
WorldTree: A Corpus of Explanation Graphs for Elementary Science Questions
supporting Multi-Hop Inference

Peter A. Jansen∗, Elizabeth Wainwright†, Steven Marmorstein‡, Clayton T. Morrison∗
∗School of Information, †Department of Linguistics, ‡Department of Computer Science

University of Arizona, Tucson, USA
pajansen@email.arizona.edu

Abstract
Developing methods of automated inference that are able to provide users with compelling human-readable justifications for why the
answer to a question is correct is critical for domains such as science and medicine, where user trust and detecting costly errors are
limiting factors to adoption. One of the central barriers to training question answering models on explainable inference tasks is the
lack of gold explanations to serve as training data. In this paper we present a corpus of explanations for standardized science exams, a
recent challenge task for question answering. We manually construct a corpus of detailed explanations for nearly all publicly available
standardized elementary science question (approximately 1,680 3rd through 5th grade questions) and represent these as “explanation
graphs” – sets of lexically overlapping sentences that describe how to arrive at the correct answer to a question through a combination of
domain and world knowledge. We also provide an explanation-centered tablestore, a collection of semi-structured tables that contain the
knowledge to construct these elementary science explanations. Together, these two knowledge resources map out a substantial portion
of the knowledge required for answering and explaining elementary science exams, and provide both structured and free-text training
data for the explainable inference task.
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1. Introduction
Question answering (QA) is a high-level natural language
processing task that requires automatically providing an-
swers to natural language questions. The approaches used
to construct QA solvers vary depending on the questions
and domain, from inference methods that attempt to con-
struct answers from semantic, syntactic, or logical decom-
positions, to retrieval methods that work to identify pas-
sages of text likely to contain the answer in large corpora
using statistical methods. Because of the difficulty of this
task, overall QA task performance tends to be low, with
generally between 20% and 80% of natural (non-artificially
generated) questions answered correctly, depending on the
questions, the domain, and the knowledge and inference re-
quirements.

Standardized science exams have recently been pro-
posed as a challenge task for question answering (Clark,
2015), as these questions have very challenging knowledge
and inference requirements (Clark et al., 2013; Jansen et
al., 2016), but are expressed in simple-enough language
that the linguistic challenges are likely surmountable in the
near-term. They also provide a standardized comparison of
modern inference techniques against human performance,
with individual QA solvers generally answering between
40% to 50% of multiple choice science questions correctly
(Khot et al., 2015; Clark et al., 2016; Khashabi et al.,
2016; Khot et al., 2017; Jansen et al., 2017, inter alia), and
top-performing ensemble models nearly reaching a passing
grade of 60% on middle school (8th grade) science exams
during a recent worldwide competition of 780 teams spon-
sored by the Allen Institute for AI (Schoenick et al., 2017).

One of the central shortcomings of question answer-
ing models is that while solvers are steadily increasing the
proportion of questions they answer correctly, most solvers

generally lack the capacity to provide human-readable ex-
planations or justifications for why those answers are cor-
rect. This “explainable inference” task is seen as a limi-
tation of current machine learning models in general (e.g.
Ribeiro et al., (2016)), but is critical for domains such as
science or medicine where user trust and detecting poten-
tially costly errors are important. More than this, evidence
from the cognitive and pedagogy literature suggests that
explanations (when tutoring others) and self-explanations
(when engaged in self-directed learning) are an impor-
tant aspect of learning, helping humans better generalize
the knowledge they have learned (Roscoe and Chi, 2007;
Legare, 2014; Rittle-Johnson and Loehr, 2016). This sug-
gests that explainable methods of inference may not only
be desirable for users, but may be a requirement for auto-
mated systems to have human-like generalization and infer-
ence capabilities.

Building QA solvers that generate explanations for
their answers is a challenging task, requiring a number of
inference capacities. Central among these is the idea of
information aggregation, or the idea that explanations for
a given question are rarely found in a contiguous passage
of text, and as such inference methods must generally as-
semble many separate pieces of knowledge from different
sources in order to arrive at a correct answer. Previous es-
timates (Jansen et al., 2016) suggest elementary science
questions require an average of 4 pieces of knowledge to
answer and explain those answers (here our analysis sug-
gests this is closer to 6), but inference methods tend to
have difficulty aggregating more than 2 pieces of knowl-
edge from free-text together due to the semantic or con-
textual “drift” associated with this aggregation (Fried et
al., 2015). Because of the difficulty in assembling train-
ing data for the information aggregation task, some have



Figure 1: An example multiple choice science question, the cor-
rect answer, and a sample explanation graph for why that answer
is correct. Here, the explanation graph consists of six sentences,
each interconnected through lexical overlap with the question, an-
swer, and other explanation sentences.

approached explanation generation as a distant supervision
problem, with explanation quality modelled as a latent vari-
able (Jansen et al., 2017; Sharp et al., 2017). While these
techniques have had some success in constructing short ex-
planations, semantic drift likely limits the viability of this
technique for explanations requiring more than two pieces
of information to be aggregated.

To address this, here we construct a large corpus of
explanation graphs (see Figure 1) to serve as training data
for explainable inference tasks. The contributions of this
work are are:

• We construct a set of explanations for 1,680 standard-
ized elementary science exam questions, represented
as both free-text, and as lexically-overlapping “ex-
planation graphs” that provide training data for infer-
ence models by detailing explicit connections between
knowledge in different sentences of an explanation.

• We provide an explanation-centered “tablestore”, a set
of 62 semi-structured tables containing 4,950 rows
that provide a substantial portion of the knowledge re-
quired to answer non-spatial, non-mathematical ele-
mentary science questions.

• We provide an analysis of the knowledge growth and
explanation overlap properties of this corpus, sug-
gesting both requirements for inference algorithms to
make use of explanation corpora, as well as methods
of estimating the difficulty in constructing explanation
corpora in other domains.

2. Related Work
In terms of question answering, the ability to provide com-
pelling human-readable explanations for answers to ques-
tions has been proposed as a complementary metric to as-
sess QA performance alongside the proportion of questions
answered correctly. Jansen et al. (2017) developed a QA
system for elementary science that answers questions by
building and ranking explanation graphs built from aggre-
gating multiple sentences read from free text corpora, in-
cluding study guides and dictionaries. Because of the dif-
ficulty in constructing gold explanations to serve as train-
ing data, the explanations built with this system were con-
structed by modeling explanation quality as a latent vari-
able machine learning problem. First, sentences were de-
composed into sentence graphs based on clausal and prepo-
sitional boundaries, then assembled into multi-sentence
“explanation graphs”. Questions were answered by rank-
ing these candidate explanation graphs, using answer cor-
rectness as well as features that capture the connectivity of
key-terms in the graphs as a proxy for explanation quality.
Jansen at al. (2017) showed that it is possible to learn to
generate high quality explanations for 60% of elementary
science questions using this method, an increase of 15%
over a baseline that retrieved single continuous passages
of text as answer justifications. Critically, in their error
analysis Jansen et al. found that for questions answered
incorrectly by their system, nearly half had successfully
generated high-quality explanation graphs and ranked these
highly, though they were not ultimately selected. They sug-
gest that the process of building and ranking explanations
would be aided by developing more expensive second-
pass reranking processes that are able to better recognize
the components and structure of high-quality explanations
within a short list of candidates.

Knowledge bases of tables, or “table stores”, have re-
cently been proposed as a semi-structured knowledge for-
malism for question answering that balances the cost of
manually crafting highly-structured knowledge bases with
the difficulties in acquiring this knowledge from free text
(Yin et al., 2015; Sun et al., 2016; Jauhar et al., 2016).
The methods for question answering over tables generally
take the form of constructing chains of multiple table rows
that lead from terms in the question to terms in the answer,
while the tables themselves are generally either collected
from the web, automatically generated by extracting rela-
tions from free text, or manually constructed.

At the collection end of the spectrum, Pasupat and
Liang (2015) extract 2,108 HTML tables from Wikipedia,
and propose a method of answering these questions by rea-
soning over the tables using formal logic. They also in-
troduce the WikiTableQuestions dataset, a set of 22,033
question-answer pairs (such as “Greece held its last Sum-
mer Olympics during which year?”) that can be answered
using these tables. Demonstrating the ability for collection
at scale, Sun et al. (2016) extract a total of 104 million
tables from Wikipedia and the web, and develop a model
that constructs relational chains between table rows using
a deep-learning framework.1 Using their system and ta-

1Sun et al. (2016) note that the 99 million tables extracted from



ble store, Sun et al. demonstrate state-of-the-art perfor-
mance on several benchmark datasets, including WebQues-
tions (Berant et al., 2013), a set of popular questions asked
from the web designed to be answerable using the large
structured knowledge graph Freebase (e.g. “What movies
does Morgan Freeman star in?”).

In terms of automatic generation, though relations are
often represented as < subject, relation, argument >
triples, Yin et al. (2015) create a large table containing
120M n-tuple relations using OpenIE (Etzioni et al., 2011),
arguing that the extra expressivity afforded by these more
detailed relations allows their system to answer more com-
plex questions. Yin et al. use this to successfully reason
over the WebQuestions dataset, as well as their own set of
questions with more complex prepositional and adverbial
constraints.

Elementary science exams contain a variety of com-
plex and challenging inference problems (Clark et al., 2013;
Jansen et al., 2016), with nearly 70% of questions requiring
some form of causal, process, or model-based reasoning to
solve and produce an explanation for. In spite of these ex-
ams being taken by millions of students each year, elemen-
tary students tend not to be fast or voluminous readers by
adult standards, making this a surprisingly low-resource do-
main for grade-appropriate study guides and other materi-
als. The questions also tend to require world knowledge ex-
pressed in grade-appropriate language (like that bears have
fur and that fur keeps animals warm) to solve. Because of
these requirements and limitations, table stores for elemen-
tary science QA tend to be manually or semi-automatically
constructed, and comparatively small.

Khashabi et al. (2016) provide the largest elementary
science table store to date, containing approximately 5,000
manually-authored rows across 65 tables based on science
curriculum topics obtained from study guides and a small
corpus of questions. Khashabi et al. also augment their ta-
blestore with 4 tables containing 2,600 automatically gen-
erated table rows using OpenIE triples. Reasoning is ac-
complished using an integer-linear programming algorithm
to chain table rows, with Khashabi et al. reporting that an
average of 2 table rows are used to answer each question.
Evaluation on a small set of 129 science questions achieved
passing performance (61%), with an ablation study show-
ing that the bulk of their model’s performance was from the
manually authored tables.

To help improve the quality of automatically gener-
ated tables, Dalvi et al. (2016) introduce an interactive tool
for semi-automatic table generation that allows annotators
to query patterns over large corpora. They demonstrate that
this tool can improve the speed of knowledge generation
by up to a factor of 4 over manual methods, while increas-
ing the precision and utility of the tables up to seven fold
compared to completely automatic methods.

All of the above systems share the commonality that
they work to connect (or aggregate) multiple pieces of
knowledge that, through a variety of inference methods,
move towards the goal of answering questions. Fried et
al. (2015) report that information aggregation for QA is

the web introduce more noise into the inference process than the
high-quality tables from Wikipedia

currently very challenging, with few methods able to com-
bine more than two pieces of knowledge before succumb-
ing to semantic drift, or the phenomenon of two pieces
of knowledge being erroneously connected due to shared
lexical overlap, incomplete word-sense disambiguation, or
other noisy signals (e.g. erroneously aggregating a sentence
about Apple computers to an inference when working to de-
termine whether apples are a kind of fruit). In a generating
a corpus of natural-language explanations for 432 elemen-
tary science questions, Jansen et al. (2016) found that the
average question requires aggregating 4 separate pieces of
knowledge to explainably answer, with some questions re-
quiring much longer explanations.

Though few QA solvers explicitly report the aggrega-
tion limits of their algorithms, Fried et al. (2015), Khabashi
et al. (2016) and Jansen et al. (2017) appear to show limits
or substantial decreases in performance after aggregating
two pieces of knowledge. To the best of our knowledge,
of systems that use information aggregation, only Jansen et
al. (2017) explicitly rate the explanatory performance of
the justifications from their model, with good explanations
generated for only 60% of correctly answered questions.
Taken together, all of this suggests that performance on in-
formation aggregation and explainable question answering
is still far from human performance, and could substantially
benefit from a large corpus of training data for these tasks.

3. Design Goals
We began with the following design goals:

Computable explanations: Explanations should be rep-
resented at different levels of structure (explanation, then
sentences, then relations within sentences). The knowl-
edge links between explanation sentences should be ex-
plicit through lexical overlap, which can be used to form
an “explanation graph” that describes how each sentence is
linked in an explanation.

Depth: Sufficient knowledge should be present in explana-
tions such that that the answer could be arrived at with little
extra domain or world knowledge – i.e. where possible, ex-
planations should be targeted at the level of knowledge of
a 5-year old child, or lower (see below for a more detailed
discussion of explanatory depth).

Reuse: Where possible, knowledge should be re-used
across explanations to facilitate automated analysis of
knowledge use, and identifying common explanation pat-
terns across questions.

3.1. Explanation Depth
The level of knowledge required to convincingly explain
why an answer to a question is correct depends upon one’s
familiarity with the domain of the question. For a domain
expert (such as an elementary science teacher), a convinc-
ing explanation to why thick bark is the correct answer to
”Which characteristic could best help a tree survive the
heat of a forest fire?” might need only take the form of ex-
plaining that one of bark’s primary functions is to provide
protection for the tree. In contrast, for a domain novice,
such as an elementary science student, this explanation



Question Which of the following characteristics would
best help a tree survive the heat of a forest fire?

Answers [A] large leaves [B] shallow roots
[*C] thick bark [D] thin trunks

Levels of explanatory knowledge:

Domain Expert (e.g. teacher)
Bark is a protective covering around the trunk and branches
of a tree.

Domain Novice (e.g. 4th grade student)
As an object’s thickness increases, it’s resistance to damage
will also increase.

Young child (e.g. 5-year old)
Protecting something means preventing harm.
Fire causes harm to trees, forests, and other living things.
Thickness is a measure of how thick an object is.
A tree is a kind of living thing.

First Principles
Protecting a living thing has a positive impact on it’s
survival and health.

Table 1: Levels of explanatory knowledge depth in order of in-
creasing specificity, and example explanatory sentences for each
level. For a domain expert who is already fluent in the reasoning
of a domain, brief explanations may be sufficient to completely
understand why a given answer is correct. As the level of explana-
tory knowledge moves towards increasing specificity, less domain
and world knowledge is assumed, and this knowledge must be
explicitly included in the explanations. Explanatory levels are ad-
ditive, i.e. an explanation targeted at the young child level would
also include the knowledge at the domain novice and domain ex-
pert levels. In this work, we target authoring explanations at a
level between young child and first principles.

might need to be elaborated to include more knowledge to
make this inference, such as that thicker things tend to pro-
vide more protection. Here we identify four coarse levels of
increasing explanatory knowledge depth, shown in Table 1.

For training explainable inference systems, a high
level of explanatory depth is likely required. As such, in
this work we target authoring explanations between the lev-
els of young child and first principles. Pragmatically, in
spite of their ultimate utility for training inference systems,
building explanations too close to first principles becomes
laborious and challenging for annotators given the level of
abstraction and the large amount of implicit world knowl-
edge that must be enumerated, and we leave developing
protocols and methods for building such detailed explana-
tions for future work.

4. Explanation Authoring
We describe our representations, tools, and annotation pro-
cess below.

4.1. Questions
We author explanation graphs for a corpus of 2,201 ele-
mentary science questions (3rd through 5th grade) from
the AI2 Science Questions V2 corpus, consisting of both
standardized exam questions from 12 US states, as well
as the separate AI2 Science Questions Mercury dataset, a

set of questions licensed from a student assessment entity.
Each question is a 4-way multiple choice question, and only
those questions that do not involve diagram interpretation (a
separate spatial task) are included. Approximately 20% of
explanations required specialized domain knowledge (for
example, spatial or mathematical knowledge) that did not
easily lend itself to explanation using our formalism, re-
sulting in a corpus of 1,680 questions and explanations.

4.2. Tables and Table Rows
Explanations for a given question consist of a set of sen-
tences, each of which is on a single topic and centered
around a particular kind of relation, such as water is a kind
of liquid (a taxonomic relation), or melting means changing
from a solid to a liquid through the addition of heat energy
(a change relation).

Each explanation sentence is represented as a single
row from a semi-structured table defined around a particu-
lar relation. Our tablestore includes 62 such tables, each
centered around a particular relation such as taxonomy,
meronymy, causality, changes, actions, requirements, or af-
fordances, and a number of tables specified around specific
properties, such as average lifespans of living things, the
magnetic properties of materials, or the nominal durations
of certain processes (like the Earth orbiting the Sun). The
initial selection of table relations was drawn from a list
of 21 common relations required for science explanations
identified by Jansen et al. (2016) on a smaller corpus, and
expanded as new knowledge types were identified. Subsets
of example tables are included in Figure 2. Each explana-
tion in this corpus contains an average of 6.3 rows.

Fine-grained column structure: In tabular representa-
tions, columns represent specific roles or arguments to a
specific relation (such as X is when Y changes from A to B
using mechanism C). In our tablestore we attempt to min-
imize the amount of information per cell, instead favour-
ing tables with many columns that explicitly identify com-
mon roles, conditions, or other relations. This finer-grained
structure eases the annotator’s cognitive load when author-
ing new rows, while also better compartmentalizing the re-
lational knowledge in each row for inference algorithms.
The tables in our tablestore contain between 2 and 16 con-
tent columns, as compared to 2 to 5 columns for the Ariso
tablestore (Khashabi et al., 2016).

Natural language sentences: QA models use a variety of
different representations for inference, from semantic roles
and syntactic dependencies to discourse and embeddings.
Following Khashabi et al. (2016), we make use of a specific
form of table representation that includes “filler” columns
that allow each row to be directly read off as a stand-alone
natural language sentence, and serve as input to any model.
Examples of these filler columns can be seen in Figure 2.

4.3. Explanation Graphs and Sentence Roles
Explanations for a given question here take the form of a
list of sentences, where each sentence is a reference to a
specific table row in the table store. To increase their util-
ity for knowledge and inference analyses, we require that



Question:    Which event involves a     consumer    and a    producer    in a    food chain    ?

leaf green plant

roots plant

pedals bicycle

cell wall plant cell

deer animal

green color

shelter protective covering

electromagnet

food chain animal consumer eats producers/other animals food
food chain green plant producer creates food consumers

food chain bacteria decomposer recycles nutrients
tree reproduction squirrel seed disperser relocates seeds

In the process, an has the role of which for
In the process, a has the role of which for

In the process, a has the role of which
In the process, a has the role of which

A is a part of a

are a part of a

are a part of a

A is a part of a

A is a kind of
is a kind of
is a kind of

An is a kind of magnetelectric

PROCESS NAME ACTOR ROLE ACTION PATIENT PURPOSE

PART WHOLEHYPONYM HYPERNYMSCOPE

[ A ] a cat eats a mouse [ *B ] a    deer    eats   a    leaf [ C ] a hawk eats a mouse [ D ] a snake eats a ratAnswer Candidates:

Process Roles Table

Taxonomy Table PartOf Table

Figure 2: Examples of tables and table rows from the tablestore, grounded in an example question and explanation. Table columns
define the primary roles or arguments for a given relation (e.g. process name, actor, role, etc). Unlabeled “filler” columns allow each row
to be used as a stand-alone natural language sentence. Note that for clarity only 4 example rows per table are shown.3

Question Which occurs as the kinetic energy of water
molecules increases?

Answer [*D] liquid water becomes water vapor
Central role

As a molecule’s kinetic energy increases, temperature will
increase.

Boiling means changing from a liquid into a gas by adding
heat energy.

Grounding role
Water is a kind of liquid.
Water is in the gas state, called water vapor, for
temperatures greater than 100 degrees celsius.

Background role
Matter is made of molecules.

Lexical glue role
To add means to increase.
Temperature is a measure of heat energy.

Table 2: Examples of the four coarse classes of explanation sen-
tence roles, central, grounding, background, and lexical glue.

each sentence in an explanation be explicitly lexically con-
nected (i.e. share words) with either the question, answer,
or other sentences in the explanation. We call this lexically-
connected set of sentences an explanation graph.

In our preliminary analysis, we observed that the sen-
tences in our explanations can take on very different roles,
and we hypothesize that differentiating these roles is likely
important for inference algorithms. We identified four
coarse roles, listed in Table 2, and described below:

• Central: The central concept(s) that a question is test-
ing, such as changes of state or the coupled relation-
ship between kinetic energy and temperature.

• Grounding: Sentences linking generic or abstract
terms in a central sentence with specific instances of
those terms in the question or answer. For example, for
questions about changes of state, grounding sentences
might identify specific instances of liquids (such as
water) or gasses (such as water vapor).

• Background: Extra information elaborating on the
topic, but that (strictly speaking) isn’t required to ar-
rive at the correct inference.

• Lexical glue: Sentences that lexically link two con-
cepts, such as “to add means to increase”, or “heating
means adding heat”. This is an artificial category in
our corpus, brought about by the need for explanation
graphs to be explicitly lexically linked.

For each sentence in each authored explanation, we provide
annotation indicating which of these four roles the sentence
serves in that explanation.

4.4. Annotation Tool
To facilitate explanation authoring, we developed and iter-
ated the web-based collaborative authoring tool shown in
Figure 3. The tool displays a given question to the expla-
nation author, and allows the author to progressively build
an explanation graph for that question by querying the ta-
blestore for relevant rows based on keyword searches, as
well as past explanations that are likely to contain similar
content or structure (increasing consistency across expla-
nations, while reducing annotation time). A graphical visu-
alization of the explanation graph helps the author quickly
assess gaps in the explanation content to address by high-
lighting lexical overlap between sentences with coloured
edges and labels. The tablestore takes the form of a shared
Google Sheet4 that the annotators populate, with each table
represented as a separate tab on the sheet.

4.5. Procedure and Explanation Review
For a given question, annotators identified the central con-
cept the question was testing, as well as the inference re-
quired to correctly answer the question, then began progres-
sively constructing the explanation graph. Sentences in the
graph were added by querying the tablestore based on key-
words, which retrieved both single sentences/table rows, as
well as entire explanations that had been previously anno-
tated. If any knowledge required to build an explanation did

3Note that this figure also appears in an earlier workshop sub-
mission on identifying explanatory patterns (Jansen, 2017)

4http://sheets.google.com

http://sheets.google.com


Figure 3: The explanation authoring web tool. Interface
components include: (1) A list of user-settable flags to as-
sist in the annotation and quality review process; (2) Ques-
tion and answer candidates; (3) Query terms for search; (4)
Query results (tablestore); (5) Query results (complete ex-
planations); (6) Current explanation being assembled; (7)
Explanation graph visualization of lexical overlap within
the explanation.

not exist in the tablestore, this was added to an appropriate
table, then added to the explanation.

New tables were regularly added, most commonly
for property knowledge surrounding a particular topic (e.g.
whether a particular material is recyclable). Because ex-
planations are stored as lists of unique identifiers to table
rows, tables and table rows could regularly be refactored,
elaborated, or entirely reorganized without requiring exist-
ing explanations to be rewritten. We found this was critical
for consistency and ensuring good organization throughout
corpus construction.

One of the central difficulties with evaluating expla-
nation authoring is determining metrics for interannotator
agreement, as many correct explanations are possible for
a given question, and there are many different wordings
that an annotator might choose to express a given piece of
knowledge in the tablestore. Similarly, the borders between
different levels of explanatory depth are fuzzy, suggesting
that one annotator may express their explanation with more
or less specificity than another.

To address these difficulties we included two methods
to increase consistency. First, as a passive intervention dur-
ing the explanation generation process, annotators are pre-
sented with existing explanations that can be drawn from
to compose a new explanation, where these existing expla-
nations share many of the same query terms being used to
construct the new explanation. Second, as an active inter-
vention, each explanation goes through four review passes
to ensure consistency. The first two passes are completed

by the original annotator, before checking a flag on the an-
notation tool signifying that the question is ready for exter-
nal review. A second annotator then checks the question for
completeness and consistency with existing explanations,
and composes a list of suggested edits and revisions. The
fourth and final pass is completed by the original annota-
tor, who implements these suggested revisions. This review
process is expensive, taking approximately one third of the
total time required to annotate each question.

Each annotator required approximately 60 hours of
initial training for this explanation authoring task. We
found that most explanations could be constructed within 5-
10 minutes, with the review process taking approximately
5 more minutes per question.

5. Explanation Corpus Properties
Here we characterize three properties of the explanation
corpus as they relate to developing methods of explainable
inference: knowledge frequency, explanation overlap, and
tablestore growth.

5.1. Knowledge Use and Row Frequency
The tables most frequently used to author explanations are
shown in Table 3, broken down into three broad categories
identified by Jansen et al. (2016): retrieval types, inference-
supporting types, and complex inference types. Because the
design of this corpus is data driven – i.e., knowledge is gen-
erally added to a table because it is required in one or more
explanations5 – we can calculate how frequently the rows
in a given table are reused to obtain an approximate mea-
sure of the generality of that knowledge. On average, a
given table row is used in 2.9 different explanations, with
1,535 rows used more than once, and 531 rows used 5 or
more times. The most frequently reused row (”an animal
is a kind of organism”) is used in 89 different explanations.
Generic “change of state” knowledge (e.g. solids, liquids,
and gasses) is also frequently reused, with each row in the
StatesOfMatter table used in an average of 15.7 explana-
tions. Usage statistics for other common tables are also
provided in Table 3.

5.2. Explanation Overlap
One might hypothesize that questions that require similar
inferences to correctly answer may also contain some of
the same knowledge in their explanations, with the amount
of knowledge overlap dependent upon the similarity of
the questions. We plan to explore using this overlap as a
method of inference that can generate new explanations by
editing, merging, or expanding known explanations from
similar, known questions (see Jansen (2017) for an initial
study). For this to be possible, an explanation corpus must
reach a sufficient size that a large majority of questions have
substantial overlap in their explanations.

Figure 5 shows the proportion of questions in the cor-
pus that have 1 or more, 2 or more, 3 or more, etc., over-
lapping rows in their explanations with at least one other

5For compatibility, we do include several property tables from
the Aristo tablestore, though a large proportion of rows from these
tables are not actively used. Our tablestore includes 4,950 rows,
3,686 of which are actively used in at least one explanation.



Prevalence Rows in Avg. Row
Knowledge Type (% of expl.) Table Freq.
Retrieval Types
Taxonomic 78% 1,119 1.2
Synonymy 61% 639 1.6
PartOf 14% 148 1.6
Properties (Generic) 11% 173 1.1
MadeOf 7% 72 1.7
Contains 6% 75 1.4
Examples 5% 58 1.4
Measurements (P) 4% 23 3.0
Locations (P) 3% 47 1.1
InheritedTraits (P) 3% 22 2.3
StatesOfMatter (P) 3% 3 15.7
Conductivity (P) 3% 9 4.9
Resources (P) 3% 16 2.7

Inference Supporting Types
Actions 25% 259 1.6
UsedFor 19% 191 1.7
Requires 15% 121 2.1
SourceOf 14% 81 2.8
Affect 12% 77 2.6
Opposites 8% 35 3.8
FormedBy 4% 40 1.9
Affordances 4% 48 1.3

Complex Inference Types
If/Then 21% 229 1.6
Cause 17% 183 1.6
Changes (discrete) 14% 62 3.8
Transfer 9% 46 3.3
Changes (vector) 9% 62 2.4
CoupledRelationships 7% 126 0.9
ProcessRoles 3% 12 3.8

Table 3: The proportion of explanations that contain knowledge
from a given table, sorted by most frequent knowledge, and bro-
ken down by the knowledge type of a given table. Tables not used
in at least 3% of explanations are not shown. (P) indicates a given
table describes properties, e.g. whether a given material is con-
ductive. Average Row Frequency refers to the average number of
explanations a given row from that table is used in.

question in the corpus.6 Similarly, to ground this, Figure 4
shows a visualization of questions whose explanations have
2 or more overlapping rows. For a given level of overlap-
ping explanation sentences, Figure 5 shows that the propor-
tion of questions with that level of overlap increases loga-
rithmically with the number of questions.

This has two consequences. First, it allows us to es-
timate the size of corpus required to train hypothetical in-
ference methods for the science exam domain capable of
producing explanations. If a given inference method can
work successfully with only minimal overlap (for example,
1 shared table row), then a training corpus of 500 explana-
tions in this domain should be sufficient to answer 80% of

6Though not included for space, the number of questions with
N or more rows in common in their explanations increases lin-
early with the number of questions. For this corpus, for a given
question, on average there are 17 questions that have 1 or more
overlapping rows in their explanation, 9 questions with 2 or more
shared rows in their explanation, and 5 questions with 3 or more
shared rows in their explanation.

questions. If an inference method requires 2 shared rows,
the corpus requirements would increase to approximately
2,500 questions to answer 80% of questions. However, if an
inference method requires 3 or more rows, this likely would
not be possible without a corpus of at least 20,000 questions
and explanations – a substantial undertaking. Second, be-
cause this relationship is strongly logarithmic, if it transfers
to domains outside elementary science, it should be possi-
ble to estimate the corpus size requirements for those do-
mains after authoring explanations for only a few hundred
questions.

5.3. Explanation Tablestore Growth
Finally, we examine the growth of the tablestore as

it relates to the number of questions in the corpus. Fig-
ure 6 shows a monte-carlo simulation of the number of
unique tablestore rows required to author explanations for
specific corpus sizes. This relationship is strongly corre-
lated (R=0.99) with an exponential proportional decrease.7

For this elementary science corpus, this asymptotes at ap-
proximately 6,000 unique table rows, and 10,000 questions,
providing an estimate of the upper-bound of knowledge re-
quired in this domain, and the number of unique questions
that can be generated within the scope of the elementary
science curriculum.

The caveat to this estimate is that it estimates the
knowledge required for elementary science exams as they
currently exist, with the natural level of variation in-
troduced by the test designers. Questions are naturally
grounded in examples, such as “Which part of an oak tree is
responsible for undertaking photosynthesis?” (Answer: the
leaves). While the corpus often contains a number of varia-
tions of a given question that test the same curriculum topic
and have similar explanations, many more variations on
these questions are possible that ground the question in dif-
ferent examples, like orchids, peach trees, or other plants.
As such, while we believe that these estimates likely cover
the core knowledge of the domain, many times that knowl-
edge would be required to make the explanation tablestore
robust to small variations in the presentation of those exist-
ing exam questions, or to novel unseen questions.

6. Conclusion
We provide a corpus of explanation graphs for elemen-
tary science questions suitable for work in developing ex-
plainable methods of inference, and show that the knowl-
edge frequency, explanation overlap, and tablestore growth
properties of the corpus follow predictable relationships.
This work is open source, with the corpus and generation
tools available at http://www.cognitiveai.org/
explanationbank.
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7Here, this exponential proportional decrease takes the form of
R = 434− (−2.93/0.00054) · (1− e−0.00054·Q), where R is the
size of the tablestore in rows, to explainably answer Q questions.
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http://www.cognitiveai.org/explanationbank


Figure 4: Questions in this explanation corpus connected by explanation overlap. Here, nodes represent questions and their explanations,
and edges between nodes represent two questions having at least 2 or more (i.e. 2+) shared rows (i.e. sentences) in their explanations,
with at least one of these shared rows being labelled as having a CENTRAL role to the explanation. Topic clusters (labels) naturally
emerge for questions requiring similar methods of inference, based on the shared content of their explanations.

Figure 5: Monte-carlo simulation showing the proportion of
questions whose explanations overlap by 1 or more, 2 or more,
3 or more, ..., explanation sentences. The proportion increases
logarithmically with the number of questions in the corpus. Each
point represents the average of 100 simulations.

Figure 6: Monte-carlo simulation showing the number of unique
table rows required to explainably answer a given number of ques-
tions. The line of best fit (dashed) suggests that this is a propor-
tional decay relationship (R2 = 0.99), asymptoting at approxi-
mately 6,000 table rows and 10,000 questions. Each point repre-
sents the average of 10,000 simulations.
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