀xτ∃yσ occurs within the prefix of a unification problem, it is a simple matter to
“rotate” the ∀x to the right: this requires “raising” the type of the ∃y quantifier.
That is, ∀xτ∃yσ can be replaced by ∃hτ→σ∀xτ if all occurrences of y in the
scope of ∃y are substituted by (hx). The resulting two unification problems are
equivalent in the sense that unifiers for these two problems can be put into a
one-to-one correspondence by a simple mapping. For example, the unification
problem ∀xι∀yι∃zι.fzx = fyz (for some constant f of type ι → ι → ι) can be
rewritten to the unification problem

∃hι→ι→ι∀xι∀yι.f(hxy)x = fy(hxy).

This latter problem can be replaced by the equivalent unification problem
∃hι→ι→ι.λxλy.f(hxy)x = λxλy.fy(hxy). Using the technique of raising, any
unification problem with a mixed quantifier prefix can be rewritten to one with
a prefix of the form ∃∀. Furthermore, the block of ∀ quantifiers can be removed
from the prefix if they are converted to a block of λ-bindings in front of all
terms in all the equations. In this way, a mixed prefix can be rewritten to
an equivalent one involving only existential quantifiers. Details of performing
unification under a mixed prefix can be found in Miller (1992). The notion of
∀-lifting employed by the Isabelle prover can be explained using raising (Miller,
1991; Paulson, 1989).

5.4. Pattern unification

There is a small subset of unification problems, first studied by Miller (1991),
whose identification has been important for the construction of practical sys-
tems. Call a unification problem a pattern unification problem if every occur-
rence of an existentially quantified variable, say, M , in the prefix is applied to a
list of arguments that are all distinct variables bound by either a λ-binder or a
universal quantifier in the scope of the existential quantifier. Thus, existentially
quantified variables cannot be applied to general terms but a very restricted set
of bound variables. For example,

∃M∃N.λxλy.f(Mxy) = λxλy.Ny ∃M∀x∀y.f(Mxy) = fy

∃M∀x.λy.Mxy = λy.Myx ∃M∃N.∀x∀y.Mxy = Ny

are all pattern unification problems. All these unification problems have most
general unifiers, respectively, [M 7→ λxλy.Py,N 7→ λy.f(Py)], [M 7→ λxλy.y],
[M 7→ λxλy.P ], and [M 7→ λxλy.Ny], where P is a new (existentially quantified)
variable. Notice that although the last two of these are examples of flex-flex
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unification problems, they both have a most general unifier. The following
unification problems do not fall into this fragment:

∃M∃N.λx.f(Mxx) = Nx ∃M.∀x.f(Mx) = M(fx).

Notice that all first-order unification problems are, in fact, pattern unifi-
cation problems, and that pattern unification problems are stable under the
raising technique mentioned earlier. The main result about pattern unification
is that—like first-order unification—deciding unifiability is decidable and most
general unifiers exist for solvable problems. Also like first-order unification,
types attributed to constructors are not needed for doing the unification.

5.5. Practical considerations

Earlier we mentioned that unification problems can be addressed using ei-
ther just β-conversion or βη-conversion. Although Huet (1975) considered both
unification modulo β and βη conversion separately, almost no implemented sys-
tem considers only the pure β conversion rules alone: term equality for STT is
uniformly treated as βη-convertibility.

Skolemization is a common technique for simplifying quantifier alternation
in many implemented higher-order theorem provers (cf. Section 7). On the
other hand, several other systems, particularly those based on the intuitionistic
fragment of ETT, do not use Skolemization: instead they either use raising, as
is done in Isabelle (Paulson, 1989, 1994) or they work directly with a represen-
tation of an unaltered quantifier prefix, as is done in the Teyjus implementation
(Nadathur and Linnell, 2005) of λProlog.

It is frequently the case that in computational logic systems that unify sim-
ply typed λ-terms, only pattern unification problems need to be solved. As a
result, some systems—such as the Teyjus implementation of λProlog and the
interactive theorem provers Minlog (Benl et al., 1998) and Abella (Gacek et al.,
2012)—only implement the pattern fragment since this makes their design and
implementation easier.

6. Challenges for automation

While theorem provers for ETT, ExTT, and STT can borrow many tech-
niques from theorem provers for first-order logic, there are several challenges to
the direct implementation of such provers. We discuss some of these challenges
below.

6.1. Instantiation of predicate variables

During the search for proofs in quantificational logics, quantifiers need to be
instantiated (possibly more than once) with various terms. Choosing such terms
is a challenge partly because when a quantifier needs to be instantiated, the role
of that instantiation term in later proof steps is not usually known. To address
this gap between when a quantifier needs an instantiation term and when that
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term’s structure is finally relevant to the completion of a proof, the techniques
of unification described in the previous section are used. When unification is
involved, quantifiers are instantiated not with terms but with variables which
represent a promise: before a proof is complete, those variables will be replaced
by terms. The variables that are introduced in this way are sometimes called
logic variables: these variables correspond to those marked using existential
quantification in the unification problems of Section 5.3.

In this way, one can delay the choice of which term to use to instantiate the
quantifier until the point where that term is actually used in the proof. As an
illustration of using unification in the search for a proof, consider attempting a
proof of the formula (q (f a)) from the conjunctive assumption

pa ∧ (∀x px ⊃ p(fx)) ∧ (∀y py ⊃ qy).

One way to prove this goal would be to assume, for example, that each univer-
sally quantified premise is used once for some, currently, unspecified term. In
this case, instantiate ∀x and ∀y with logic variables X and Y , respectively, and
we have an assumption of the form

pa ∧ (pX ⊃ p(fX)) ∧ (pY ⊃ qY ).

We can then observe that the proof is complete if we chain together two appli-
cations of modus ponens: for that to work, we need to find substitution terms
for X and Y to solve the equations

pa = pX ∧ p(fX) = pY ∧ qY = q(fa).

Clearly, this unification problem is solvable when X and Y are replaced by a
and fa, respectively. Thus, if we were to repeat the steps of the proof but this
time instantiate the quantifiers ∀x and ∀y with a and (f a), respectively, the
chaining of the modus ponens steps would now lead to a proper proof.

A key property of first-order quantificational logic is that the terms needed
for instantiating quantifiers can all be found using unification of atomic formu-
las. When predicate variables are present, however, the unification of atomic
formulas is no longer sufficient to generate all quantifier instantiations needed
for proofs. For example, the ETT theorem

∃p (px ⊃ (ax ∧ bx)) ∧ ((ax ∧ bx) ⊃ px).

is proved by instantiating p with λw.aw ∧ bw. If that quantifier were, instead,
instantiated by the logic variable P to yield the formula

(Px ⊃ (ax ∧ bx)) ∧ ((ax ∧ bx) ⊃ Px)

no equalities between occurrences of atomic formulas will provide a unification
problem that has this unifier. Similarly, the theorem

∀q (qa ⊃ qb) ⊃ pb ⊃ pa
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is proved (in intuitionistic and classical logic) by instantiating ∀q with the term
λw.pw ⊃ pa. Once again, however, if the quantifier ∀q was instantiated with a
logic variable Q, then no unification of that atomic formulas Qa, Qb, pa, and
pb would have yielded this substitution terms for Q.

Of course, it is not surprising that simple syntactic checks involving sub-
formulas are not sophisticated enough to compute substitutions for predicates.
Often the key insight into proving a mathematical theorem is the production
of the right set or relation to instantiate a predicate variable: in ETT (ExTT
or STT), these would be encoded as λ-abstractions containing logical connec-
tives. Similarly, induction can be encoded and the invariants for inductive proofs
would be encoded as similar terms and used to instantiate predicate quantifiers.
Nonetheless, a number of researchers have described various schemes for invent-
ing substitution terms for predicate variables. We mention a few below.

Enumeration of substitutions. An early approach at the generation of predi-
cate substitutions was provided by Huet (1972; 1973b) by essentially providing
a mechanism for guessing the top-level, logical structure of a substitution for
a predicate variable. Such guessing (called splittings in that paper) was in-
terleaved with resolution steps by a system of constraints. Thus, his system
suggested a candidate top-level connective for the body of a predicate substitu-
tion and then proceeded with the proof under that assumption.

A simple, prominent example to illustrate the need for splittings is ∃Po P .
When using resolution the formula is first negated and then normalized to clause
¬Xo, where X is a predicate variable. There is no resolution partner for this
clause available, hence the empty clause can not be derived. However, when
guessing some top-level, logical structure for X, here the substitution [¬Y/X]
is suitable, then ¬¬Y is derived, which normalizes into a new clause Y . Now,
resolution between the clauses ¬X and Y with substitution [Y/X] directly leads
to the empty clause.

Andrews’s primitive substitutions (Andrews, 1989) incorporates Huet’s no-
tion of splitting, and an alternative description of splitting can be found in
Dowek (1993).

Maximal set variables and set constraints. Bledsoe (1979) suggested a different
strategy for coming up with predicate substitutions: in some cases, one can tell
the maximal set that can solve a subgoal. Consider, for example, the formula

∃A (∀x.Ax ⊃ px) ∧ C(A)

Clearly there are many instantiations possible for A that will satisfy the first
conjunct. For example, the empty set λw ⊥, is one of them but it seems not
to be the best one. Rather, a more appropriate substitution for A might be
λw pw ∧ Bw, where B is a new variable that has the same type as A. This
extension of the latter expression can then range from the empty set (where
B is substituted by λw ⊥) to λw pw (where B is substituted by λw >). Felty
(2000) generalized and applied Bledsoe’s technique, which was restricted to a
subset of second-order logic, to the higher-order logic found in the calculus
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of constructions. Moreover, Brown (2002) generalized Bledsoe’s technique to
ExTT. His solution, which employs reasoning with set constraints, has been
applied within the TPS theorem prover.

6.2. Induction invariants

Induction and, to a lesser extent, co-induction are important inference rules
in computer science and mathematics. Most forms of the induction rule require
showing that some set is, in fact, an invariant of the induction. Even if one
is only interested in first-order logic, the induction rule in this form requires
discovering the instantiation of the predicate variable that codes the induction
invariant. While Bledsoe (1979) provides some weak approaches to generating
such invariants, a range of techniques are routinely used to provide either invari-
ants explicitly or some evidence that an invariant exists. For an example of the
latter, the work on cyclic proofs (Spenger and Dams, 2003) attempts to identify
cycles in the unfolding of a proof attempt as a guarantee that an invariant ex-
ists. Descente infinie (sometimes also called inductionless induction) and proof
by consistency (Comon, 2001) are also methods for proving inductive theorems
without explicitly needing to invent an invariant (cf. also Wirth (2004)).

6.3. Equality, extensionality, and choice

There has been work on automating various axioms beyond those included
in ETT. As mentioned above, various works have focused on automation of
induction, which is based roughly on axioms 7 and 8. For many applications,
including mathematics, one certainly wants and needs to have extensionality
and maybe also choice (or description). However, the idea to treat such princi-
ples axiomatically, as e.g., proposed in Huet (1973b) for extensionality, leads to
a significant increase of the search space, since these axioms (just like the induc-
tion axiom) introduce predicate variables and support cut-simulation (cf. Sec-
tion 4.2). Another challenge is that unification modulo Boolean extensionality
subsumes theorem proving: proving a proposition ϕ is the same as unifying ϕ
and > modulo Boolean extensionality. More information on these challenges is
provided by Benzmüller et al. (2009) and Benzmüller (2002).

Significant progress in the automation of ExTT in existing prover imple-
mentations has therefore been achieved after providing calculus level support
for extensionality and also choice. Respective extensionality rules have been pro-
vided for resolution (Benzmüller, 1999b), expansion and sequent calculi (Brown,
2004, 2005), and tableaux (Brown and Smolka, 2010). Similarly, choice rules
have been proposed for the various settings: sequent calculus (Mints, 1999),
tableaux (Backes and Brown, 2011) and resolution (Benzmüller and Sultana,
2013).

Analogously, (positive) Leibniz equations are toxic for proof automation,
since they also support cut-simulation. For this reason, the automation ori-
ented tableaux and resolution approaches above support primitive equality and
provide respective rules. The use of Leibniz equations can hence be omitted in
the modeling of theories and conjectures in these approaches.
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7. Automated theorem provers

7.1. Early systems

Probably the earliest project to mention is Peter Andrews NSF grant Proof
procedures for Type Theory (1965-67). The goal was to lift ideas from proposi-
tional and first-order logic to the higher-order case. Also J. A. Robinson (1969,
1970) argued for the construction of automated tools for higher-order logic. To-
gether with E. Cohen, Andrews started a first computer implementation based
on the inference rules of Andrews (1971) and the unification algorithm of Huet
(1975) in a subsequent project (1971-76). In 1977 this system did prove Can-
tor’s theorem automatically in 259 seconds (Andrews and Cohen, 1977). After
1983, when D. Miller, F. Pfenning, and other students got involved, this theorem
prover got substantially revised. The revised system was then called TPS. The
TPS proof assistant (Miller et al., 1982; Andrews et al., 1996, 2000; Andrews
and Brown, 2006), was, in fact, not based on resolution but on matrix-style
theorem proving. Both λProlog (Nadathur and Miller, 1988) and the Isabelle
theorem prover (Paulson, 1989) were early systems that implemented sizable
fragments of the intuitionistic variants of ETT: they were tractable systems be-
cause they either removed or greatly restricted predicate quantification. Below
we survey other higher-order systems that attempted to deal with interactive
and automatic theorem proving in the presence of predicate quantification.

HOL. The ML based provers of the HOL family include HOL88, HOL98, and
HOL4 (Gordon and Melham, 1993). These systems are all based on the LCF
approach (Gordon et al., 1979), in which powerful proof tactics are iteratively
built up from a small kernel of basic proof rules. Other LCF-based provers for
higher-order logic are the minimalist system HOL Light (Harrison, 2009), which
provides powerful automation tactics and which has recently played a key role in
the verification of Kepler’s conjecture (Hales, 2013), and the ProofPower system
(Arthan, 2011), which provides special support for a set-theoretic specification
language.

Isabelle/HOL. Isabelle (Paulson, 1989) is a theorem prover with a core tactic
language built on a fragment of the intuitionistic variant of ETT. Built on this
core is the Isabelle/HOL (Nipkow et al., 2002) interactive theorem prover for
classical higher-order logic. Isabelle/HOL includes several powerful features
such as bridges to external theorem provers, sophisticated user interaction, and
the possibility to export executable specifications written in Isabelle/HOL as
executable code in various programming languages.

PVS. The prototype verification system PVS (Owre et al., 1992) combines a
higher-order specification languages with an interactive theorem proving en-
vironment that integrates decision procedures, a model checker, and various
other utilities to improve user productivity in large formalization and verifi-
cation projects. Like Isabelle and the HOL provers, PVS also includes a rich
library of formalized theories.
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IMPS. The higher-order interactive proof assistant IMPS (Farmer, 1993) pro-
vides good support for partial functions and undefined terms in STT (Farmer,
1990). Moreover, it supports human oriented formal proofs which are never-
theless machine checked. Most importantly, IMPS organizes mathematics using
the “little theories” method in which reasoning is distributed over a network of
theories linked by theory morphisms (Farmer et al., 1992). It is the first theorem
proving system to employ this approach.

ΩMEGA. The higher-order proof assistant ΩMEGA (Benzmüller et al., 1997)
combines tactic based interactive theorem proving with automated proof plan-
ning. With support from an agent-based model, it integrates various external
reasoners: including first-order automated theorem provers, the higher-order
automated theorem provers LEO (Benzmüller and Kohlhase, 1998; Benzmüller,
1999a) and TPS, and computer algebra systems (Autexier et al., 2010). Proof
certificates from these external systems can be transformed and verified in
ΩMEGA.

λClam and IsaPlanner. λ-Clam (Richardson et al., 1998) is a higher-order vari-
ant of the CLAM proof planner (Bundy et al., 1990) built in λProlog. This
prover focuses on induction proofs based on the rippling technique. IsaPlanner
(Dixon and Fleuriot, 2003) is a related generic proof planner built on top of the
Isabelle system.

Deduction Modulo. In the deduction-modulo approach to theorem proving
(Dowek et al., 2003), a first-order presentation of (intensional) higher-order
logic can be exploited to automate higher-order reasoning (Dowek et al., 2001).
A recent implementation of the deduction modulo approach (still restricted to
first-order) has been presented by Burel (2011b); see also the Dedukti proof
checker (Boespflug et al., 2012).

Other early interactive proof assistants, for variants of constructive higher-
order logic, include Automath (Nederpelt et al., 1994), Nuprl (Constable et al.,
1986), LEGO (Pollack, 1994), Coq (Bertot and Casteran, 2004), and Agda (Co-
quand and Coquand, 1999). The logical frameworks Elf (Pfenning, 1994), Twelf
(Pfenning and Schürmann, 1999), and Beluga (Pientka and Dunfield, 2010) are
based on dependently typed higher-order logic. Related provers include the
general-purpose, interactive, type-free, equational higher-order theorem prover
Watson (Holmes and Alves-Foss, 2001) and the fully automated theorem prover
Otter-λ (Beeson, 2006) for λ-logic (a combination of λ-calculus and first-order
logic). Abella (Gacek et al., 2012) is a recently implemented interactive theorem
prover for an intuitionistic, predicative higher-order logic with inference rules
for induction and co-induction. ACL2 (Kaufmann and Moore, 1997) and KeY
(Beckert et al., 2007) are prominent first-order interactive proof assistants that
integrate induction.
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7.2. The TPTP THF initiative

To foster the systematic development and improvement of higher-order au-
tomated theorem proving systems, Sutcliffe and Benzmüller (2010), supported
by several other members of the community, initiated the TPTP THF infras-
tructure (THF stands for typed higher-order form). This project has introduced
the THF syntax for higher-order logic, it has developed a library of benchmark
and example problems, and it provides various support tools for the new THF0
language fragment. The THF0 language supports ExTT (with choice) as also
studied by Henkin (1950), that is, it addresses the most commonly used and
accepted aspects of Church’s type theory.

Version 6.0.0 of the TPTP library contains more than 3000 problems in the
THF0 language.

The library also includes the entire problem library of Andrews’s TPS
project, which, among others, contains formalizations of many theorems of his
textbook (Andrews, 2002). The first-order TPTP infrastructure (Sutcliffe, 2009)
provides a range of resources to support usage of the TPTP problem library.
Many of these resources are now immediately applicable to the higher-order set-
ting although some have required changes to support the new features of THF.
The development of the THF0 language, has been paralleled and significantly
influenced by the development of the LEO-II prover (Benzmüller et al., 2008b).
Several other provers have quickly adopted this language, leading to fruitful
mutual comparisons and evaluations. Several implementation bugs in different
systems have been detected this way.

7.3. TPTP THF0 compliant higher-order theorem provers

We briefly describe the currently available, fully automated theorem provers
for ExTT (with choice). These systems all support the new THF0 language
and they can be employed online (avoiding local installations) via Sutcliffe’s
SystemOnTPTP facility.9

TPS. The TPS prover can be used to prove theorems of ETT or ExTT au-
tomatically, interactively, or semi-automatically. When searching for a proof
automatically, TPS first searches for an expansion proof (Miller, 1987) or an
extensional expansion proof (Brown, 2004) of the theorem. Part of this process
involves searching for acceptable matings (Andrews, 1981). Using higher-order
unification, a pair of occurrences of subformulas (which are usually literals) is
mated appropriately on each vertical path through an expanded form of the
theorem to be proved. Skolemization and pre-unification is employed, and cal-
culus rules for extensionality reasoning are provided. The behavior of TPS is
controlled by sets of flags, also called modes. About fifty modes have been found
that collectively suffice for automatically proving virtually all the theorems that

9See http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP
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TPS has proved automatically thus far. A simple scheduling mechanism is em-
ployed in TPS to sequentially run these modes for a limited amount of time.
The resulting fully automated system is called TPS (TPTP).

LEO-II. (Benzmüller et al., 2008b), the successor of LEO, is an automated
theorem prover for ExTT (with choice) which is based on extensional higher-
order resolution. More precisely, LEO-II employs a refinement of extensional
higher-order RUE resolution (Benzmüller, 1999b). LEO-II employs Skolem-
ization, (extensional) pre-unification, and calculus rules for extensionality and
choice are provided. LEO-II is designed to cooperate with specialist systems
for fragments of higher-order logic. By default, LEO-II cooperates with the
first-order prover systems E (Schulz, 2002). LEO-II is often too weak to find a
refutation among the steadily growing set of clauses on its own. However, some
of the clauses in LEO-II’s search space attain a special status: they are first-
order clauses modulo the application of an appropriate transformation function.
Therefore, LEO-II regularly launches time limited calls with these clauses to a
first-order theorem prover, and when the first-order prover reports a refutation,
LEO-II also terminates. Communication between LEO-II and the cooperat-
ing first-order theorem prover uses the TPTP language and standards. LEO-II
outputs proofs in TPTP TSTP syntax.

Isabelle/HOL. The Isabelle/HOL system has originally been designed as an in-
teractive prover. However, in order to ease user interaction several automatic
proof tactics have been added over the years. By appropriately scheduling a sub-
set of these proof tactics, some of which are quite powerful, Isabelle/HOL has in
recent years been turned also into an automatic theorem prover, that can be run
from a command shell like other provers. The latest releases of this automated
version of Isabelle/HOL provide native support for different TPTP syntax for-
mats, including THF0. The most powerful proof tactics that are scheduled by
Isabelle/HOL include the sledgehammer tool (Blanchette et al., 2013a), which
invokes a sequence of external first-order and higher-order theorem provers, the
model finder Nitpick (Blanchette and Nipkow, 2010), the equational reasoner
simp (Nipkow, 1989), the untyped tableau prover blast (Paulson, 1999), the
simplifier and classical reasoners auto, force, and fast (Paulson, 1994), and the
best-first search procedure best. The TPTP incarnation of Isabelle/HOL does
not yet output proof terms.

Satallax. The higher-order, automated theorem prover Satallax (Brown, 2012,
2013) comes with model finding capabilities. The system is based on a complete
ground tableau calculus for ExTT (with choice) (Backes and Brown, 2011).
An initial tableau branch is formed from the assumptions of a conjecture and
negation of its conclusion. From that point on, Satallax tries to determine
unsatisfiability or satisfiability of this branch. Satallax progressively generates
higher-order formulas and corresponding propositional clauses. Satallax uses
the SAT solver MiniSat as an engine to test the current set of propositional
clauses for unsatisfiability. If the clauses are unsatisfiable, the original branch is
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unsatisfiable. Satallax employs restricted instantiation and pre-unification, and
it provides calculus rules for extensionality and choice. If there are no quantifiers
at function types, the generation of higher-order formulas and corresponding
clauses may terminate. In that case, if MiniSat reports the final set of clauses
as satisfiable, then the original set of higher-order formulas is satisfiable (by
a standard model in which all types are interpreted as finite sets). Satallax
outputs proofs in different formats, including Coq proof scripts and Coq proof
terms.

Nitpick and Refute. These systems are (counter-)model finders for ExTT.
The ability of Isabelle to find (counter-)models using the Refute and Nit-
pick (Blanchette and Nipkow, 2010) commands has also been integrated into
automatic systems. They provide the capability to find models for THF0 for-
mulas, which confirm the satisfiability of axiom sets, or the unsatisfiability of
non-theorems. The generation of models is particularly useful for exposing er-
rors in some THF0 problem encodings, and revealing bugs in the THF0 theorem
provers. Nitpick employs Skolemization.

agsyHOL. The agsyHOL prover (Lindblad, 2013) is based on a generic lazy
narrowing proof search algorithm. Backtracking is employed and a comparably
small search state is maintained. The prover outputs proof terms in sequent
style which can be verified in the Agda system.

coqATP. The coqATP prover (Bertot and Casteran, 2004) implements (the non-
inductive) part of the calculus of constructions. The system outputs proof terms
which are accepted as proofs by Coq (after the addition of a few definitions). The
prover has axioms for functional extensionality, choice, and excluded middle.
Propositional extensionality is not supported yet. In addition to axioms, a
small library of basic lemmas is employed.

7.4. Recent applications of automated THF0 provers

Over the years, the proof assistants from Section 7.1 have been applied in a
wide range of applications, including mathematics and formal verification. Typ-
ically these applications combine user interaction and partial proof automation.
For further information we refer to the websites of these systems.

With respect to full proof automation the TPS system has long been the
leading system, and the system has been employed to build up the TPS library
of formalized and automated mathematical proofs. More recently, however, TPS
is outperformed by several other THF0 theorem provers. Below we briefly point
to some selected recent applications of the leading systems.

Both Isabelle/HOL and Nitpick have been successfully employed to check
a formalization of a C++ memory model against various concurrent programs
written in C++ (such as a simple locking algorithm) (Blanchette et al., 2011).
Moreover, Nitpick has been employed in the development of algebraic formal
methods within Isabelle/HOL (Guttmann et al., 2011).
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Isabelle/HOL, Satallax, and LEO-II performed well in recent experiments
related to the Flyspeck project (Hales, 2013), in which a formalized proof of the
Kepler conjecture is being developed (mainly) in HOL Light; cf. the experiments
reported by Kaliszyk and Urban (2012, Table 7).

Most recently, LEO-II, Satallax, and Nitpick were employed to achieve a
formalization, mechanization, and automation of Gödel’s ontological proof of
the existence of God (Benzmüller and Woltzenlogel Paleo, 2013). This work
employs a semantic embedding of quantified modal logic in THF0 (Benzmüller
and Paulson, 2013). Some previously unknown results were contributed by the
provers.

Using the semantic embeddings approach, a wide range of propositional and
quantified non-classical logics, including parts of their meta-theory and their
combinations, can be automated with THF0 reasoners (cf. Benzmüller (2013);
Benzmüller et al. (2012) and Benzmüller (2011)). Automation is thereby com-
petitive, as recent experiments for first-order modal logic show (Benzmüller and
Raths, 2013).

THF0 reasoners can also be fruitfully employed for reasoning in expres-
sive ontologies (Benzmüller and Pease, 2012). Furthermore, the heteroge-
neous toolset HETS (Mossakowski et al., 2007) employs THF0 to integrate
the automated higher-order provers Satallax, LEO-II, Nitpick, Refute, and Is-
abelle/HOL.

8. Conclusion

We have summarized the development of theorem provers for Church’s sim-
ple theory of types (and elementary type theory) in the 20th century. Given
that the model theory and proof theory for ETT, ExTT, and STT is mature, a
significant number of interactive and, most recently, automated theorem prov-
ing systems have been built for them. Many applications of these systems
support Church’s original motivation for STT, namely that it could be an el-
egant, powerful, and mechanized foundations for mathematics. In addition to
mathematics, various other application areas (including non-classical logics) are
currently being explored.
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Gödel, K., 1931. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte der Mathematischen Physik 38, 173–
198. English Version in van Heijenoort (1967).
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Pfenning, F., Schürmann, C., 1999. System description: Twelf - a meta-logical
framework for deductive systems, in: Ganzinger, H. (Ed.), Automated De-
duction - CADE-16, 16th International Conference on Automated Deduction,
Trento, Italy, July 7-10, 1999, Proceedings, Springer. pp. 202–206.

Pientka, B., Dunfield, J., 2010. Beluga: A framework for programming and
reasoning with deductive systems (system description), in: Giesl, J., Hähnle,
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