

Requirements for Supporting the Iterative Exploration of

Scientific Workflow Variants

Lucas A. M. C. Carvalho1, Bakinam T. Essawy2, Daniel Garijo3, Claudia Bauzer Medeiros1, Yolanda Gil3
1University of Campinas, Institute of Computing, Campinas, SP, Brazil

2University of Virginia, Department of Civil and Environmental Engineering, Charlottesville, VA, U.S.A
3University of Southern California, Information Sciences Institute, Marina del Rey, CA, U.S.A

lucas.carvalho@ic.unicamp.br, bte2rn@virginia.edu, dgarijo@isi.edu, cmbm@ic.unicamp.br, gil@isi.edu

ABSTRACT

Workflow systems support scientists in capturing computational

experiments and managing their execution. However, such

systems are not designed to help scientists create and track the

many related workflows that they build as variants, trying different

software implementations and distinct ways to process data and

deciding what to do next by looking at previous workflow

results. An initial workflow will be changed to create many new

variants thereof that differ from each other in one or more steps.

Our goal is to support scientists in the iterative design of

computational experiments by assisting them in the creation and

management of workflow variants. In this paper, we present

several use cases for creating workflow variants in hydrology, from

which we specify requirements for workflow variants. We also

discuss major research directions to address these requirements.

CCS CONCEPTS

• Information systems → Artificial intelligence; Knowledge

representation and reasoning

KEYWORDS

Scientific workflows, workflow variants, computational

experiments

1 INTRODUCTION

Scientific workflow systems play a major role in supporting

scientists to design, document and execute their computational

experiments, automatically tracking provenance during the

workflow execution [11; 1]. Scientists follow an iterative

exploratory cycle where they often create an initial workflow, and

then explore variations of it using different data, replacing some of

the software steps, or adding new steps. Sometimes workflows

have to be modified because of changes in data (e.g. when datasets

are updated with new formats) or software (e.g., software is no

longer available, a newer version is better).

In current workflow systems, scientists manage this exploratory

process manually. Updating a workflow is a complex and time-

consuming task that may involve several steps, and may require

tracking down information about different versions of the software

used in the workflow.

This paper presents use cases and their requirements to support

scientists in the process of exploring different variations of an

original workflow, and introduces research directions to address

these requirements. These scenarios are based on discussion with

domain scientists, particularly in hydrology and bioinformatics.

2 WORKFLOW VARIANTS

Computational workflows describe the computational steps and the

dataflow among them to perform complex multi-step analyses. The

steps are implemented by software components (or workflow

components) that process data. A software component has a well-

defined interface consisting of input and output files as well as

parameter constant values. The dataflow between components is

captured as connections among their respective interfaces. A

workflow component may be implemented by a scientist, for

example a routine to check for erroneous sensor readings. A

workflow component may also be implemented using third-party

software, for example invoking a linear regression function from a

machine learning software package. A workflow component can

be updated in two ways. In some cases, a new upgrade of the

component is created to override a previous one, for example in

cases where the underlying software was corrected to fix a bug. In

other cases, a new variant of the component is created with new

inputs or outputs or other modifications, where the previous

versions are still valid and available to the user to use in workflows.

Workflow executions are the result of running workflows and

provide provenance for the newly generated data products.

After running a certain workflow, a scientist may want to

explore a workflow variant that represents a variation of an existing

workflow that was run earlier where one or more steps are changed.

That step change may require changing other steps that may be

affected. In other cases, the scientist may create a new workflow

upgrade of a previously run workflow that simply replaces a

component by a new one with a bug fix. When a workflow is

upgraded, the scientist may need to redo previous runs.

Due to the exploratory nature of science, a scientist may start

with an initial workflow and iteratively create many workflow

variants. During this process, the scientist will want to consider

different designs of variants, compare any given variant with

previous ones, and synthesize the results of several variants with

comparable settings. This iterative process of creating and

managing workflow variants is currently not well supported. There

are several reasons why a scientist may create a workflow variant:
2017 Workshop on Capturing Scientific Knowledge (SciKnow), held in

conjunction with the ACM International Conference on Knowledge Capture (K-

CAP), December 4, 2017, Austin, TX.

SciKnow’2017 Austin, Texas USA Carvalho et al.

1. New versions of the software used in the workflow

components are released. These may add new

functionality that could be useful for the investigation.

These may also correct errors or fix bugs, and in that case

the scientist may be interested to check whether their

results done with the older version still hold.

2. New possible models or algorithms become available.

The scientist may discovery these through online search,

reading articles, or talking with colleagues. These open

new possibilities for exploring alternative designs of the

workflow.

3. New datasets become available to the scientist. In this

case, the scientist may want to change their workflow to

incorporate that new kind of data.

Sometimes the explorations are due to a combination of these.

For example, new software versions may fix errors and offer new

functionality that allows the scientist to use new kinds of data.

3 RELATED WORK

There have been several efforts to keep track and manage workflow

updates and versions. VisTrails [2] tracks the evolution of

workflows using a change-based provenance model that records

information about modifications to workflow components, inputs,

outputs and parameters. They compare results of workflow

executions using visualizations. However, this approach focuses on

capturing changes and comparing workflows, while we are

interested in supporting the process of designing, creating, and

managing workflow variants.

Koop et al. [8] focuses on the problem of supporting workflow

upgrades when the software that implements a component has a

new version by suggesting how the change-based provenance

actions might be reused to upgrade other similar workflows. The

focus is on the mechanics of the upgrades, while our interest is on

supporting the iterative exploration and design of new workflows.

Workflow variants are also explored in Experiment Lines [20].

Their focus is on the variation of models or algorithms and software

packages. In contrast, our focus is broader in that we support the

creation of workflow variants.

4 MOTIVATING SCENARIOS AND

REQUIREMENTS

This section describes several scenarios where scientists iteratively

create and explore workflow variants. The scenarios use examples

from hydrology. A hydrologist uses models, often developed by

others, to estimate how much water will flow in an area. We will

consider several hydrology models in these scenarios.

MODFLOW is the U.S. Geological Survey's three-dimensional

(3D) finite-difference groundwater model that has been developed

for several years and has many versions and variants. A major

version of the core implementation is MODFLOW-2005 [7] which

simulates confined, unconfined, or a combination of confined and

unconfined groundwater-flow problems. A major variant is

MODFLOW-NWT [9] which uses a Newton-Raphson formulation.

MODFLOW has many packages that run different types of

simulations depending on the input data selected, so it needs to be

configured to use the packages needed to process the desired data.

This is done using FloPy [12], a Python package to create, run, and

post-process MODFLOW-based models. We will also use MIKE-

SHE [6], another computational hydrology model that solves for

both saturated and unsaturated zones in groundwater.

Hydrology models need data about the area for the simulation.

For example, MODFLOW requires elevation data, in the U.S.

typically coming from the National Elevation Dataset, recharge

data, typically from the National Recharge Dataset, and the data for

the area from the Watershed Boundary Dataset.

Figure 1 shows an initial workflow W0 that uses MODFLOW-

NWT. The input data includes the boundary for the area being

Figure 1. A workflow diagram representing the initial workflow

W0 used in our scenarios. In scenarios S1 and S2 new variants

W1 and W2 are created by updating the MODFLOW step to use

a different version that has the same interface, and therefore has

the same overall workflow diagram shown here.

Supporting the Iterative Exploration of Workflow Variants SciKnow’2017 Austin, Texas USA

studied, elevation data, and recharge (drainage) data. Area is an

input to the step Rasterize, which converts the data from a

geographic system format to raster (bitmap) and is implemented

using GDAL (Geospatial Data Abstraction Library). The step

Convert Area converts the raster data to text data (ASCII) using

NumPy, a library for array/matrix in Python. Then, the unit of

measurement for this data is converted from centimeters to meters

and the data format is converted from raster to text using the step

Convert Elevation, which is implemented using NumPy. Rasterize

Recharge, which is implemented using GDAL, generates the

recharge raster and then Convert Recharge, which is implemented

using NumPy, converts the unit of measurement of the data from

centimeters to meters and from meter/year to meter/day and from

raster format to ASCII. The simulation component is implemented

using MODFLOW-NWT Version 1.0.2, and uses FloPy to

configure it with the appropriate packages.

4.1 Case I: Same Component Interface, Different

Software Version

In this case, a workflow component is replaced by another one that

uses a different version of software to implement it but the

component interface remains the same. We consider two main

scenarios for this case. One occurs when a new version of the

software used in a workflow component is released to fix errors or

bugs. The other one occurs when a new version is released to carry

out a different function.

The first scenario S1 starts with a scientist that runs workflow

W0 several times, changing the data sets used and comparing the

results to understand how changes in the inputs influence the

results. After several weeks, the scientist notices a new release of

MODFLOW, with modifications to enhance the model outputs. So

they create an upgrade of the MODFLOW component, which

results in the creation of workflow W1, an upgrade of W0, shown in

Figure 2. In this example, from version 1.0.2 to 1.0.3 of

MODFLOW-NWT a bug was fixed in the UZF1 package that was

causing UZF1 to incorrectly calculate unsaturated-zone

evapotranspiration, which results in a much smaller value [19]. The

earlier version 1.0.1 calculated this value properly, so the bug was

introduced in version 1.0.2 but fixed in 1.0.3. In some cases,

scientists may downgrade to an earlier version because it has a

desired feature or it does not produce a wrong value introduced by

a bug in later versions but not fixed yet. The scientist may need to

discard all previous executions of W0 because the results were

incorrect due to bugs, and run them using W1 instead.

The second scenario S2 occurs when the software in a

component is modified to carry out a different function. In this

case, from version 1.0.2 to 1.0.3 of MODFLOW-NWT there is a

major change to generate a more accurate calculation of

evapotranspiration. First, the header of the listing file that results

from running MODFLOW-NWT is changed from having a variable

"RMS" to "RMS1" and "RMS2," and from a variable "L2-NORM"

to "L2-NEW" and "L2-OLD". This change was done to improve

the calculation of the residual terms as the L2-NORM rather than

the root-mean-squared error (RMS error). This change does not

affect the format of the results, only their value to be more accurate.

Thus, the interface of the new component variant does not change,

and the newly created workflow variant W2 has the same structure

as W1 in Figure 2.

The scientist needs to be able to understand the changes to the

software in new versions in order to assess the differences between

versions and estimate the effort to make the changes in the

workflow. This may require a significant effort, as this information

may be scattered across release notes, documentation, papers, web

sites, and other sources. In some cases, the scientist may be

interested in skipping ahead several versions. For example, she

Figure 2. In scenario S1 a new upgrade W1 is created by

updating the MODFLOW component to use a different version

that has the same interface and fixes a bug. The changed

component is shown with a thicker outline. In scenario S2 a

new variant W2 is created with a similar diagram but using a

different MODFLOW component.

SciKnow’2017 Austin, Texas USA Carvalho et al.

may want to change from version 1.0.2 all the way to the newest

version that is 1.1.3. This is challenging since the scientist needs to

track and summarize all the differences between several

consecutive versions.

In addition, when changing a software version used to

implement a component, the scientist needs to check if the new

version is compatible with the software version of other

components of the same workflow. For example, a specific FloPy

version is compatible only with some MODFLOW-NWT versions.

Sometimes these incompatibilities can occur across different

workflow components, for example if two components make

different assumptions about the Newton-Raphson formulation.

This means that the scientist needs to track in detail all the software

dependencies and compatibilities across the software components

of a workflow.

Finally, the scientist may need to check that the new simulation

results do not require additional changes in the workflow steps that

use those results. In our case they were the output of the workflow,

but in other cases further adjustments may be required.

Scenarios 1 and 2 motivate the following requirements:

 R1 – Version descriptions need to capture useful

metadata of the software.

 R2 – Scientists need to understand differences in

metadata between different software versions,

particularly about their interfaces.

 R3 – Scientists need to be alerted about relevant updates

of software used in their workflows.

 R4 – Workflow descriptions need to capture the

software, software version, and functions used in the

implementation of workflow components.

 R5 – Scientists need to understand how new workflow

variants can be used to correct errors in prior results.

 R6 – Scientists should be able to easily replace a

component of a workflow with a new one when the

interfaces of the components are the same.

 R7 – Given a software package that can be used to create

many workflow components, scientists need to easily

figure out how to implement new variants of a workflow

component with newer versions of that package.

 R8 – Scientists should be able to easily create new

versions of workflow components and relate them to each

other.

 R9 – Scientists should be able to easily create new

workflow variants and relate them to each other.

 R10 – Scientists should be able to relate changes in

software to specific workflow results, so it is clear how

new software versions affect calculated variables to

produce wrong values.

 R11 – Version descriptions need to capture bug fixes and

known bugs and relate them to software features and

input and output file variables.

 R12 – Scientists need a summarization of changes

between a given software version and a newer version to

understand their differences without need to understand

the changes associated to each version in between those.

 R13 – Scientists need to understand any incompatibilities

between versions of different software packages and

libraries used to implement a workflow component.

 R14 – Scientists need to know whether a new workflow

version or a new workflow variant is valid.

4.2 Case II: Different Component Interface, Same

Software Version

In this case, a workflow variant is created by replacing a workflow

component by another one that uses the same software

implementation but invokes a different function and as a result has

a new component interface (i.e., adding, removing or replacing

inputs or outputs). This interface change may require changes in

other steps of the workflow (e.g., adding, replacing or removing

, whi

Figure 3. A workflow variant W3 derived from W2 is created

in Scenario S3 after adding well data, which requires adding the

necessary data conversion steps and also changing the

MODFLOW component to have an additional input for well

data. The new and modified components are shown with a

thicker outline.

Supporting the Iterative Exploration of Workflow Variants SciKnow’2017 Austin, Texas USA

data conversion or post-processing steps.) We consider two

scenarios for this case. One occurs when a component is changed

to use additional inputs or outputs provided by the software used to

implement it. Another occurs when a component is changed to

replace inputs or outputs or use them differently in the software

used to implement it. In both cases, the rest of the workflow may

be affected by the changes.

Scenario S3 starts with a scientist running workflow W2. The

scientist would like to add an input regarding water elevation

through wells, so she creates a new variant of the workflow

component by adapting the MODFLOW component used in W2 by

adding a new input for well data. The well data is already provided

as an ASCII file, so unlike the elevation and recharge data there is

no need to convert wells data to ASCII. The only data preparation

needed is converting the unit of measurement from feet to meters.

To perform this change, the scientist adds Well to the workflow

inputs, adds the step Convert Well for unit conversion. This results

in workflow variant W3, shown in Figure 3. The scientist created

one new component variant and created a variant of an existing

component.

In scenario S4, the scientist decides to include snowmelt in the

simulation. This can be done by using infiltration as an input

instead of recharge (since the infiltration package will also account

for recharge). Figure 4 shows the resulting workflow variant W4

where the recharge input of W3 is replaced with infiltration.

Additional changes include replacing the steps to prepare data for

simulation with those steps to clip and resample infiltration, and to

convert the unit of measurement in the input data from centimeter

per year to meters per day, reformatting it to ASCII format. In

addition, the MODFLOW step needs to be modified in two ways.

First, the recharge input needs to be replaced with infiltration input.

Second, the FloPy software configures MODFLOW to use the

infiltration packages. In total, the scientist created five new

components and created a variant of an existing component.

There are several important tasks that the scientist needs to

address in these two scenarios.

Before creating the data preparation components for W3 and W4

the scientist has to find whether components that already do those

conversions are available or not. Reusing components saves time,

but after spending many years running similar workflows with

similar data it may be hard to remember which components have

been created before. Furthermore, in addition to reusing

components it may be possible to reuse entire sub-workflows. In

our example, the sub-workflow to prepare infiltration data has five

steps that can be reused together.

Another important task is to compare the results of different

workflow variants. For example, a scientist would run W3 and W4

and compare the results to each other and to W2 to understand how

changes in the workflows affect the simulation results.

Scenarios 3 and 4 motivate these additional requirements:

 R15 – Scientists need to easily find software packages

and workflow components that are appropriate to process

a specific type of data input.

 R16 – Scientists need to easily find workflow

components for data conversion.

 R17 – Scientists need to be able to understand the

differences between two workflow variants.

4.3 Case III: Alternative Component, Different

Software

In this case, a workflow variant is created by replacing a workflow

component by a component that does an equivalent function but is

implemented using a different software. There are several reasons

to create workflow variants that use equivalent software, such as

testing different models or taking into account parameters that are

ignored by the current model used in a workflow. The new

component may have a very different interface from the previous

one, thus requiring a major update of the workflow to create,

, whi

Figure 4. A workflow variant W4 derived from W3 is created

in Scenario S4 after replacing the input for recharge data with

infiltration data, which requires adding the necessary data

conversion steps and also creating a new MODFLOW

component variant to make the well data compatible. The five

new components and the modified one are shown with a thicker

outline.

SciKnow’2017 Austin, Texas USA Carvalho et al.

replace, or remove several data preparation or post-processing

steps. Note that although the tasks to create the workflow variant

may be similar to those in scenarios 3 and 4, now there are

additional tasks in finding out information about the new software

to check its functionality and analyze how it fits into the workflow

and the overall exploration that the scientist is doing. We consider

two scenarios. One occurs when the scientist already knows which

alternative method to use. Another one occurs when the scientist

needs to find and compare the assumptions, functionalities and the

effort to change the workflow when considering more than one

method to decide which one to use.

Scenario S5 has a scientist who is concerned about

MODFLOW-NWT only solving for saturated zones, so some

parameters are simplified or even ignored. The scientist would like

to use a different method to solve for the unsaturated zones, and has

heard that the MIKE-SHE model does a similar simulation to

MODFLOW, but is a fully coupled and integrated surface water

and ground water model that considers parameters regarding

unsaturated zones. The inputs and outputs for MIKE-SHE are

different from MODFLOW. MIKE-SHE uses area data in the same

raw format that is provided by the data source, so it does not need

to be pre-processed. It also uses topography data and can ingest

formats very similar to the data source, so the data only needs to be

clipped. MIKE-SHE also requires several new input data, namely

rainfall, evaporation, and temperature, all in the format provided by

data sources so they only need to be clipped. MIKE-SHE also

generates several separate outputs, including files associated with

the simulation (SHERES), a binary output file containing all the

static information on the simulation (FRF), and other results stored

in a series of DFS0, DFS2 and DFS3 files. As for the MIKE-SHE

component, there is no need to use the FloPy software to implement

it. Figure 5 shows workflow variant W5 created from W4: the

scientist had to create three new data pre-processing components,

one new component for MIKE-SHE, and one new component to

combine the simulation results to obtain a format that is comparable

to W4 and to all the previous workflow variants. Many components

from W4 were discarded as they were no longer needed.

In scenario S6, the scientist decides to investigate other models,

since MIKE-SHE is a commercial, proprietary model. There are

many other hydrology models available, including PIHM [13],

TopoFlow [14], VIC [15], and dozens of others available in

repositories such as CSDMS [16]. The scientist starts to investigate

which models produce interesting simulation results, and considers

how much effort is required to locate the data required by each

model, to develop the data pre-processing components needed, and

to install and run each of these models. The scientist finds out that

PIHM provides Hydroterre [17], a comprehensive data repository

that already provides data in the required format, and a PIHM-GIS

software to visualize simulation results [18]. The scientist also

finds that PIHM requires a solver in order to run, so the simulation

component needs to include the solver software in addition to

PIHM. The scientist develops a workflow variant W6 that includes

new components implemented using PIHM, Hydroterre, and

PIHM-GIS.

It is important to highlight several important tasks done by the

scientist in these scenarios. In both scenarios, but particularly in

scenario S6, the scientist needs to compare how two models are

similar and how they differ in terms of the input data that they use

and the output data that they generate. The documentation of

models always includes details of the input and output requirements

in terms of files and formats. The scientist will want to understand

conceptually how the models work in terms of the physical

variables used or generated in the model. That is, understanding

the inputs and outputs at the file and format level is important, but

understanding how model variables map to each of the files is also

necessary. This information is usually not included in the software

documentation, but in the publications associated with the model.

The scientist will need to consult a variety of sources in order to

understand how different models compare [10].

Another important task is to understand the assumptions made

by the different models. For example, in hydrology some models

may assume the Navier-Stokes equations for fluid motion, while

others do not. These assumptions are often not captured in the

descriptions of workflow components, which focus on the models

as software artifacts rather than research artifacts.

In addition, after creating and running the new workflow

variants W5 and W6, the scientist will want to compare their results

to the results obtained with previous workflows W4, W3, and earlier

ones. This requires that the scientist understands how the model

results are related to one another, which requires understanding

what modeling variables are generated and included in the

simulation outputs.

 Scenarios S5 and S6 motivate the following additional

requirements:

 R18 – Version descriptions need to capture assumptions

used in software.

 R19 – Workflow components, inputs, outputs or parameters

in new workflow variants that are no longer needed need to

be removed.

Figure 5. Workflow variant W5 using the MIKE-SHE

hydrological model. The area data can be used raw, and the

component to clip elevation data can be reused from workflow

W4. The five new components and the modified one are shown

with a thicker outline. Several components from W4 were

removed as they were no longer needed.

Table 1. Summary of requirements from cases.

Category Requirement Cases

Workflow

component

metadata

R1 – Version descriptions need to capture useful metadata of the software. C1, C2, C3

R2 – Scientists need to understand differences in metadata between different software versions, particularly

about their interfaces.

C1, C3

R3 – Scientists need to be alerted about relevant updates of software used in their workflows. C1

R4 – Workflow descriptions need to capture the software, software version, and functions used in the

implementation of workflow components.

C1, C2, C3

R8 – Scientists should be able to easily create new variants of workflow components and relate them to

each other.

C1, C2, C3

R9 – Scientists should be able to easily create new workflow variants and relate them to each other. C1, C2, C3

R10 – Scientists should be able to relate changes in software to specific workflow results, so it is clear how

new software versions affect calculated variables to produce wrong values.

C1

R11 – Version descriptions need to capture bug fixes and known bugs and relate them to software features

and input and output file variables.

C1

R12 – Scientists need a summarization of changes between a given software version and a newer version

to understand their differences without need to understand the changes associated to each version in

between those.

C1

R13 – Scientists need to understand any incompatibilities between versions of different software packages

and libraries used to implement a workflow component.

C1, C2, C3

R18 – Version descriptions need to capture assumptions used in software. C1, C2, C3

Workflow

updates

R6 – Scientists should be able to easily replace a component of the workflow with a new one when the

interfaces of the components are the same.

C1

R7 – Given a software package that can be used to create many workflow components, scientists need to

easily figure out how to implement new variants of a workflow component with newer versions of that

package.

C1

R14 – Scientists need to know whether a new workflow version or a new workflow variant is valid. C2, C3

R15 – Scientists need to easily find software packages and workflow components that are appropriate to

process a specific type of data input.

C1, C2, C3

R16 – Scientists need to easily find workflow components for data conversion. C2, C3

R19 – Workflow components, inputs, outputs or parameters in new workflow variants that are no longer

needed need to be removed.

C3

R20 – Scientists need to assess and compare the effort in creating new workflow variants that represent a

significant departure from previous ones.

C3

R21 – Scientists need to find and compare equivalent computational models, including their inputs,

outputs, model variables, data formats, and assumptions

C3

Workflow

Comparisons

R5 – Scientists need to understand how new workflow variants can be used to correct errors in prior results. C1, C2, C3

R17 – Scientists need to be able to understand the differences between two workflow variants. C1, C2, C3

 R20 – Scientists need to assess and compare the effort in

creating new workflow variants that represent a significant

departure from previous ones.

 R21 – Scientists need to find and compare equivalent

computational models, including their inputs, outputs, model

variables, data formats, and assumptions.

4.4 Requirements summary

The requirements of the previous scenarios can be grouped into

three main categories:

 Workflow component metadata, which tackles the

representation and metadata of workflow components

regarding their interface, functionalities and assumptions,

and implementation using software packages and libraries.

This metadata would also represent the characteristics of the

different versions of the software and the different versions

and variations of a given workflow component.

 Workflow updates, which address the creation of new

workflow variants by replacing, adding, or removing

workflow components, the propagation of the effects of

those changes throughout the structure of the workflow, and

the validation of the new workflow variants.

 Workflow comparisons, which address the comparison

between different software versions, software packages,

workflow variants and workflow runs.

Table 1 summarizes the requirements introduced in this section,

pointing out the broad categories they belong to and the cases where

they occur. Although we adopt the hydrology domain in our

scenarios to illustrate the requirements, our requirements are

domain-independent. Workflows in any domain have pre-

SciKnow’2017 Austin, Texas USA Carvalho et al.

processing steps, post-processing steps, and major analytic steps

[3]. In the case of hydrology, the analytic steps are done using

different hydrology models. Other sciences use algorithms rather

than models. For example, different clustering algorithms or

sequence alignment algorithms would be used in genomics. The

requirements outlined here are generally applicable to other

domains.

5 DISCUSSION AND FUTURE RESEARCH

Given the state of the art and the requirements from the scenarios,

we outline possible research directions for future work:

1. Describing workflow components and their underlying

software. This includes the creation and adaptation of existing

ontologies to capture information about software versions and

variants, including software interfaces and features. OntoSoft

[5] is an ontology that might be extended to capture relevant

information about software versions and variants. It is also

important to integrate these ontologies with workflow systems

to describe workflow components. Another area of work is to

use them to support the creation of workflow variants.

2. Managing and tracking workflow variants and their

differences. This includes how to compare workflow

components and workflow variants regarding their interfaces

and functions, and present these results in a useful way for

scientists to understand their differences and the implications

on experiment results. A possible approach is using multi-

media narratives that combine text, graphics, and

visualizations to explain the similarities and differences

between software versions, software variants, workflow

versions, or functions/methods. More importantly, these

narratives should be easily customized to the reader’s level of

expertise and interest. As a starting point our approach may be

based in an approach for data narrative generation [4]. Another

research area is to manage histories of creation and evolution

of workflow variants, and doing so across many users that may

benefit from reusing segments or traversals across users.

3. Designing an interactive framework to support scientists in

the exploration and experimentation process through

workflow variants. This includes how to leverage workflow

reuse and composition to support the creation of workflow

variants. For example, given a new component that needs to

replace an existing one in a workflow, suggest what other

components may need to be added or removed from the

workflow. Other research would involve mechanisms to

identify critical and non-critical components in workflows.

The critical and non-critical components could be associated

to abstractions defined as motifs [3].

6 Conclusions

This paper discusses the need to support scientists in exploring

different experiment designs over time. We presented several

scenarios where an initial workflow is modified to create workflow

variants by replacing, adding or removing workflow steps. We

describe the requirements of these scenarios, and grouped them into

three categories: workflow component metadata, workflow

updates, and workflow comparisons. We also discussed major

research directions to address those requirements, including

improved frameworks for describing workflow components and the

associated software, for managing and tracking workflow variants,

and supporting scientists in the iterative exploration and

experimentation process through workflow variants.

Acknowledgments. This work was supported in part by a grant from the

US National Science Foundation under award ICER-1440323 and ICER-

1632211 (EarthCube RCN IS-GEO), and in part by the Sao Paulo Research

Foundation (FAPESP) under grants 2017/03570-3, 2014/23861-4 and

2013/08293-7.

REFERENCES
 [1] Altintas, I., Barney, O., and Jaeger-Frank, E. (2006). Provenance collection

support in the Kepler scientific workflow system. International Provenance and

Annotation Workshop (IPAW), pages 118–132. Springer.

 [2] Freire, J., Silva, C. T., Callahan, S. P., Santos, E., Scheidegger, C. E., and Vo, H.

T. (2006). Managing rapidly-evolving scientific workflows. In Provenance and

Annotation of Data, pages 10–18. Springer.

 [3] Garijo, D., Alper, P., Belhajjame, K., Corcho, O., Gil, Y., & Goble, C. (2014).

Common motifs in scientific workflows: An empirical analysis. Future

Generation Computer Systems, 36, 338-351.

 [4] Gil, Y. and Garijo, D. (2017). Towards Automating Data Narratives. In

Proceedings of the Twenty-Second ACM International Conference on

Intelligent User Interfaces (IUI-17), Limassol, Cyprus.

 [5] Gil, Y., Ratnakar, V., & Garijo, D. (2015). OntoSoft: Capturing scientific software

metadata. Proceedings of the 8th International Conference on Knowledge

Capture (K-CAP), 2015.

 [6] Graham, D. N., & Butts, M. B. (2005). Flexible, integrated watershed modelling

with MIKE-SHE. Watershed models, 849336090, 245-272.

 [7] Harbaugh, A. W. MODFLOW-2005, the US Geological Survey modular ground-

water model: the ground-water flow process. Reston: US Department of the

Interior, US Geological Survey, 2005.

 [8] Koop, D., Scheidegger, C. E., Freire, J., & Silva, C. T. (2011). The Provenance of

Workflow Upgrades. Third International Provenance and Annotation Workshop

(IPAW),Vol. 6378. Springer.

 [9] Niswonger, R.G., Panday, Sorab, and Ibaraki, Motomu, 2011, MODFLOW-NWT,

A Newton formulation for MODFLOW-2005: U.S. Geological Survey

Techniques and Methods 6-A37, 44 p.

[10] Essawy, B. T.; Goodall, J. L.; Xu, H.; and Gil, Y. Evaluation of the OntoSoft

Ontology for Describing Legacy Hydrologic Modeling Software.

Environmental Modelling & Software, 92. 2017.

[11] Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S.,

Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame,

K., Bacall, F., Hardisty, A., Nieva de la Hidalga, A., Balcazar Vargas, M. P.,

Sufi, S., and Goble, C. (2013). The Taverna workflow suite: designing and

executing workflows of web services on the desktop, web or in the cloud.

Nucleic Acids Research, 41(W1). W557–W561.

 [12] Bakker, M., Post, V., Langevin, C.D., Hughes, J.D., White, J.T., Starn, J.J., and

Fienen, M.N., 2016, FloPy v3.2.6: U.S. Geological Survey Software Release,

19 March 2017, http://dx.doi.org/10.5066/F7BK19FH.

 [13] Qu, Y. and C. J. Duffy. "A semidiscrete finite volume formulation for

multiprocess watershed simulation." Water Resources Research 43(8), 2007.

 [14] Peckham, S. D. Geomorphometry and spatial hydrologic modelling. In

Geomorphometry: Concepts, Software, Applications, Developments in Soil

Science, vol. 33, edited by S. D. Peckham, pp. 579–602, Elsevier.

 [15] Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A Simple

Hydrologically-Based Model of Land Surface Water and Energy Fluxes for

GSMs, J. Geophys. Res., 99(D7), 14,415-14,428.

 [16] Community Surface Dynamics Modeling System (CSDMS) Model Repository.

Available from http://csdms.colorado.edu/wiki/Model_download_portal.

 [17] HydroTerre Data Services. Available from http://www.hydroterre.psu.edu.

 [18] The Pennsylvania Integrated Hydrology Model GIS Interface (PIHMgis),

http://www.pihm.psu.edu/pihmgis_home.html

 [19] USGS. MODFLOW-NWT Release Notes. https://water.usgs.gov/ogw/modflow-

nwt/Release.txt

[20] Marinho, A., de Oliveira, D., Ogasawara, E., Silva, V., Ocaña, K., Murta, L.,

Braganholo, V. and Mattoso, M., 2017. Deriving scientific workflows from

algebraic experiment lines: A practical approach. Future Generation Computer

Systems, 68, pp.111-127.

http://dx.doi.org/10.5066/F7BK19FH
http://csdms.colorado.edu/wiki/Model_download_portal
http://www.hydroterre.psu.edu/
http://www.pihm.psu.edu/pihmgis_home.html
https://water.usgs.gov/ogw/modflow-nwt/Release.txt
https://water.usgs.gov/ogw/modflow-nwt/Release.txt

