
Evaluating Query and Storage Strategies for RDF Archives

Javier D. Fernández
Vienna University of

Economics and Business,
Vienna, Austria

javier.fernandez@wu.ac.at

Jürgen Umbrich
Vienna University of

Economics and Business,
Vienna, Austria

juergen.umbrich@wu.ac.at

Axel Polleres
Vienna University of

Economics and Business,
Vienna, Austria

axel.polleres@wu.ac.at

Magnus Knuth
Hasso Plattner Institute,
University of Potsdam,

Potsdam, Germany
magnus.knuth@hpi.de

ABSTRACT
There is an emerging demand on efficiently archiving and (tem-
poral) querying different versions of evolving semantic Web data.
As novel archiving systems are starting to address this challenge,
foundations/standards for benchmarking RDF archives are needed
to evaluate its storage space efficiency and the performance of dif-
ferent retrieval operations. To this end, we provide theoretical
foundations on the design of data and queries to evaluate emerg-
ing RDF archiving systems. Then, we instantiate these foundations
along a concrete set of queries on the basis of a real-world evolving
dataset. Finally, we perform an empirical evaluation of various cur-
rent archiving techniques and querying strategies on this data. Our
work comprises – to the best of our knowledge – the first bench-
mark for querying evolving RDF data archives.

1. INTRODUCTION
Nowadays, RDF data is ubiquitous. In less than a decade, and
thanks to active projects such as the Linked Open Data (LOD) [3]
effort or schema.org, researchers and practitioners have built a
continuously growing interconnected Web of Data. In parallel, a
novel generation of semantically enhanced applications leverage
this infrastructure to build services which can answer questions
not possible before (thanks to the availability of SPARQL [18]
which enables structured queries over this data). As previously
reported [30, 19], this published data is continuously undergoing
changes (on a data and schema level). These changes naturally
happen without a centralized monitoring nor pre-defined policy,
following the scale-free nature of the Web. Applications and busi-
nesses leveraging the availability of certain data over time, and
seeking to track data changes or conduct studies on the evolution
of data, thus need to build their own infrastructures to preserve and
query data over time. Moreover, at the schema level, evolving vo-
cabularies complicate re-use as inconsistencies may be introduced
between data relying on a previous version of the ontology.

Thus, archiving policies of Linked Open Data (LOD) collections
emerge as a novel – and open – challenge aimed at assuring quality
and traceability of Semantic Web data over time. While sharing the
same overall objectives with traditional Web archives, such as the
Internet Archive,1 archives for the Web of Data should additionally
offer capabilities for time-traversing structured queries. Recently,
initial works on RDF archiving policies/strategies [13, 34] are start-
ing to offer such time-based capabilities, such as knowing whether
a dataset or a particular entity has changed, which is neither na-
tively supported by SPARQL nor by any of the existing temporal
extensions of SPARQL [29, 14, 25, 36].

This paper discusses the emerging problem of evaluating the effi-
ciency of the required retrieval demands in RDF archives. To the
best of our knowledge, no work has been proposed to systemati-
cally benchmark RDF archives. The recent HOBBIT2 H2020 EU
project on benchmarking Big Linked Data is starting to face sim-
ilar challenges. Existing RDF versioning and archiving solutions
focus so far on providing feasible proposals for partial coverage
of possible use case demands. Somewhat related, but not cov-
ering the specifics of (temporal) querying over archives, existing
RDF/SPARQL benchmarks focus on static [1, 4, 27], federated [22]
or streaming data [8] in centralized or distributed repositories: they
do not cover the particularities of RDF archiving, where querying
entity changes across time is a crucial aspect.

In order to fill this gap, our main contributions are: (i) Based on
an analysis of current RDF archiving proposals (Section 2), we pro-
vide theoretical foundations on the design of benchmark data and
queries for RDF archiving systems (Section 3); (ii) we present a
prototypical BEnchmark of RDF ARchives (referred to as BEAR),
which makes use of real-world data from the Dynamic Linked Data
Observatory [19] (Section 4). We describe queries with varying
complexity, covering a broad range of archiving use cases; then,
(iii) we implement RDF archiving systems on different RDF stores
and archiving strategies, and evaluate them using BEAR to set an
(extensible) baseline and illustrate our foundations (Section 5). Fi-
nally, we conclude and point out future work (Section 6).

2. PRELIMINARIES
We briefly summarise the necessary findings of our previous sur-
vey on current archiving techniques for dynamic Linked Open Data

1http://archive.org/.
2http://project-hobbit.eu/.

schema.org

Figure 1: Example of RDF graph versions.

Focus
Type

Materialisation
Structured Queries

Single time Cross time

Version Version Materialisation Single-version structured queries Cross-version structured queries
-get snapshot at time ti -lectures given by certain teacher at time ti -subjects who have played the role of student

and teacher of the same course

Delta Delta Materialisation Single-delta structured queries Cross-delta structured queries
-get delta at time ti -students leaving a course between two consec-

utive snapshots, i.e. between ti−1, ti

-largest variation of students in the history of

the archive

Table 1: Classification and examples of retrieval needs.

[13]. The use case is depicted in Figure 1, showing an evolving
RDF graph with three versions V1, V2 and V3 : the initial version
V1 models two students ex:S1 and ex:S2 of a course ex:C1, whose
professor is ex:P1. In V2, the ex:S2 student disappeared in favour
of a new student, ex:S3. Finally, the former professor ex:P1 leaves
the course to a new professor ex:P2, and the former student ex:S2

reappears also as a professor.

2.1 Retrieval Functionality
Given the relative novelty of archiving and querying evolving se-
mantic Web data, retrieval needs are neither fully described nor
broadly implemented in practical implementations (described be-
low). First categorizations [13, 28] are compiled in Table 1. This
classification distinguishes six different types of retrieval needs,
mainly regarding the query type (materialisation or structured
queries) and the main focus (version/delta) of the query.

Version materialisation is a basic demand in which a full version
is retrieved. In fact, this is the most common feature provided by
revision control systems and other large scale archives, such as cur-
rent Web archiving that mostly dereferences URLs across a given
time point.3

Single-version structured queries are queries which are per-
formed on one specific version. One could expect to exploit cur-
rent state-of-the-art query resolution in RDF management systems,
with the additional difficulty of maintaining and switching between
all versions.

Cross-version structured queries, also called time-traversal
queries, add a novel complexity since these queries must be sat-
isfied across different versions.

Delta materialisation retrieves the differences (deltas) between
two or more given versions. This functionality is largely related
to RDF authoring and other operations from revision control sys-
tems (merge, conflict resolution, etc.).

Single-delta structured queries and cross-delta structured

queries are the counterparts of the aforementioned version-focused
queries, but must be satisfied on change instances of the dataset.

2.2 Archiving Policies and Retrieval Process
Main efforts addressing the challenge of RDF archiving fall in one
of the following three storage strategies [13]: independent copies

(IC), change-based (CB) and timestamp-based (TB) approaches.

3See the Internet Archive effort, http://archive.org/web/.

Independent Copies (IC) [20, 24] is a basic policy that man-
ages each version as a different, isolated dataset. It is, however,
expected that IC faces scalability problems as static information
is duplicated across the versions. Besides simple retrieval opera-
tions such as version materialisation, other operations require non-
negligible processing efforts. A potential retrieval mediator should
be placed on top of the versions, with the challenging tasks of (i)
computing deltas at query time to satisfy delta-focused queries, (ii)
loading/accessing the appropriate version/s and solve the structured
queries, and (iii) performing both previous tasks for the case of
structured queries dealing with deltas.

Change-based approach (CB) [33, 10, 35] partially addresses the
previous scalability issue by computing and storing the differences
(deltas) between versions. For the sake of simplicity, in this paper
we focus on low-level deltas (added or deleted triples).

A query mediator for this policy manages a materialised version
and the subsequent deltas. Thus, CB requires additional computa-
tional costs for delta propagation which affects version-focused re-
trieving operations. Different alternatives have been proposed such
as computing reverse deltas (storing a materialisation of the current
versions and computing the changes with respect to this) or provid-
ing full version materialisation in some intermediate steps [10, 28],
at the cost of augmenting space overheads.

Timestamp-based approach (TB) [6, 34, 23, 31] can be seen as
a particular case of time modelling in RDF [17, 36], where each
triple is annotated with its temporal validity. Likewise, in RDF
archiving, each triple locally holds the timestamp of the version.
In order to save space avoiding repetitions, practical proposals fol-
low two main strategies. On the one hand, compression techniques
can be used to minimize the space overheads, e.g. using self-
indexes [6] or delta compression in B+Trees [34]. On the other
hand, triples can be time-annotated only when they are added or
deleted (if present) [23, 31, 15, 34]. In these practical approaches,
versions/deltas are often managed under named/virtual graphs, so
that the retrieval mediator can rely on existing solutions providing
named/virtual graphs. Except for delta materialisation, all retrieval
demands can be satisfied with some extra efforts given that (i) ver-
sion materialisation requires to rebuild the delta similarly to CB,
and (ii) structured queries may need to skip irrelevant triples [23].

3. EVALUATION OF RDF ARCHIVES:

CHALLENGES AND GUIDELINES
Previous considerations on RDF archiving policies and retrieval
functionality set the basis of future directions on evaluating the ef-
ficiency of RDF archives. The design of a benchmark for RDF

archives should meet three requirements:

• The benchmark should be archiving-policy agnostic both in
the dataset design/generation and the selection of queries to
do a fair comparison of different archiving policies.

• Early benchmarks should mainly focus on simpler queries
against an increasing number of snapshots and introduce
complex querying once the policies and systems are better
understood.

• While new retrieval features must be incorporated to bench-
mark archives, one should consider lessons learnt in previous
recommendations on benchmarking RDF data management
systems [1].

Although many benchmarks are defined for RDF stores [4, 1]
(see the Linked Data Benchmark Council project [5] for a gen-
eral overview) and related areas such as relational databases (e.g.
the well-known TPC4) and graph databases [9], to the best of our
knowledge, none of them are designed to address these particular
considerations in RDF archiving. Nonetheless, most of the well-
established benchmarks share important and general principles. We
briefly recall here the four most important criteria when designing
a domain-specific benchmark [16], which are also considered in
our approach: Relevancy (to measure the performance when per-
forming typical operations of the problem domain, i.e. archiving
retrieval features), portability (easy to implement on different sys-
tems and architectures, i.e. RDF archiving policies), scalability
(apply to small and large computer configurations, which should
be extended in our case also to data size and number of versions),
and simplicity (to evaluate a set of easy-to-understand and extensi-
ble retrieval features).

We next formalize the most important features to characterize data
and queries to evaluate RDF archives. These will be instantiated in
the next section to provide a concrete experimental testbed.

3.1 Dataset Configuration
We first provide semantics for RDF archives and adapt the notion
of temporal RDF graphs by Gutierrez et al. [17]. In this paper,
we make a syntatic-sugar modification to put the focus on version
labels instead of temporal labels. Note, that time labels are a more
general concept that could lead to time-specific operators (intersect,
overlaps, etc.), which is complementary –and not mandatory– to
RDF archives. Let N be a set of version labels in which a total
order is defined.

Definition 1 (RDF ARCHIVE). A version-annotated triple is

an RDF triple (s, p, o) with a label i ∈ N representing the version

in which this triple holds, denoted by the notation (s, p, o) : [i]. An

RDF archive graph A is a set of version-annotated triples.

Definition 2 (RDF VERSION). An RDF version of an RDF

archive A at snapshot i is the RDF graph A(i) =
{(s, p, o)|(s, p, o) : [i] ∈ A}. We use the notation Vi to refer

to the RDF version A(i).

As basis for comparing different archiving policies, we introduce
four main features to describe the dataset configuration, namely
data dynamicity, data static core, total version-oblivious triples and
RDF vocabulary.

4http://www.tpc.org/

Data dynamicity. This feature measures the number of changes
between versions, considering these differences at the level of
triples. Thus, it is mainly described by the change ratio and the
data growth between versions:

Definition 3 (VERSION CHANGE RATIO). Given two ver-

sions Vi and Vj , with i < j, let ∆+
i,j and ∆−

i,j two sets respectively

denoting the triples added and deleted between these versions, i.e.

∆+
i,j = Vj \ Vi and ∆−

i,j = Vi \ Vj . The change ratio between two

versions denoted by δi,j , is defined by

δi,j =
|∆+

i,j
∪∆

−
i,j

|

|Vi∪Vj |
.

In turn, the insertion δ+i,j =
|∆+

i,j
|

|Vi|
and deletion δ−i,j =

|∆−
i,j

|

|Vi|
ratios

provide further details on the proportion of inserted and add triples.

Definition 4 (VERSION DATA GROWTH). Given two versions

Vi and Vj , having |Vi| and |Vj | different triples respectively, the

data growth of Vj with respect to Vi, denoted by, growth(Vi, Vj),
is defined by

growth(Vi, Vj) =
|Vj |

|Vi|
.

In archiving evaluations, one should provide details on three related
aspects, δi,j , δ+i,j and δ−i,j , as well as the complementary version
data growth, for all pairs of consecutive versions. Note that most
archiving policies are affected by the frequency and also the type of
changes. For instance, IC policy duplicates the static information
between two consecutive versions Vi and Vj , whereas the size of Vj

increases with the added information (δ+i,j) and decreases with the

number of deletions (δ−i,j), given that the latter are not represented.
In contrast, CB and TB approaches store all changes, hence they
are affected by the general dynamicity (δi,j).

Data static core. It measures the triples that are available in all
versions:

Definition 5 (STATIC CORE). For an RDF archive A, the

static core CA = {(s, p, o)|∀i ∈ N , (s, p, o) : [i] ∈ A}.

This feature is particularly important for those archiving policies
that, whether implicitly or explicitly, represent such static core. In a
change-based approach, the static core is not represented explicitly,
but it inherently conforms the triples that are not duplicated in the
versions, which is an advantage against other policies such as IC.
It is worth mentioning that the static core can be easily computed
taking the first version and applying all the subsequent deletions.

Total version-oblivious triples. This computes the total number
of different triples in an RDF archive independently of the times-
tamp. Formally speaking:

Definition 6 (VERSION-OBLIVIOUS TRIPLES). For an RDF

archive A, the version-oblivious triples OA = {(s, p, o)|∃i ∈
N , (s, p, o) : [i] ∈ A}.

This feature serves two main purposes. First, it points to the diverse
set of triples managed by the archive. Note that an archive could
be composed of few triples that are frequently added or deleted.
This could be the case of data denoting the presence or absence
of certain information, e.g. a particular case of RDF streaming.
Then, the total version-oblivious triples are in fact the set of triples
annotated by temporal RDF [17] and other representations based
on annotation (e.g. AnQL [36]), where different annotations for
the same triple are merged in an annotation set (often resulting in
an interval or a set of intervals).

RDF vocabulary. In general, we cover under this feature the main
aspects regarding the different subjects (SA), predicates (PA), and
objects (OA) in the RDF archive A. Namely, we put the focus on
the RDF vocabulary per version and delta and the vocabulary set

dynamicity, defined as follows:

Definition 7 (RDF VOCABULARY PER VERSION). For an

RDF archive A, the vocabulary per version is the set of subjects

(SVi), predicates (PVi) and objects (OVi) for each version Vi in

the RDF archive A.

Definition 8 (RDF VOCABULARY PER DELTA). For an RDF

archive A, the vocabulary per delta is the set of subjects (S
∆+

i,j

and S
∆−

i,j
), predicates (P

∆+

i,j
and P

∆−
i,j

) and objects (O
∆+

i,j
and

O
∆−

i,j
) for all consecutive Vi and Vj in A.

Definition 9 (RDF VOCABULARY SET DYNAMICITY). The

dynamicity of a vocabulary set K, being K one of {S, P,O}, over

two versions Vi and Vj , with i < j, denoted by vdyn(K,Vi, Vj)
is defined by

vdyn(K,Vi, Vj) =
|(KVi

\KVj
)∪(KVj

\KVi
)|

|KVi
∪KVj

| .

Likewise, the vocabulary set dynamicity for insertions and dele-

tions is defined by vdyn+(K,Vi, Vj) =
|KVj

\KVi
|

|KVi
∪KVj

|
and

vdyn−(K,Vi, Vj) =
|KVi

\KVj
|

|KVi
∪KVj

| respectively.

The evolution (cardinality and dynamicity) of the vocabulary is
specially relevant in RDF archiving, since traditional RDF man-
agement systems use dictionaries (mappings between terms and
integer IDs) to efficiently manage RDF graphs. Finally, whereas
additional graph-based features (e.g. in-out-degree, clustering co-
efficient, presence of cliques, etc.) are interesting and complemen-
tary to our work, our proposed properties are feasible (efficient to
compute and analyse) and grounded in state-of-the-art of archiving
policies.

3.2 Design of Benchmark Queries
There is neither a standard language to query RDF archives, nor
an agreed way for the more general problem of querying temporal
graphs. Nonetheless, most of the proposals (such as T-SPARQL
[14] and SPARQL-ST [25]) are based on SPARQL modifications.

In this scenario, previous experiences on benchmarking SPARQL
resolution in RDF stores show that benchmark queries should re-
port on the query type, result size, graph pattern shape, and query
atom selectivity [26]. Conversely, for RDF archiving, one should
put the focus on data dynamicity, without forgetting the strong im-
pact played by query selectivity in most RDF triple stores and query
planning strategies [1].

Let us briefly recall and adapt definitions of query cardinality and
selectivity [2, 1] to RDF archives. Given a SPARQL query Q,
where we restrict to SPARQL Basic Graph Patterns (BGPs5) here-
after, the evaluation of Q over a general RDF graph G results in
a bag of solution mappings [[Q]]G, where Ω denotes its underly-
ing set. The function card[[Q]]G maps each mapping µ ∈ Ω to
its cardinality in [[Q]]G. Then, for comparison purposes, we in-
troduce three main features, namely archive-driven result cardinal-

ity and selectivity, version-driven result cardinality and selectivity,
and version-driven result dynamicity, defined as follows.

Definition 10 (ARCHIVE-DRIVEN RESULT CARDINALITY).
The archive-driven result cardinality of Q over the RDF archive

A, is defined by

CARD(Q,A) =
∑

µ∈Ω card[[Q]]A(µ).

In turn, the archive-driven query selectivity accounts how selective

is the query, and it is defined by SEL(Q,A) = |Ω|/|A|.

Definition 11 (VERSION-DRIVEN RESULT CARDINALITY).
The version-driven result cardinality of Q over a version Vi, is

defined by

CARD(Q,Vi) =
∑

µ∈Ωi
card[[Q]]Vi

(µ),

where Ωi denotes the underlying set of the bag [[Q]]Vi . Then,

the version-driven query selectivity is defined by SEL(Q,Vi) =
|Ωi|/|Vi|.

Definition 12 (VERSION-DRIVEN RESULT DYNAMICITY).
The version-driven result dynamicity of the query Q over two

versions Vi and Vj , with i < j, denoted by dyn(Q,Vi, Vj) is

defined by

dyn(Q,Vi, Vj) =
|(Ωi\Ωj)∪(Ωj\Ωi)|

|Ωi∪Ωj |
.

Likewise, we define the version-driven result insertion

dyn+(Q,Vi, Vj) =
|Ωj\Ωi|

|Ωi∪Ωj |
and deletion dyn−(Q,Vi, Vj) =

|Ωi\Ωj |

|Ωi∪Ωj |
dynamicity.

The archive-driven result cardinality is reported as a feature directly
inherited from traditional SPARQL querying, as it disregards the
versions and evaluates the query over the set of triples present in

5Sets of triple patterns, potentially including a FILTER condition,
in which all triple patterns must match.

the RDF archive. Although this feature could be only of peripheral
interest, the knowledge of this feature can help in the interpretation
of version-agnostic retrieval purposes (e.g. ASK queries).

As stated, result cardinality and query selectivity are main influenc-
ing factors for the query performance, and should be considered in
the benchmark design and also known for the result analysis. In
RDF archiving, both processes require particular care, given that
the results of a query can highly vary in different versions. Know-
ing the version-driven result cardinality and selectivity helps to in-
terpret the behaviour and performance of a query across the archive.
For instance, selecting only queries with the same cardinality and
selectivity across all version should guarantee that the index per-
formance is always the same and as such, potential retrieval time
differences can be attributed to the archiving policy. Finally, the
version-driven result dynamicity does not just focus on the number
of results, but how these are distributed in the archive timeline.

In the following, we introduce five foundational query atoms to
cover the broad spectrum of emerging retrieval demands in RDF
archiving. Rather than providing a complete catalog, our main aim
is to reflect basic retrieval features on RDF archives, which can
be combined to serve more complex queries. We elaborate these
atoms on the basis of related literature, with especial attention to
the needs of the well-established Memento Framework [7], which
can provide access to prior states of RDF resources using datetime
negotiation in HTTP.

Version materialisation, Mat(Q,Vi): it provides the SPARQL
query resolution of the query Q at the given version Vi. Formally,
Mat(Q,Vi) = [[Q]]Vi .

Within the Memento Framework, this operation is needed to pro-
vide mementos (URI-M) that encapsulate a prior state of the origi-
nal resource (URI-R).

Delta materialisation, Diff(Q, Vi, Vj): it provides the different
results of the query Q between the given Vi and Vj versions. For-
mally, let us consider that the output is a pair of mapping sets, cor-
responding to the results that are present in Vi but not in Vj , that is
(Ωi \ Ωj), and viceversa, i.e. (Ωj \ Ωi).

A particular case of delta materialisation is to retrieve all the differ-
ences between Vi and Vj , which corresponds to the aforementioned
∆+

i,j and ∆−
i,j .

Version Query, V er(Q): it provides the results of the query Q an-

notated with the version label in which each of them holds. In other
words, it facilitates the [[Q]]Vi solution for those Vi that contribute
with results.

Cross-version join, Join(Q1, Vi, Q2, Vj): it serves the join be-
tween the results of Q1 in Vi, and Q2 in Vj . Intuitively, it is similar
to Mat(Q1, Vi) ✶ Mat(Q2, Vj).

Change materialisation, Change(Q): it provides those consecu-
tive versions in which the given query Q produces different results.
Formally, Change(Q) reports the labels i, j (referring to the ver-
sions Vi and Vj) ⇔ Diff(Q, Vi, Vj) 6= ∅, i < j, !∃k ∈ N/i <
k < j.

Within the Memento Framework, change materialisation is needed
to provide timemap information to compile the list of all mementos
(URI-T) for the original resource, i.e. the basis of datetime negoti-
ation handled by the timegate (URI-G).

versions |V0| |V57| growth δ δ− δ+ CA OA

58 30m 66m 101% 31% 32% 27% 3.5m 376m

Table 2: Dataset configuration

These query features can be instantiated in domain-specific query
languages (e.g. DIACHRON QL [21]) and existing extensions of
SPARQL: the technical report extending our paper [11] includes
an instantiation of these five queries in AnQL [36], as well as a
discussion of how these AnQL queries could be evaluated over
off-the-shelf RDF stores using “pure” SPARQL. However, since
such an approach would typically render rather inefficient SPARQL
queries, in the following sections, we focus on tailored implemen-
tations using optimized storage techniques to serve these features.

4. BEAR: A TEST SUITE FOR RDF

ARCHIVING
This section presents BEAR, a prototypical (and extensible) test
suite to demonstrate the new capabilities in benchmarking the ef-
ficiency of RDF archives using our foundations, and to highlight
current challenges and potential improvements in RDF archiving.
We first detail the dataset description and the query set covering
basic retrieval needs. Next section evaluates BEAR on different
archiving systems. The complete test suite (data corpus, queries,
archiving system source codes, evaluation and additional results)
are available at the BEAR repository6.

4.1 Dataset Description
We build our RDF archive on the data hosted by the Dynamic
Linked Data Observatory7 , monitoring more than 650 different do-
mains across time and serving weekly crawls of these domains.
BEAR data are composed of the first 58 weekly snapshots, i.e. 58
versions, from this corpus. Each original week consists of triples
annotated with their RDF document provenance, in N-Quads for-
mat. In this paper we focus on archiving of a single RDF graph, so
that we remove the context information and manage the resultant
set of triples, disregarding duplicates. The extension to multiple
graph archiving can be seen as a future work.

We report the data configuration features (cf. Section 3) that are rel-
evant for our purposes. Table 2 lists basic statistics of our dataset8.
Data growth behaviour (dynamicity) can be identified at a glance:
although the number of statement in the last version (|V57|) is more
than double the initial size (|V0|), the mean version data growth
(growth) between versions is almost marginal (101%).

Conversely, the number of version-oblivious triples (OA), 376m,
points to a relatively low number of different triples in all the his-
tory if we compare this against the number of versions and the size
of each version. This fact is in line with the δ dynamicity values,
stating that a mean of 31% of the data change between two ver-
sions. The same reasoning applies for the remarkably small static
core (CA), 3.5m.

4.2 Test Queries
BEAR provides triple pattern queries Q to test each of the five
atomic operations defined in our foundations (Section 3). Note that,
although BEAR queries do not cover the full spectrum of SPARQL

6https://github.com/webdata/BEAR.
7http://swse.deri.org/dyldo/.
8Details on the vocabulary evolution can be found in our BEAR
repository.

QUERY SET lookup position CARD dyn #queries

QS
L-ǫ=0.2 subject 6.7 0.46 50

QP
L -ǫ=0.6 predicate 178.66 0.09 6

QO
L -ǫ=0.1 object 2.18 0.92 50

QS
H -ǫ=0.1 subject 55.22 0.78 50

QP
H -ǫ=0.6 predicate 845.3 0.12 10

QO
H -ǫ=0.6 object 55.62 0.64 50

Table 3: Overview of benchmark queries

queries, triple patterns (i) constitute the basis for more complex
queries, (ii) are the main operation served by lightweight clients
such as the Linked Data Fragments [32] proposal, and (iii) they are
the required operation to retrieve prior states of a resource in the
Memento Framework. For simplicity, we focus on atomic lookup
queries Q in the form (S??), (?P?), and (??O), which can then be ex-
tended to the rest of triple patterns (SP?), (S?O), (?PO), and (SPO)9.

As for the generation of queries, we randomly select such triple
patterns from the 58 versions of the Dynamic Linked Data Obser-
vatory. In order to provide comparable results, we consider en-
tirely dynamic queries, meaning that the results always differ be-
tween consecutive versions. In other words, for each of our selected
queries Q, and all the versions Vi and Vj (i < j), we assure that
dyn(Q,Vi, Vj) > 0. To do so, we first extract subjects, predicates
and objects that appear in all ∆i,j .

Then, we follow the foundations and try to minimise the influ-
ence of the result cardinality on the query performance. For this
purpose, we sample queries which return, for all versions, result
sets of similar size, that is, CARD(Q,Vi) ≈ CARD(Q,Vj) for
all queries and versions. We introduce here the notation of a ǫ-
stable query, that is, a query for which the min and max result
cardinality over all versions do not vary by more than a factor of
1 ± ǫ from the mean cardinality, i.e., max∀i∈N CARD(Q,Vi) ≤

(1 + ǫ) ·
∑

∀i∈N CARD(Q,Vi)

|N| and min∀i∈N CARD(Q,Vi) ≥

(1− ǫ) ·
∑

∀i∈N CARD(Q,Vi)

|N|
.

Thus, the previous selected dynamic queries are effectively run
over each version in order to collect the result cardinality. Next,
we split subject, objects and predicate queries producing low (QS

L,
QP

L , QO
L) and high (QS

H , QP
H , QO

H) cardinalities. Finally, we filter
these sets to sample at most 50 subject, predicate and object queries
which can be considered ǫ-stable for a given ǫ. Table 3 shows the
selected query sets with their epsilon value, mean cardinality and
mean dynamicity. Although, in general, one could expect to have
queries with a low ǫ (i.e. cardinalities are equivalent between ver-
sions), we test higher ǫ values in objects and predicates in order
to have queries with higher cardinalities. Even with this relaxed
restriction, the number of predicate queries that fulfil the require-
ments is just 6 and 10 for low and high cardinalities respectively.

5. EVALUATION OF RDF ARCHIVING

SYSTEMS
We illustrate the use of our foundations to evaluate RDF archiving
systems. To do so, we built two RDF archiving systems using the
Jena’s TDB store10 (referred to as Jena hereinafter) and HDT [12],
considering different state-of-the-art archiving policies (IC, CB and

9The triple pattern (???) retrieves all the information, so no sam-
pling technique is required.

10https://jena.apache.org/documentation/tdb/.

RAW DATA DIFF DATA JENA TDB HDT
(gzip) (gzip) IC CB TB IC CB

23 GB 14 GB 225 GB 196 GB 353 GB 46 GB 26 GB

Table 4: Space of the different archiving systems and policies.

TB). Then, we use our prototypical BEAR to evaluate the influence
of the concrete store and policy.

Note that we considered these particular open RDF stores given
that they are (i) easy to extend in order to implement the suggested
archiving strategies, (ii) representative in the community and (iii)
useful for potential archiving adopters. Jena is widely used in the
community and can be considered as the de-facto standard imple-
mentation of most W3C efforts in RDF querying (SPARQL) and
reasoning. In turn, HDT is a compressed store that considerably re-
duces space requirements of state-of-the-art stores (e.g. Virtuoso),
hence it perfectly fits space efficiency requirements for archives.
Furthermore, HDT is the underlying store of potential archiving
adopters such as the crawling system LOD Laundromat11, which
generates new versions in each crawling process12.

We implemented the IC, CB and TB policies in Jena (referred to as
Jena-IC, Jena-CB and Jena-TB) as follows. For the IC policy, we
index each version in an independent TDB instance. Likewise, for
the CB policy, we create an index for each added and deleted state-
ments, again for each version and using an independent TDB store.
Last, for the TB policy, we followed the approach of [31, 15] and
indexed all deltas using named graph in one single TDB instance.
We follow the same strategy to develop the IC and CB strategies
in HDT [12] (referred to as HDT-IC, HDT-CB), which provides
a compressed representation and indexing of RDF. The TB policy
cannot be implemented as current HDT implementations13 do not
support quads, hence triples cannot be annotated with the version.

5.1 RDF Storage Space Results
Table 4 shows the required on-disk space for the raw data of the cor-
pus, the GNU diff of such data, and the space required by the Jena
and HDT14 archiving systems under the different policies. Raw
gzipped data take roughly 23GB disk space, while storing the diffs
information results just requires 14GB. A comparison of these fig-
ures against the size of the different systems and policies allows
the description of their inherent overheads: the IC policy index-
ing in Jena requires roughly ten times more space than the raw
data, mainly due to the data decompression and the built-in Jena
indexes. In contrast, the compact HDT indexes in the IC policy
just double the size of the gzipped raw data, serving the required
retrieval operations in such compressed space. In turn, Jena-CB re-
duces the space needs w.r.t Jena-IC (13% less). In HDT, the CB
policy produces stronger reductions (43% less than HDT-IC), be-
ing roughly the double of the gzipped diff data. Finally, TB policy
in Jena reports the highest size as it requires 57% and 80% more
space than Jena-IC and Jena-CB respectively. Note that, although
CB and TB policies manage the same delta sets, TB uses a unique
Jena instance and stores named graph for the triples, so additional
“context” indexes are required.

These initial results confirm current RDF archiving scalability

11http://lodlaundromat.org/
12LOD Laundromat only serves the last crawled version of a dataset.
13We use the HDT C++ libraries at http://www.rdfhdt.org/.
14We include the space overheads of the provided HDT indexes to
solve all lookups.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50

q
u
er

y
 t

im
e

in
 m

s
(l

o
g
sc

al
e)

version

Jena-IC

Jena-TB

Jena-CB

HDT-CB

HDT-IC

(a) QS
L

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50

q
u
er

y
 t

im
e

in
 m

s
(l

o
g
sc

al
e)

version

Jena-IC

Jena-TB

Jena-CB

HDT-CB

HDT-IC

(b) QS
H

Figure 2: Query times for Mat queries.

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50

q
u
er

y
 t

im
e

in
 m

s
(l

o
g
sc

al
e)

diff(q,0,t)

Jena-IC

Jena-TB

Jena-CB

HDT-CB

HDT-IC

(a) QO
L

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50

q
u
er

y
 t

im
e

in
 m

s
(l

o
g
sc

al
e)

diff(q,0,t)

Jena-IC

Jena-TB

Jena-CB

HDT-CB

HDT-IC

(b) QO
H

Figure 3: Query times for Diff queries with increasing intervals.

problems at large scale, where specific RDF compression tech-
niques such as HDT emerges as an ideal solution [13]. Note that
Jena-IC requires almost 5 times the size of HDT-IC, whereas Jena-
CB takes more than 7 times the space required by HDT-CB.

5.2 Retrieval Performance
From our foundations, we chose three exemplary query operations:
(i) version materialisation, (ii) delta materialisation and (iii) ver-
sion queries, and we apply the selected BEAR queries (cf. Section
4.2) as the target query Q in each case. In general, our evaluation
confirmed our assumptions about the characteristics of the policies
(cf. Section 2), but also pointed out differences between the stores
(Jena and HDT). Next, we present and discuss selected plots for
each query operation.

Version materialisation. We measure and compute, for each ver-
sion, the average query time15 over all queries in the BEAR query
set. The results for the version materialisation queries show very
similar patterns for the subject, predicate and object query sets.
Figure 2 reports results for the subject queries (with low and high
cardinality), which are required in the Memento framework (pred-
icate and object results are available in the BEAR repository).

First, we can observe in all plots that the HDT archiving system
generally outperforms Jena. In both systems, the IC policy pro-
vides the best and most constant retrieval time. In contrast, the CB

15All reported (elapsed) times in the evaluation are the average of
three independent executions deployed in an Intel Xeon E5-2650v2
@ 2.6 GHz (32 cores), RAM 256 GB, Debian 7.9.

policy shows a clear trend that the query performance decreases if
we query a higher version since more deltas have to be queried and
the adds and delete information processed. The TB policy in Jena
performs worse than the IC, as TB has to query more indexed data
than the IC policy. In turn, CB and TB have similar performances
if queries have higher cardinalities, as shown in Figure 2 (b).

Delta materialisation queries. We performed diffs between
the initial version and increasing intervals of 5 versions, i.e.,
diff(Q, V0, Vi) for i in {5, 10, 15, · · · , 55, 57}. Figure 3 shows
again the plots for selected query sets, in this case the diff of objects
lookups. We observe the expected constant retrieval performance
of the IC policy which always needs to query only two version to
compute the delta in-memory. The query time increases for the CB
policy if the intervals of the deltas are increasing, given that more
deltas have to be inspected.

Interestingly, HDT outperforms Jena under the same policy (IC or
CB), i.e. HDT implements the policy more efficiently. However,
an IC policy in Jena can be faster than a CB policy in HDT. In turn
the TB policy in Jena behaves similar than the Mat case given that
it always inspects the full store.

Version queries. Table 5 reports the average query time over each
ver(Q) query per BEAR query set. As can be seen, HDT archiving
system clearly outperforms Jena in all scenarios, taking advantages
of its efficient indexing. Nonetheless, the policies plays an impor-
tant role: HDT-IC outperforms HDT-CB (as expected once ver-
sions have to be materialized in CB) except for predicates lookups

QUERY SET
JENA TDB HDT

IC CB TB IC CB

QS
L 55.70 122.44 27.32 2.03 2.73

QS
H 71.62 144.12 61.46 6.57 10.19

QP
L 304.67 412.17 237.83 128.20 31.28

QP
H 733.80 523.90 362.20 354.60 104.57

QO
L 40.54 91.92 22.78 1.65 2.89

QO
H 78.18 136.30 73.54 8.37 13.23

Table 5: Average query time (in ms) for ver(Q) queries

queries (QP
L and QP

H). The explanation of such behaviour is that
predicate lookups in HDT have a logarithmic cost in the number of
different predicates in the dataset, which is smaller in CB. In Jena
the TB policy outperforms IC and CB policies in contrast to the
previous Mat and Diff experiments. This can be explained since
IC and CB require to query each version, while TB only requires a
query over the full store and then splits the results by version.

6. CONCLUSIONS
RDF archiving is still in an early stage of research. Novel solutions
have to face the additional challenge of comparing the performance
against other archiving policies or storage schemes, as there is not
a standard way of defining neither a specific data corpus for RDF
archiving nor relevant retrieval functionalities. To this end, we have
provided foundations to guide future evaluation of RDF archives.
First, we formalized dynamic notions of archives, allowing to ef-
fectively describe the data corpus. Then, we described the main
retrieval facilities involved in RDF archiving, and have provided
guidelines on the selection of relevant and comparable queries. We
instantiate these foundations in a prototypical benchmark, BEAR,
serving a clean, well-described data corpus and a basic, but exten-
sible, query testbed. Finally, we have implemented state-of-the-
art archiving policies (using independent copies, differential rep-
resentation and timestamps) in two stores (Jena TDB and HDT)
and ran BEAR over them. Results clearly confirm challenges (in
terms of scalability) and strengths of current archiving approaches,
guiding future developments. We currently focus on exploiting the
presented blueprints to build a customizable generator of evolving
synthetic RDF data which can preserve user-defined characteris-
tics while scaling to any dataset size and number of versions. We
also work on providing more complex and meaningful time-based
queries by inspecting query logs and real user needs.

Acknowledgements
Funded by Austrian Science Fund (FWF): M1720-G11, the PRO-
PEL project (grant no. 849983) by the Austrian Federal Ministry of
Transport, Innovation and Technology (BMVIT) and the Austrian
Research Promotion Agency (FFG), the ADEQUATe project (grant
no. 849982) by Austrian Research Promotion Agency (FFG) and
the German Government, Federal Ministry of Education and Re-
search under the project number 03WKCJ4D.

7. REFERENCES
[1] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified Stress Testing of

RDF data management systems. In Proc. of ISWC, pages 197–212, 2014.
[2] M. Arenas, C. Gutierrez, and J. Pérez. On the Semantics of SPARQL. Semantic

Web Information Management, pages 281–307, 2009.
[3] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Int. J.

Semantic Web Inf. Syst, 5:1–22, 2009.
[4] C. Bizer and A. Schultz. The Berlin SPARQL benchmark. Int. J. Semantic Web

Inf. Syst, 5(2):1–24, 2009.
[5] P. Boncz, I. Fundulaki, A. Gubichev, J. Larriba-Pey, and T. Neumann. The

linked data benchmark council project. Datenbank-Spektrum, 13(2):121–129,
2013.

[6] A. Cerdeira-Pena, A. Farina, J. D. Fernández, and M. A. Martınez-Prieto.
Self-indexing rdf archives. In Proc. of DCC, 2016.

[7] H. V. de Sompel, R. Sanderson, M. L. Nelson, L. Balakireva, H. Shankar, and
S. Ainsworth. An HTTP-Based Versioning Mechanism for Linked Data. In
Proc. of LDOW, 2010.

[8] D. Dell’Aglio, J. Calbimonte, M. Balduini, O. Corcho, and E. Della Valle. On
Correctness in RDF Stream Processor Benchmarking. In Proc. of ISWC, pages
326–342, 2013.

[9] D. Dominguez-Sal, N. Martinez-Bazan, V. Muntes-Mulero, P. Baleta, and J. L.
Larriba-Pey. A discussion on the design of graph database benchmarks. In
Performance Evaluation, Measurement and Characterization of Complex

Systems, pages 25–40. Springer, 2010.
[10] I. Dong-Hyuk, L. Sang-Won, and K. Hyoung-Joo. A Version Management

Framework for RDF Triple Stores. Int. J. Softw. Eng. Know., 22(1):85–106,
2012.

[11] J. Fernández, J. Umbrich, A. Polleres, and M. Knuth. Query and Storage
Strategies for RDF Archives. Technical report, 2015. Available at
http://git.io/v056F.

[12] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and
M. Arias. Binary RDF Representation for Publication and Exchange (HDT).
JWS, 19:22–41, 2013.

[13] J. D. Fernández, A. Polleres, and J. Umbrich. Towards Efficient Archiving of
Dynamic Linked Open Data. In Proc. of DIACHRON, 2015.

[14] F. Grandi. T-SPARQL: A TSQL2-like Temporal Query Language for RDF. In
Proc. of ADBIS, pages 21–30. 2010.

[15] M. Graube, S. Hensel, and L. Urbas. R43ples: Revisions for triples. In Proc. of

LDQ, volume CEUR-WS 1215, paper 3, 2014.
[16] J. Gray. Benchmark handbook: for database and transaction processing

systems. Morgan Kaufmann Publishers Inc., 1992.
[17] C. Gutierrez, C. Hurtado, and A. Vaisman. Introducing Time into RDF. IEEE T.

Knowl. Data En., 19(2):207–218, 2007.
[18] S. Harris and A. Seaborne. SPARQL 1.1 Query Language. W3C Recom. 2013.
[19] T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne, and A. Hogan. Observing

Linked Data Dynamics. In Proc. of ESWC, pages 213–227. 2013.
[20] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology versioning and

change detection on the web. In Proc. of EKAW, pages 197–212. 2002.
[21] M. Meimaris, G. Papastefanatos, S. Viglas, Y. Stavrakas, and C. Pateritsas. A

query language for multi-version data web archives. Technical report, Institute
for the Management of Information Systems, Greece, 2015.

[22] G. Montoya, M. Vidal, O. Corcho, E. Ruckhaus, and C. Buil Aranda.
Benchmarking Federated SPARQL Query Engines: Are Existing Testbeds
Enough? In Proc. of ISWC, pages 313–324, 2012.

[23] T. Neumann and G. Weikum. x-RDF-3X: Fast querying, high update rates, and
consistency for RDF databases. Proc. of VLDB Endowment, 3(1-2):256–263,
2010.

[24] N. F. Noy and M. A. Musen. Ontology Versioning in an Ontology Management
Framework. IEEE Intelligent Systems, 19(4):6–13, 2004.

[25] M. Perry, P. Jain, and A. P. Sheth. SPARQL-ST: Extending SPARQL to Support
Spatiotemporal Queries. Geospatial Semantics and the Semantic Web,
12:61–86, 2011.

[26] M. Saleem, Q. Mehmood, and A.-C. N. Ngomo. FEASIBLE: A Feature-Based
SPARQL Benchmark Generation Framework. In Proc. of ISWC, pages 52–69.
2015.

[27] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: a SPARQL
performance benchmark. In Proc. of ICDE, pages 222–233, 2009.

[28] K. Stefanidis, I. Chrysakis, and G. Flouris. On Designing Archiving Policies for
Evolving RDF Datasets on the Web. In Proc. of ER, pages 43–56. 2014.

[29] J. Tappolet and A. Bernstein. Applied Temporal RDF: Efficient Temporal
Querying of RDF Data with SPARQL. In Proc. of ESWC, pages 308–322. 2009.

[30] J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, and S. Decker. Towards
Dataset Dynamics: Change Frequency of Linked Open Data Sources. In Proc.

of LDOW, 2010.
[31] M. Vander Sander, P. Colpaert, R. Verborgh, S. Coppens, E. Mannens, and

R. Van de Walle. R&Wbase: Git for triples. In Proc. of LDOW, 2013.
[32] R. Verborgh, O. Hartig, B. De Meester, G. Haesendonck, L. De Vocht,

M. Vander Sande, R. Cyganiak, P. Colpaert, E. Mannens, and R. Van de Walle.
Querying Datasets on the Web with High Availability. In Proc. of ISWC, pages
180–196, 2014.

[33] M. Volkel, W. Winkler, Y. Sure, S. Kruk, and M. Synak. Semversion: A
versioning system for RDF and ontologies. In Proc. of ESWC, 2005.

[34] S. G. J. G. C. Zaniolo. Rdf-tx: A fast, user-friendly system for querying the
history of rdf knowledge bases. In Proc. of EDBT, 2016.

[35] D. Zeginis, Y. Tzitzikas, and V. Christophides. On Computing Deltas of RDF/S
Knowledge Bases. ACM Transactions on the Web (TWEB), 5(3):14, 2011.

[36] A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. A General Framework
for Representing, Reasoning and Querying with Annotated Semantic Web Data.
JWS, 12:72–95, 2012.

	Introduction
	Preliminaries
	Retrieval Functionality
	Archiving Policies and Retrieval Process

	Evaluation of RDF Archives: Challenges and Guidelines
	Dataset Configuration
	Design of Benchmark Queries

	BEAR: A Test Suite for RDF Archiving
	Dataset Description
	Test Queries

	Evaluation of RDF archiving systems
	RDF Storage Space Results
	Retrieval Performance

	Conclusions
	References

