
Quantifying Solutions in Answer Set Programming

Halit Erdogan HALIT@SABANCIUNIV.EDU

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, TURKEY

Abstract
Answer Set Programming (ASP) is a declarative
programming paradigm oriented towards solving
NP-hard problems. Due to the expressive rep-
resentation language and efficient solvers, ASP
can be useful for a wide-range of knowledge-
intensive applications from different fields. We
present novel methods to quantify answer sets in
ASP for extracting preferred solutions only. We
show the effectiveness of these methods on real
world applications.

1. Introduction
Answer Set Programming (ASP) (Lifschitz, 2008) is a form
of declarative programming oriented towards difficult (NP-
hard) search problems. A problem is represented as a
logic program whose answer sets correspond to the solu-
tions. The answer sets for the given formalism can be com-
puted by special systems called answer set solvers. Due
to the expressive representation language and continuous
improvements of efficiency of solvers, ASP can be use-
ful for a wide-range of knowledge-intensive applications
from different fields such as: developing a decision sup-
port system for a Space Shuttle (Nogueira et al., 2001);
phylogeny reconstruction (Brooks et al., 2007); multi-agent
planning (Son et al., 2009).

Finding a solution to the problem that we are interested in
is generally the main objective. But many problems have
numerous solutions, instead of a single solution. At that
case it might be desirable to compute a subset of preferred
solutions, instead of computing all the solutions. Consider,
for instance, a product configuration problem: Suppose you
want to buy a car. There are various constraints on what
type of car you want. A product advisor system might con-
sider your constraints and what is available for sale and
offer you a set of cars. But you might not have enough
time to consider all the cars that are offered by the sys-
tem. At that case, it might be desirable to quantify the
solutions (cars) offered by the system. For example, you
might like to see the similar cars similar to a car that you
selected. Or you might like see the cars ranked according to

a preference function (from cars to real numbers) that you
determined. Motivated by such an application we propose
novel methods to quantify solutions in answer set program-
ming. We developed a system called CLASP-NK which is
a modification of the existing ASP solver CLASP (Gebser
et al., 2007). CLASP-NK takes an ASP description of a
problem and a preference function on solutions (in C++);
and it outputs quantified solutions to the problem based on
the preference function. More details and results can be
found in (Eiter et al., 2009); since this paper is a summary
of (Eiter et al., 2009).

2. Answer Set Programming
The idea of answer set programming (ASP) (Lifschitz,
2008) is to represent a computational problem as a logic
program whose answer sets correspond to the solutions of
the problem and to find the answer sets for that program by
using an answer set solver.

Two kind of rules play the major role in ASP: those that
“generate” many answer sets corresponding to possible so-
lutions, and those that “test” the possible solutions and
eliminate the ones that does not correspond to a solution.

For example, recall that a clique in a graph is a set of pair-
wise adjacent vertices. Suppose that we are interested in
the cliques whose size is at least 10 then we can represent
the problem in ASP as follows (Lifschitz, 2008):

10 {select(X) : vertex(X)}.
:- select(X), select(Y), vertex(X),

vertex(Y), X!=Y, not edge(X,Y),
not edge(Y,X).

The first rule correspond to the “generate” part. It generates
the possible solutions that contains at least 10 vertices (se-
lect atoms correspond to the selected vertices). The second
rule is a constraint that checks whether the selected vertices
correspond to a clique. To use this program, we combine it
with a description of the graph, such as:

vertex(1..99). % 1,...,99 are vertices
edge(3,7). % 3 is adjacent to 7
. . .



When we run this ASP program in an ASP solver, if there
exists a clique of at least size 10 then the solver outputs
answer sets. Each answer set corresponds to a clique and
the select atoms in the answer set defines the vertices that
constitutes that clique.

3. Similar Solutions in ASP
Consider the clique example of the previous section and
suppose that the maximum clique size is three. Assume
that for each three consecutive vertices we have a clique:
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, ...}. In addition we have the
following two cliques: {{1, 2, 4}, {1, 2, 5}}. Now suppose
that we would like to find the three most similar cliques
in the graph (a set of three cliques where the number of
differentiating atoms (Hamming Distance) are minimum).
At that case three most similar cliques of the graph will be:
{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}} since they only differ with
one vertex.

In this example we quantify the solutions based on their
similarity to other solutions. And we accomplish that by
defining a distance measure for a set of solutions. We used
the simple Hamming Distance but more complex prob-
lems might require more complex distance measures. Mo-
tivated by such an example we defined the following deci-
sion problem:

n k-SIMILAR SOLUTIONS
Given an ASP program P that formulates a computa-
tional problem P , a distance measure ∆ that maps a
set of solutions for P to a nonnegative integer, and two
nonnegative integers n and k, decide whether a set S
of n solutions for P exists such that ∆(S) ≤ k.

In the next section we introduce methods to solve the prob-
lem with ASP.

4. Computing Similar Solutions in ASP
Offline Method We can compute a set of n k-similar so-
lutions to a given problem, by computing all solutions in
advance and then using some clustering methods to find
the similar solutions. The idea is to make clusters of n so-
lutions, measure the distance of the set of solutions in each
cluster, and pick the cluster whose distance is less than k.

Online Method 1 The idea of this method is to solve the
problem by describing it in ASP. This method reformulates
the given program P to compute n-distinct solutions, for-
mulates the distance function ∆ as an ASP programD, and
formulates constraints on the distance function as an ASP
program C, so that all n k-similar solutions can be extracted
from an answer set for the union of these ASP programs,
P ∪ D ∪ C.

Online Method 2 This is an approximate method to
solve the problem. In this method we do not modify the
given ASP program P , but formulate the distance ∆(S) of
a given set S of solutions as an ASP program D, and con-
straint on the distance function as an ASP program C, so
that a k-close solution can be extracted from an answer set
for P ∪D∪C. By iteratively computing a k-close solution,
we can compute a set of n k-similar solutions.

Online Method 3 This is also an approximate method
to solve the problem. This method does not modify the
given program, and does not formulate the distance func-
tion as an ASP program, but it modifies the ASP solver
CLASP (Gebser et al., 2007) to compute all n k-similar so-
lutions at once. As a result, we developed a system called
CLASP-NK which is capable of computing n k-similar so-
lutions. CLASP-NK takes the ASP program P and the C++
definition of ∆ as input and outputs n k-similar solutions.

CLASP performs a type of branch and bound algorithm. In
each step it decides an atom to be added to the answer set
(branch). And according to that atom it propagates other
atoms that shall be included in the answer set. Then it
checks whether there is a conflict by considering the rules
of the program. If there exists such a conflict CLASP learns
the conflict (to not to repeat it) and performs a backtracking
(bound).

CLASP-NK contains a slight modification on the bounding
procedure of CLASP. At each step —after CLASP decides
the atoms to include to the answer set— CLASP-NK per-
forms an extra check based on the input distance measure.
If the currently selected atoms (at the level we are in) vi-
olates the distance measure (in the context of similar solu-
tions it means that it is impossible to compute a solution
which is similar to the previously computed solutions if we
continue branching) then we set those atoms as conflict and
perform a backtracking. Therefore, CLASP-NK is forced to
compute a similar solution to the previously computed so-
lutions

5. Computing Similar Phylogenies
Phylogenetics studies the evolutionary relationships be-
tween taxonomic units (e.g., species) based on their shared
traits. These relations are represented as a tree whose
leaves represent the taxa, internal vertices represent their
ancestors, and edges represent the relationships between
them. Such a tree is called “phylogenetic tree” or “phy-
logeny”. Phylogeny reconstruction is an NP-hard prob-
lem and there exists ASP programs that can infer phyloge-
nies (Brooks et al., 2007). But in many cases the phylogeny
reconstruction programs output numerous phylogenies that
describe the historical evolution of the same species. At
those cases experts go over these phylogenies manually to



find the most plausible ones. Instead of computing all the
phylogenies, the experts want to compute a set of similar
phylogenies to perform better analysis. Therefore we de-
fined n k-similar phylogenies problem analogous to the n
k-similar solutions problem. We used the ASP program
of (Brooks et al., 2007) to compute a phylogeny (solution),
and we used a distance measure from the literature to com-
pute the distance between phylogenies. And we run some
experiments to test the methods described in the previous
section. The table below shows the performance of each
method from the point of view of computation time and
memory.

Problem Offline Online Online Online
Method Method 1 Method 2 Method 3

2 most 12.39 sec. 26.23 sec. 19.00 sec. 1.46 sec.
similar 32MB 430MB 410MB 12MB

k = 12 k = 12 k = 12 k = 12
3 most 11.59 sec. 60.20 sec. 43.56 sec. 1.56 sec.
similar 32MB 730MB 626MB 15MB

k = 15 k = 15 k = 15 k = 16
6 most 11.66sec. 327.28 sec. 178.96 sec. 1.96 sec.
similar 32MB 1.8GB 1.2GB 15MB

k = 25 k = 25 k = 29 k = 25

Let us first compare the online methods. In terms of
both computation time and memory size, Online Method 3
(CLASP-NK) performs the best, and Online Method 2 per-
forms better than Online Method 1. These results conforms
with our expectations: Online Method 1 requires an ASP
representation of computing n k-similar phylogenies, and
such a program may be too large for an answer set solver
to compute an answer set for. Online Method 2 relaxes
this requirement a little bit so that the answer set solver can
compute the solutions more efficiently: it requires an ASP
representation of phylogeny reconstruction, and an ASP
representation of the distance measure, and then computes
similar solutions one at a time. However, since the answer
set solver needs to compute the distances between every
two solutions, the computation time and the size of mem-
ory do not decrease much, compared to those for Online
Method 1. Online Method 3 deals with the time consum-
ing computation of distances between solutions, not at the
representation level but at the search level; so it does not
require an ASP representation of the distance function but
requires a modification of the solver.

The offline method is more efficient, in terms of both com-
putation time and memory, than Online Methods 1 and 2
since it does not compute phylogenies. On the other hand,
the offline method is less efficient, in terms of both com-
putation time and memory, than Online Method 3, since it
requires both representation and computation of distances
between solutions.

6. Conclusion
We introduce one offline and three online methods to com-
pute n k-similar solutions in ASP. We developed a system
CLASP-NK (Online Method 3) which is capable of comput-
ing n k-similar solutions on the fly. We showed the effec-
tiveness and applicability of our methods on phylogenetics
domain.

This paper is a proof-of-principle that CLASP-NK is use-
ful for quantifying solutions in ASP. In this paper, we con-
sider quantifying the solutions based on their similarity to
other solutions. CLASP-NK’s capabilities are not limited
to only computing similar solutions in ASP. We can define
any preference function so that CLASP-NK can compute the
quantified solutions based on that preference function.

Acknowledgments
I am grateful to my supervisor, Esra Erdem, for excel-
lent advice and encouragement. The central ideas in this
work are the product of a close collaboration with Esra Er-
dem, Thomas Eiter and Michael Fink. I also wish to thank
Martin Gebser and Benjamin Kaufmann for their help with
CLASP.

References
Brooks, D., Erdem, E., Erdogan, S., Minett, J., & Ringe,

D. (2007). Inferring phylogenetic trees using answer set
programming. Autom. Reason., 39, 471–511.

Eiter, T., Erdem, E., Erdogan, H., & Fink, M. (2009). Find-
ing similar or diverse solutions in answer set program-
ming. In (Hill & Warren, 2009), 342–356.

Gebser, M., Kaufmann, B., Neumann, A., & Schaub, T.
(2007). clasp: A conflict-driven answer set solver. Proc.
of LPNMR (pp. 260–265). Springer-Verlag.

Hill, P. M., & Warren, D. S. (Eds.). (2009). Logic pro-
gramming, 25th international conference, iclp 2009,
pasadena, ca, usa, july 14-17, 2009. proceedings, vol.
5649 of Lecture Notes in Computer Science. Springer.

Lifschitz, V. (2008). What is answer set programming?
Proc. of. AAAI (pp. 1594–1597). AAAI Press.

Nogueira, M., Balduccini, M., Gelfond, M., Watson, R.,
& Barry, M. (2001). An a-prolog decision support sys-
tem for the space shuttle. Proc. of PADL (pp. 169–183).
London, UK: Springer-Verlag.

Son, T., Pontelli, E., & Sakama, C. (2009). Logic program-
ming for multiagent planning with negotiation. In (Hill
& Warren, 2009), 99–114.


