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Abstract
Automated planning deals with reasoning pro-
cesses where a set of goals must be achieved from
an initial state using some actions. Most work on
planning assumes goals are given. However, in
some domains, we could augment the autonomy of
reasoning agents by letting them generate their own
goals. In those cases, most previous approaches
have pre-programmed a set of rules or equivalent
goal triggering mechanisms to generate goals un-
der some pre-defined conditions on the state. In-
stead, we propose in this paper to learn when goals
will appear in the next k time steps in order to start
the planning process sooner and improve the sys-
tem behavior. We have applied our approach to a
traffic control planning system. Experimental re-
sults show how learning goals can anticipate cor-
rectly the appearance of congestions, and correctly
solve them. The planning system that uses those
learned models of goal generation outperforms a
planning system that recently won a competition on
autonomous behavior.

1 Introduction
Automated Planning (AP) is the AI discipline that generates
plans to achieve goals from initial states. A planner receives
as input a set of actions (that indicate how to modify the cur-
rent state), a set of goals to achieve, and an initial state. Many
and varied are the techniques explored to this purpose [Ghal-
lab et al., 2004]. In relation to goals, a common assumption is
that goals are given as input to the planning system, and there
are very few works that focus on reasoning about goals.

Recently, a renewed interest in the study of autonomous
agents has emerged in which goals change dynamically
and reasoning about goals becomes essential [Vattam et al.,
2013]. Vattam et al. propose a Goal Reasoning Analysis
Framework that identifies three minimum requirements for
goal reasoning: goal representation, goal formulation and
goal management. Goal representation concerns attributes
and characterizations necessary for defining goals and their
dynamic properties, such as urgency, utility or cost. Goal for-
mulation provides mechanisms that enable the agents to gen-
erate new goals by themselves. And goal management com-

bines the self-generated goals with possible external ones
and, depending on the goal characteristics, choose the next
goals to address.

In this paper, we focus on domains where the agent is in-
terested in anticipating when new goals should be generated.
That could allow the agent to take into account those upcom-
ing goals when reasoning, as was previously done in [Burns
et al., 2012]. The task of anticipating when goals will be
generated is a difficult one, since there are all kinds of fea-
tures that influence their appearance. They range from exter-
nal features to the agent (as human intentions, or particular
configurations of the current state) to internal ones (agent
motivations). Here, we propose to learn under which con-
ditions new goals will be generated in the near future. We
regard it as goal formulation because the agent is able to
generate the next goals based on the current state. We ap-
ply the learning system to a particular domain, traffic con-
trol. It has recently been shown that AP can be successfully
used to improve the behavior of city traffic [Gulic̀ et al., 2015;
Vallati et al., 2016].

The paper is organized as follows: the next section formally
defines AP tasks; the third section details the traffic-control
domain; the fourth section describes an architecture that inte-
grates goal reasoning with AP; the fifth section describes the
learning system; the sixth section presents the experimental
results; and the last section draws conclusions and outlines
future work.

2 Planning Tasks
A single-agent STRIPS planning task can be formally defined
as a tuple Π = {F,A, I,G}, where F is a set of propositions,
A is a set of instantiated actions, I ⊆ F is an initial state,
and G ⊆ F is a set of goals. Each action a ∈ A is described
by a set of preconditions (pre(a)), that represent literals that
must be true in a state to execute the action and a set of effects
(eff(a)), literals that are expected to be added (add(a) effects)
or removed (del(a) effects) from the state after execution of
the action. The definition of each action might also include a
cost c(a) (the default cost is one). The application of an action
a in a state s is defined by a function γ, such that γ(s, a) =
(s \ del(a)) ∪ add(a) if pre(a)⊆ s and s otherwise (it cannot
be applied). The planning task should generate as output a
sequence of actions, called a plan, π = (a1, . . . , an) such
that if applied in order from the initial state I would result in a



state sn, where goals are true,G ⊆ sn. Plan cost is commonly
defined as: C(π) =

∑
ai∈π c(ai).

In order to represent planning tasks compactly, the auto-
mated planning community uses the standard language PDDL
(Planning Domain Description Language) [Fox and Long,
2003]. A planning task Π is automatically generated from the
PDDL description of a domain D and a problem P . The do-
main defines the actions that agents can perform. The prob-
lem describes the specific task to be solved at each reasoning
step; i.e., the state objects involved, the initial state and the
set of goals to achieve.

This planning model assumes the world is deterministic
and the agent has full observability, among other assump-
tions. In most real-world environments, this is not the case.
Actions have stochastic outcomes, and agents have partial ob-
servability. There have mainly been two ways to handle un-
certainty. Either uncertainty is represented explicitly in the
planning model and planners reason with those stochastic
models [Bonet and Geffner, 2005], or planners reason with
deterministic world models and when execution of some ac-
tions fails, the agent replans [Yoon et al., 2007]. In this paper,
we will use the second alternative given that, from a practical
perspective, it is good enough for the domain we are focusing
on.

3 Real Problem Domain
Traffic management is becoming a real problem for most big
cities. An inefficient traffic control can lead to increase traf-
fic congestion that degrades quality metrics such as average
travel time or city pollution. Thus, there have been some
proposals that aim at first predicting traffic and then reduce
congestions by controlling traffic lights. This paper focuses
mostly on the first task, though we provide some results on
using the learned models.

In relation to the task of controlling traffic lights, there
have been some proposals, some already implemented. They
vary from early works on fixed-time static plans that could
even generate “green waves” (simple coordination of sev-
eral traffic lights in order to increase the traffic fluidity),
to more dynamic approaches. Recent traffic-responsive con-
trol techniques range from centralized approaches, such as
SCOOT [Bretherton et al., 1998] to distributed approaches as
UTOPIA [Donati et al., 1984]. Most approaches are based on
defining a control program using a mathematical framework.
A survey on the area can be found in [Hamilton et al., 2013].

We have shown elsewhere that automated planning could
be used to compute long-term control plans to improve the
traffic system behavior, obtaining a first place in an interna-
tional competition [Gulic̀ et al., 2015]. The main advantage
of using planning is that the domain and problem descrip-
tions are specified in a declarative language. Thus, even traffic
engineers can easily include new actions, sensor information
or metrics. In those models, the actions provide more time
to the green or red phases. States include information on the
city static structure, as street sections, crossings, traffic lights,
and their relations, as well as dynamic information, as density
of traffic or traffic light states. Goals consist of having a low
density in street sections with current high density.

Previous work generated those goals once the density was
high at a given time step. In this paper, we propose to predict
when the density is going to be high in the next steps in order
to anticipate problems and improve even further the system’s
behavior.

4 Architecture
A possible framework where AP can be integrated with the
dynamic management of new goals is a planning, execution
and monitoring architecture as the one shown in Figure 1.
It is an instantiation of the PELEA architecture [Guzmán et
al., 2012]. Initially, the Execution module captures the cur-
rent problem state, state. This module receives a planning do-
main and a problem. The initial goal set could be altered by
the Goal Manager module. The planning problem, new prob-
lem, includes the current state and the goals selected by the
goal manager. Then, the Monitoring module calls the Plan-
ning module to obtain a plan whose actions are sent to the Ex-
ecution module. Once the actions are executed, the Monitor-
ing module receives the necessary knowledge (current state,
problem and domain) from the Execution module to initialize
a new planning-execution-monitoring cycle. The monitoring
process can also detect unexpected changes in the state that
were previously unknown because of the partial observabil-
ity. This can result in the generation of new goals, as well.
This is the task of the Goal Formulation module. Then, the
Goal Manager module should combine these goals with pos-
sible external ones (as the ones given directly by users) to
generate the new problem. These two modules, Goal Formu-
lation and Goal Manager, subsume the funcionality of the
Goals&Metrics module in PELEA.1 The Monitoring module
provides the initial state, while goals come from the reasoning
process performed by the goal manager given the new formu-
lated goals and the (optional) external ones. The environment
can be substituted by a Simulator in some domains, as the
one we focus on this paper. A similar architecture, MADBOT,
differs in the goal formulation module. Their agents generate
goals in response to changes in their underlying drives or mo-
tivations [Coddington, 2006] instead of learning goal genera-
tion models. Other architectures that integrate planning, exe-
cution, and goal reasoning derive from the Goal-Driven Au-
tonomy (GDA) conceptual model [Molineaux et al., 2010],
inspired in turn by the INTRO architecture [Cox, 2007].

One of the greatest challenges in our architecture is the
Goal Formulation module. We have to define when, why and
how new goals should be generated [Vattam et al., 2013].
Instead of using a set of predefined rules that automatically
generate goals under certain conditions as in most previous
work, an alternative is to apply machine learning techniques.
The environment can generate examples from observing its
behavior given different types of scenarios. The (state,goal)
pairs observed during the plans’ execution can become the
training examples. Then, a learning algorithm can generate a
model, such that given any state returns new goals. We are
assuming here that the learning process is performed off-line,

1In our architecture, for coherence with respect to PELEA, this
module returns the new planning problem. Actually, it only changes
the goals of the problem.
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Figure 1: Planning architecture that includes goal formulation and goal learning capabilities.

prior to the actual use of the AP-based system, but it could
also be done on-line. The following section details one way
to implement such a learning system in our traffic-control do-
main.

5 Learning new goals
In this work we define the task of learning when goals will
arrive; that is, predicting the density level of the streets so
we can anticipate their congestion, generating the appropiate
goals for the planner. We formulate this problem as a time
series prediction one, using Relational Learning in this case.
Relational Learning suits AP, because it allows induction over
structured examples which can include first-order logical rep-
resentations, like the ones used in PDDL.

5.1 Representation
The representation is based on a subset of the predicates we
use in the planning traffic domain. In order to represent the
time steps, we modify some of these predicates, adding the
corresponding time steps in the name of the predicates. An
alternative representation would be to include time steps and
density levels as predicates’ arguments. However, complexity
of Relational Learning algorithms grows exponentially with
the number of arguments, so we tried to reduce the number
of arguments. The predicates used for the learning task are
shown in Table 1.

We distinguish two types of predicates: the static and the
dynamic ones. The static part of the city is represented by the
connection predicate, that indicates that a vehicle can move
from one street section to another. All the connection predi-
cates together represent the entire city network. The dynamic
part of the city is formed by the state of the traffic lights and
the density of the streets. The openX(tl,st) predicate repre-
sents a green traffic light tl located at street st at time step X .
In our approach, X can take the values from one to three (X

Predicate Type
density(st,l) Dynamic

connection(st,st) Static
openX(tl,st) Dynamic

densityLX(st) Dynamic

Table 1: Predicates used in the learning task.X represents the
time step. L represents the density level.

previous time steps, or time windows), but it is a parameter
that can be modified to extend or reduce the prediction hori-
zon. The densityLX(st) predicate indicates that a street st has a
density levelL at time stepX .L can take the values veryhigh,
high, moderate, low and verylow. The last predicate of each
example, density(st,l), represents the current density level l of
the street st. This will represent the class of each example.
Figure 2 shows an example of the information collected at a
given time stamp on a street section called A, whose current
density is high. We can see that it also had a high density dur-
ing the last two time steps. Also, another street, B, which is
connected to A had a low density in the previous time step
2. The example also has information on traffic lights’ states.
For instance, tl1was open in the previous time step. In sum-
mary, each example contains the static and dynamic parts of
the entire city network, and its class will be the density level
of the street we are trying to predict.

5.2 Algorithms
For the learning task we are using TILDE [Blockeel and
De Raedt, 1998], a system that learns relational decision
trees. It receives two files as input: the settings file, where the
user can specify the algorithm parameters, as well as defining
the predicates and classes; and the knowledge base file, where
both the training and test data are included. The output of the
learning algorithm is a file containing the resulting relational



density(A,high)
connection(A,B)
connection(B,C)
. . .
open3(tl1,A)
open2(tl2,D)
open1(tl1,A)
. . .
densityLow3(A)
densityHigh3(D)
densityLow2(B)
densityHigh2(A)
densityHigh1(A)
. . .

Figure 2: Example instance collected on a street section called
A.

tree and its translation into rules. It also contains the confu-
sion matrix for the training and test sets. An example output
of TILDE is shown in Figure 3, where A represents the exam-
ple id and the other letters the predicate arguments. A minus
symbol predating a variable means that it is new in the tree,
while when the variable appears alone, it has to be referenced
before. The classes to predict appear in the leaf nodes of the
tree between brackets. For example, in the model shown in
Figure 3, a high density would be predicted for a street B in
two cases: (1) if its density was low two time steps ago, but
there exists another street D connected to B whose density
was high three time steps ago and was not low in the last time
step; and (2) if its density was not low neither two time steps
ago nor one time step ago.

density(-A,-B,-C)
densityLow2(A,B)?
+-yes: densityHigh3(A,-D)?

+-yes: connection(A,B,D)?
+-yes: densityLow1(A,D)?

+-yes:[low]
+-no:[high]

+-no:[low]
+-no:[low]

+-no: densityLow1(A,B)?
+-yes: [low]
+-no: [high]

Figure 3: Example of TILDE output.

6 Experiments and results
On this work we use SUMO [Behrisch et al., 2011], an open
source traffic simulator developed by the German Aerospace
Center (DLR). It allows to import or generate not only road
networks, but also traffic demand. And it also allows users to
define traffic lights control programs. We want to test first,
if we are able to build a model to predict the appearance of

goals in advance, and then we try to apply the created model
to several urban traffic control scenarios.

6.1 Experimental setting
We are using a real city network in our experiments; a grid-
like section of Houston downtown, shown in Figure 4. It is
composed of 35 junctions, 140 traffic lights and 164 street
sections, which presents a high complexity in comparison
with many other papers in the field. We have selected five
particular street sections to learn from (A to E). We chose
these city points due to their different traffic characteristics.
C and D are street sections close to the Job Center. B is a
point between the Job Center and the main exit of the city. E
represents a street section far from the main traffic, while A
is a random point with no specific features.

Figure 4: Benchmark network in SUMO. Models are created
for points A, B, C, D and E. We assume that a Job Center is
located on D. F corresponds to the main exit point of the city.

We have also defined a traffic demand that tries to emulate
the real traffic flow of a city for an entire week. So, we define
lower vehicle traffic at night, more traffic at rush hours, and
higher traffic during week days than in the weekend. A Job
Center is included, where most of the cars want to go dur-
ing the work hours and also a main exit point, to go out of
the city at the end of the workday. The rest of the routes are
randomly generated. The vehicles may enter the city by any
street section and can finish their trip in an inner (parking,
mall, office...) or outer point of the network. A summary of
the full traffic demand specification is shown in Figure 5.

For the learning task, data is collected every five minutes,
which means 2013 instances for the whole week. Five min-
utes is what we call “time step”, the sample frequency. We
have chosen this sample frequency as we want to collect traf-
fic data from an entire week, and, at the same time, we want
to keep the number of instances low so that TILDE is able to
handle them. Each instance stores the static part of the city



 0

 1

 2

 3

 4

 5

 6

 7

00:00 05:00 10:00 15:00 20:00

M
il
e
s
 o

f 
v
e
h
ic

le
s

Hours

Week

Weekend

Figure 5: Summary of the generated traffic flows on weekdays
and weekends. The y axis represents the number of vehicles
that enter the network at each hour, in thousands, and the x
axis represents the hours.

previously described, as well as the dynamic component of
the state in the last three time steps. We learn one relational
model for each street section shown in Figure 4, and then we
test with data of the other street sections.

We have also varied the density levels, both in the classes
to predict and the predicates used on each instance. We have
used two models. One is based on five density levels: very-
high, high, moderate, low and verylow. A second version uses
only two: high and low. All the generated models are pruned,
limiting the creation of new branches. For the tree to expand
a new branch it is necessary to contain at least 10 instances.

6.2 Results on Learning Goals
In the first experiment, we generated five different models
using data from the five selected street sections and the five
density levels model. We tested these models in the five street
sections to check accuracy and generality of the learned mod-
els. The results for this first configuration are shown in Ta-
ble 2.

A B C D E
A 0.90 0.68 0.85 0.77 0.83
B 0.82 0.72 0.79 0.77 0.80
C 0.83 0.66 0.88 0.77 0.81
D 0.80 0.66 0.83 0.85 0.81
E 0.87 0.66 0.85 0.78 0.89

Table 2: Accuracy results using the model obtained with five
density levels. Each cell (i, j) represents the estimated accu-
racy of learning a model with the data extracted at point i in
the city and testing that model against the data collected at
point j.

We can observe that the accuracy is similar for all the street
sections except for B, whose behaviour seems to be more dif-
ficult to predict. A and E, the two points away from downtown
and the Job Center, present a similar behaviour, as expected.

In the second experiment, we used only two density lev-
els for the class, while we retain the five density levels on
the predicates. The results for this second configuration are
shown in Table 3.

A B C D E
A 0.99 0.84 0.98 0.90 0.95
B 0.94 0.91 0.92 0.87 0.91
C 0.95 0.83 0.98 0.91 0.93
D 0.96 0.83 0.96 0.92 0.94
E 0.95 0.85 0.97 0.91 0.95

Table 3: Accuracy results using two density levels for the
class and five on the predicates. Each cell (i, j) represents
the estimated accuracy of learning a model with the data ex-
tracted at point i in the city and testing that model against the
data collected at point j.

The improvement on accuracy is remarkable when we only
use two levels of density instead of five in the class. B is still
the most difficult point to forecast, followed by D.

In our final experiment, the problem is simplified with only
two density levels both for the class and the state predicates.
The results for this last configuration are shown in Table 4.

A B C D E
A 0.99 0.94 0.99 0.97 0.99
B 0.99 0.95 0.99 0.98 0.99
C 0.96 0.93 0.99 0.97 0.99
D 0.96 0.93 0.99 0.98 0.99
E 0.96 0.93 0.99 0.97 0.99

Table 4: Accuracy results using two density levels for the
class and the predicates. Each cell (i, j) represents the esti-
mated accuracy of learning a model with the data extracted
at point i in the city and testing that model against the data
collected at point j.

We can observe that as we decrease the number of density
levels, the complexity of the problem decreases too and the
prediction task becomes easier. With only two levels, predict-
ing the density of a street knowing the state of the city in the
most recent time steps can be done with a high accuracy, even
in street sections which have very different behavior. The final
model that will be used in our architecture corresponds with
the one generated with the data of point B, which on average
performs best. It is shown in Figure 3.

The final experiment focuses on understanding differences
in the learning task when we train and test on different days
and hours of the day. This data is collected from point B and
results of this experiment are shown in Tables 5 and 6. As
we can see, the week days have a similar behaviour and they
differ from the weekends, as expected. Also, days look alike
more than hours.

6.3 Case study
Finally, we want to test whether a traffic control system would
improve its performance if it had some predictive model of



Tuesday Friday Saturday
Tuesday 0.99 0.88 0.85
Friday 0.99 0.99 0.94

Saturday 0.92 0.83 0.98

Table 5: Accuracy results of training and testing on different
days.

8:00 20:00 2:00
8:00 0.83 0.75 0.74

20:00 0.66 0.91 0.63
2:00 0.71 0.69 0.96

Table 6: Accuracy results of training and testing on different
hours.

the traffic. We will use the same simulation scenarios as be-
fore. So, we use the learned model, predicting at every time
step the density at each street, using the previousX time steps
as input information. If it detects a high density at any subset
of street sections, it generates as goals to lower the density
of those street sections. These new goals, together with the
current state of the traffic, create a PDDL planning problem
which is given as input to the planner. Therefore, the system
is predicting the appearance of goals in the nextX time steps,
and the planning process can anticipate to the problems. We
will call this new approach Learning. We compare it with
a Static one, in which the traffic lights’ programs remain
constant. We also compare with the AP approach proposed
in [Gulic̀ et al., 2015], co-winner of ARTS-COST competi-
tion on Increasing the resilience of road traffic support sys-
tems by the use of autonomics2 that did not have any learning
component. We will call it Planning. This system is the
starting point of our approach, so we use the same planning
domain and planner, LAMA [Richter and Westphal, 2010].

In the Learning1 system, the goal prediction is done
with the five-minutes-step learned model, and it is triggered
(checks for new goals) every five minutes. The Learning2
system uses the same five-minutes-step model, but it is trig-
gered every fifty seconds (the sample frequency used by the
AP approach we compare against). Finally, the Learning3
system uses a learned model with examples obtained every
fifty-seconds, and the learned model triggered also every fifty
seconds. Given that TILDE cannot cope with the high num-
ber of examples generated during a week sampling every fifty
seconds, we randomly selected instances from the different
expected behaviours. That is, we randomly selected a subset
of instances (the same number as in the previous model) that
contains examples of all days and hours of the week from
point B, the same street section we used to build the previous
model.

The metrics we use to measure the performance of each
system are: the number of steps it takes all cars to reach their
destinations; the total amount of C02 emitted by the vehi-
cles; the average waiting time (AWT); the average travel time
(ATT); the number of cars on destination at the end (COD),
and, if it applies, the number of planner executions (PE).

2https://helios.hud.ac.uk/cost/comp2.php

For the first experiment, we created a fluent traffic scenario
by introducing 5300 cars in 3600 steps. The simulation fin-
ishes if all cars reach their destination, or after 5000 steps.
The results are shown in Table 7. We can see that there is no
substantial difference when the traffic is fluid among the dif-
ferent systems, but our learning approaches outperform the
other systems on most metrics. So, when the traffic is flu-
ent, one expects that even the Static control program (as
in most cities) will perform well. In this traffic situation, the
time spent in average per vehicle in a traffic light (AWT) is
approximately half of the total time spent in their complete
travel (ATT). Given the size of the example network, ATT is
around three minutes, while AWT is around a minute and a
half.

Steps C02 AWT ATT COD PE
Static 3969 1103 93 172 5300

Planning 4070 1117 95 175 5300 22
Learning1 3902 1103 92 172 5300 2
Learning2 3881 1090 88 167 5300 15
Learning3 3969 1094 90 168 5300 17

Table 7: Performance of the different control systems with a
fluent traffic situation. Steps, AWT and ATT are given in steps
(seconds), while C02 is in kg.

However, in the last experiment, we test the systems on a
very congested traffic scenario. It was created by introducing
6000 cars in one hour (3600 steps). The results are reported
in Table 8. The columns report the same metrics as the one
before.

Steps C02 AWT ATT COD PE
Static - 2553 582 638 3504

Planning - 2187 435 506 4339 48
Learning1 - 2658 609 668 3557 7
Learning2 4070 1265 121 204 6000 46
Learning3 4080 1253 117 200 6000 40

Table 8: Performance of the different control systems with
a very congested traffic situation. Steps, AWT and ATT are
given in steps (seconds), while C02 is in kg.

As we can see, even if the Planning approach outper-
forms the Static system, only our two last learning ap-
proaches can completely solve the traffic congestion. They
also improve very substantially with respect to all metrics
and all vehicles reach their destination. While, on average,
the vehicles spend much more time waiting than travelling in
this scenario (relation between ATT and AWT), our system
is able to reduce the waiting time to half of the travel time,
as in a fluent traffic situation. Thus, it is effectively convert-
ing a congested situation into a fluent traffic situation. The
reduction of the pollution achieved by learning is quite sub-
stantial too: half of the C02 levels of the other approaches. In
fact, they are close to those generated in a fluent traffic sce-
nario. Learning1 performs worse than Planning due to
its low number of calls to the planner. Since it only tries to
predict future goals every five minutes, and it is a very high

https://helios.hud.ac.uk/cost/comp2.php


traffic situation, when the streets are already congested, it can
be too late for the plans to solve the problem. The difference
between the other two learning models is minimum. There-
fore, we can conclude that when given a reasonably good
prediction model, reducing the checking-for-goals frequency
becomes more important than having the same time step for
both building the model and checking for goals.

One of the major drawbacks of the Planning system is
that it calls the planner in a reactive way when a car is stopped
for a long time (and then checks the planner actions every 50
steps). The problem of this triggering method is that though
SUMO provides this metric, there is no current sensor capa-
ble to provide that input in a real life scenario. Our learning
systems overcome this limitation, since they only work with
density levels, which are easier to provide by current sensor
systems.

7 Related work
Most works that apply learning in the context of goal reason-
ing have focused on the Goal-Driven Autonomy (GDA) con-
ceptual model and its instantiation in ARTUE [Molineaux et
al., 2010]. A GDA agent generates a plan to achieve a given
goal together with its expectations; i.e., the set of constraints
that are predicted to hold in the partial states generated when
executing the plan. The agent monitors the environment for
discrepancies between its expectations and its observations
during execution. If the expectation does not match the state,
the GDA agent formulates a new goal using rule-based prin-
ciples, which describe situations where specific goals should
be formulated and their relative importance. These rules are
hand-crafted by a domain expert, but they can be learned,
as well. Powell et al. extended ARTUE with the ability to
learn goal selection knowledge through interaction with an
expert [Powell et al., 2011]. They framed this as a case-based
supervised learning task that employs active learning. We also
apply supervised learning with a symbolic representation of
the learned knowledge. But our learning algorithm is TILDE,
a Relational Learning algorithm. Also, our learning algorithm
does not have human supervision. The learning concepts also
differ; we try to anticipate the generation of new goals based
on the current state, while previous works learn the rules for
generating goals when the current plan fails.

Jaidee summarized some work on creating GDA agents ca-
pable of automatically acquiring knowledge using Case-Base
Reasoning (CBR) and Reinforcement Learning (RL) meth-
ods [Jaidee, 2013]. In this case, the problem domains are
Real-Time Strategy (RTS) games, more specifically DOM
and Wargus. Weber et al. implemented a method that also
uses CBR and intent recognition in order to build GDA agents
that learn from demonstration [Weber et al., 2012]. They ap-
plied the approach to build an agent for the RTS game Star-
Craft. Finally, Molineaux and Aha employed a variant of
FOIL [Quinlan, 1990] to learn models of unknown exogenous
events in partially observable, deterministic environments
and show how they can be used by a GDA agent [Molin-
eaux and Aha, 2014]. They implement this learning method
in FOOLMETWICE, an extension of ARTUE. Again, our
work differs from those in the learning algorithm and the

learning task. Closer to our approach is the work presented
by [Maynord et al., 2013]. They use TILDE to learn a decision
tree for goal prediction in the blocksworld planning domain.
In this case, while they learn from world states in isolation,
we take into account the time context, as we formulate our
problem as a time series prediction one.

In the traffic domain, Relational Learning has been used for
other tasks, such as detecting incidents [Dzeroski et al., 1998;
Lu et al., 2012]. The task was to find rules that identify in-
cident or incident-free states from collected traffic data in
freeways. Instead, we find rules to anticipate high traffic
density in urban streets. Lippi et al., like us, addressed the
problem of traffic forecasting [Lippi et al., 2010]. However,
they proposed a Statistical Relational Learning approach us-
ing Markov logic networks instead of TILDE. They manually
coded the spatio-temporal dependencies using rules (first-
order logic formulae) and the learning algorithm induced the
probabilities of those rules. Instead, we learn the rules from
scratch.

8 Conclusions and Future work
In this paper we have presented an approach to learn how to
predict when new goals will appear. In a goal reasoning con-
text, it can be viewed as goal formulation, one of the current
open issues in the community. Using this learning component
a planning system can highly increase its autonomy by auto-
matically generating its own goals and planning to anticipate
their appearance. We have tested our model in a traffic control
domain showing that the ability to anticipate goals can lead
to better control performance.

In future work, we would like to integrate the ability to
learn how to anticipate goals with externally supplied goals
(e.g., by traffic controllers), reactively generated ones (e.g.,
reactively generating goals), or internally supplied ones (e.g.,
generated by internal motivations of the system), as well as
test the system in larger cities and time periods in order to
test its scalability. We would also like to apply the same
goal learning approach to other similar domains, as surveil-
lance (satellite), experimental science (rovers), logistics, or
transportation (e.g., taxis, packages) domains. We would also
like to compare our system with other state of the art meth-
ods on traffic control, such as model predictive control (e.g.,
SCOOT), or other AI-based approaches (e.g., reinforcement
learning).
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