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Abstract. This paper addresses the human action recognition in video
by proposing a method based on three main processing steps. First, we
tackle problems related to intraclass variations and differences in video
lengths. We achieve this by reducing an input video to a set of key-
sequences that represent atomic meaningful acts of each action class.
Second, we use sparse coding techniques to learn a representation for
each key-sequence. We then join these representations still preserving
information about temporal relationships. We believe that this is a key
step of our approach because it provides not only a suitable shared rep-
resentation to characterize atomic acts, but it also encodes global tem-
poral consistency among these acts. Accordingly, we call this represen-
tation inter-temporal acts descriptor. Third, we use this representation
and sparse coding techniques to classify new videos. Finally, we show
that, our approach outperforms several state-of-the-art methods when is
tested using common benchmarks.

Keywords: human action recognition, key-sequences, sparse coding,
inter-temporal acts descriptor.

1 Introduction

Human action recognition is relevant to the development of potential applications
such as surveillance systems, human-computer interaction and video annotation.
However, there are many challenges that deserve careful attention. These include
i) the fact that features should be reliable so that researchers can develop pro-
grams that achieve adequate representation of human actions; ii) the existence
of high inner-class variations such as human poses, occlusions, viewpoints and
dynamic backgrounds, which stand as obstacles to the task of classification; and
iii) variations in the duration of an action, which can prevent quick recogni-
tion. Many studies have tried to address these problems over the past few years.
Approaches to action representation use both global and local representations.
Global representations consider holistic features such as silhouettes, motion and
volumes. Bobick and Davis [3] and Efros et al. [6] proposed to describe the
motion inside of a volume (stack of person-centered frames). Another methods
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represent silhouettes as three-dimensional shapes in order to extract features [9].
Fathi and Mori [7] argue that low-level features are uninformative and propose
the use of mid-level ones. In general, global features fail to fully address the
noise introduced by clothes, lighting and body deformations. A local representa-
tion may be more robust than a global one in situations of high variation. The
emergence of methods that can be useful for finding spatio-temporal interest
points [5, 14] have allowed researchers to address the aforementioned problems.
Many researchers have used dictionaries based on local features to develop ro-
bust action recognition systems. Several approaches can be used to produce a
dictionary, including Bag-of-Words [16, 8, 15], Random Forest [25, 26], and more
recently Sparse Dictionary Learning [10, 11, 23]. The sparse analysis establishes
that a natural signal (eg. images) can be broken down into a linear combina-
tion of atoms which form a dictionary. Sparse coding techniques can be used to
model an action based on the combination of training samples. The dictionary
is adapted in order to capture the inherent structure of the data. For example,
Guo et al. [11] built a class-specific dictionary from silhouette-based descriptors.
The reconstruction error of each class is used for classification. Tanaya and Ward
[10] proposed local motion pattern descriptors and evaluated several classifica-
tion methods using sparse coding. Tran et al. [23] used a body-part descriptor
to develop a dictionary for each part and class, and classified them based on the
reconstruction error. These approaches have a common aspect: they use low-level
features to find dictionaries. However, this information may be similar between
different actions and it may incur into misclassification.

On the other hand, there are methods that use a single frame to achieve
recognition [4]. Still others use a set of frames [8, 10, 11, 18, 21]. These approaches
tend to manually select short sequences containing the atomic information of
the action in order to address the time variation problem. Unlike of these me-
thods we argue that the key-sequences selected to represent a video should be
carefully selected. This is an important aspect to ensure an appropriate video
representation. Additionally, we claim that it is necessary to rescue the inter-
temporal relationship among which key-sequences.

The main focus of our work is to break down an action into acts such that
the interaction among these parts summarizes the whole. The video of an action
can thus be represented as a set of key-sequences containing the acts and their
temporal relationships. By articulating both aspects, we can arrive at a complete
description of the action. We propose breaking a video down into key-sequences
using a non-supervised procedure. The key-sequences are then described using
a descriptor obtained from Sparse Dictionary Learning. Our findings prove that
our approach is effective and that it outperforms the state of the art on several
datasets.

The main intuitions and contributions of this paper can be summarized as
follows:

– We demonstrate the relevance of exploring the subsequence feature space in
order to identify key atomic acts, or key-sequences, that can be unique or
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shared among action classes. In particular, we propose a method where each
video is represented by a set of meaningful acts or key-sequences.

– We noted that human action classes can be characterized as a composition
of unique and shared atomic acts. Furthermore, the temporal ordering of
these atomic acts provides highly discriminative information to recognize
different human actions. We then propose a new representation, called an
inter-temporal acts descriptor, that is able to encode local information to
characterize atomic acts and also to preserve a global temporal ordering
among them.

The rest of the paper is organized as follows. Section 2 describes the proposed
method for describing a video using the called an inter-temporal acts descrip-
tor and the classification strategy. Section 3 presents the experiments and the
discussion of our results. Finally, Section 4 contains concluding remarks.

2 Method

Fig. 1. Block diagram of proposed method.
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In this section, we describe the proposed method following Fig. 1. The method
consists of three main steps: i) Video decomposition in key-sequences, ii) Learn-
ing of spatio-temporal dictionaries of key-sequences, and iii) The classification
strategy.

2.1 Video decomposition in Key-Sequences

In order to reduce the dimensionality of the recognition problem, we propose
summarizing a video sequence using a few representative key-sequences. A key-
sequence is a small number of consecutive frames composed of acts (or atomic
motions) of an action that can be used to recognize it. For instance, the ac-
tion ‘diving’ can be split into three acts: ‘jump’, ‘twist’ and ‘entry’. These acts
should contain enough information to address a successful classification of the
action. The key-sequences should satisfy the following consistency criteria: i)
They should strongly characterize the class of an action, which means that an
action can be visually recognized by observing its key-sequences. ii) The key-
sequences should be temporally sorted, thus, the k-th key-sequence of a video
of an action should be similar to the k-th key-sequence of another video of the
same action. Note that each person has his or her own way for doing an action,
which means that the acts may appear to be different. Nevertheless, the acts
should be consistent for all videos belonging to the same class.

The procedure for obtaining the key-sequences of a class is repeated for each
class c, for c = 1 . . . N . Let Bc = {vi}pi=1 be a set of p training videos of class
c, where vi = {fi,j}rij=1 is a set of ri frames. For each video vi, we built a set Si

with all of the possible subsequences si,j = {fi,k}j+t−1
k=j of t consecutive frames:

Si = {si,j}ri−t+1
j=1 . Thus, the set of subsequences of the class is Sc = {Si}pi=1.

Each subsequence in Sc is described in appearance and motion using the
well-known HOG3D descriptor [13]. It generates a feature space Hc = fHOG3D(Sc)
with a large collection of high-dimensional spatio-temporal descriptors. Our goal
is to find groups of descriptors with high levels of similarity that summarize the
overall behavior from the class. We find these groups by applying a K-means
clustering algorithm over Hc, and define Zc = {zk}Kk=1 as the set of the K
estimated centroids for class c. We expect each centroid to represent an act which
should be present in every video. Thus, we define the K key-sequences of video vi
as those K subsequences {ŝi,k}Kk=1 ∈ Si, where ŝi,k = si,q(i,k) is a subsequence,
and where description hi,q = fHOG3D(si,q) is the most similar one to each centroid
of Zc and q(i, 1) < q(i, 2) . . . < q(i,K) in order to ensure the temporally sorted
subsequences. The key-sequences are estimated as follows: First, we compute the
indices of the most similar subsequences as wk = argminq′‖zk − hi,q′‖. Second,
we sort the indices w as {q(i, k)}Kk=1 = sort({wk}Kk=1) (see Fig. 2).
Low-Level Feature Extraction: A sequence of the video vi could contain
not only the actor, but also some noise from dynamic backgrounds, the objects
intervening in the scene, clothes, etc. In order to overcome this problem, the actor
is detected using a model of body part detection applied to the key-sequences
of the video [2]. The goal is to extract relevant information from limbs where
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Fig. 2. Central frame from key-sequences of lifting and diving actions(UCF-Sports).

Fig. 3. Part model: low-level features of a key-sequence.

motions are performed. Thus, given a key-sequence of a video ŝi,k with t frames,
we apply the body part model only to the central frame (t− 1)/2, for an odd t,
because it is enough to produce an estimate of the location of the parts and to
avoid the cost of making this in each frame. The model delivers the bounding
box of ten parts of the body: torso, forearms, arms, thighs, legs and head (see
Fig. 3).

We then extract local spatio-temporal features from spatio-temporal cuboids
defined by the bounding box of the body parts propagated across the frames
of the key-sequence. For each cuboid, we randomly generate spatial patches
of n × n pixels and extract sub-cuboids. A sub-cuboid is formed by lining up
the 2D patches from each frame of the key-sequence. The size of each spatio-
temporal sub-cuboid is n×n×t. These sub-cuboids are described using HOG3D,
which yields a collection of descriptors Yi,k, for video vi and key-sequence k. We
call this function Yi,k = flow-level(vi, k, c). Hereafter, the descriptors of the sub-
cuboids will be denominated low-level features. The description of the k-th key-
sequence of all nc videos of class c are arranged in Yc

k = [Y1,k . . .Yik . . .Ync,k],
and it will be called the low-level features from class c and temporal order k.

2.2 Learning of spatio-temporal dictionaries of key-sequences

The actions can be similar to each other or they can share features. This is true
for the actions ‘run’ and ‘long jump,’ for example. When these actions are broken
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down into their key-sequences we note the presence of the act of running in both
actions. The local information extracted from this act is clearly similar in both
actions. Therefore, we believe that it is possible to represent a video as a combi-
nation of characteristics from different actions. A high value of this combination
in a given class indicates a high probability that a video belongs to that class.
It follows that each key-sequence from a video can be encoded at a high level
so that the temporal relationship between these descriptors can be identified.
The temporal relationship is important for articulating the relationship between
sequences. Our method computes a inter-temporal acts descriptor from tempo-
ral dictionaries. These features provide information about the contribution of all
classes to the performance of an act in a key-sequence.

We use two levels of sparse dictionaries [1] to calculate the temporal dictio-
naries. At the lower level, we identify one dictionary for each class from low-level
features. At the high level, we identify temporal dictionaries and their sparse rep-
resentations. These sparse representations are used to build a feature that de-
scribes a video as a combination of the contributions of each class that considers
the temporal relationship between their key-sequences.
Class-based Temporal Sparse Dictionary: In this level, a sparse dictionary
of each class is created using the low-level features obtained in Section 2.1.
The descriptors are organized into groups according to the ordering imposed by
the key-sequences. Hence, we calculate a dictionary Dc

k for each class and each
temporal order Yc

k using K-SVD [1]:

min
Dc

k,X
c
k

||Yc
k −Dc

kX
c
k||2F subject to ||xl||0 ≤ λ1, (1)

where the last term indicates that the number of nonzero entries of each column
of Xc

k must not exceed λ1.
Concatenated Temporal Sparse Dictionary: In this level, all sparse dictio-
naries Dc

k (c = 1 . . . N) with the same k-th order are concatenated to form a
temporal dictionary . Let Yk = [Y1

k ‖ . . . ‖ Yc
k ‖ . . . ‖ YN

k ] be the matrix of
the k-th order containing the concatenated low-level features from the N classes
with the same temporal order position k. Let Dk = [D1

k ‖ . . . ‖ Dc
k ‖ . . . ‖ DN

k ]
be the concatenated temporal dictionary. The goal is to find Xk, the sparse
representation of Yk by solving:

min
Xk

||Yk −DkXk||2F subject to ||xl||0 ≤ λ2, (2)

using, for example, a matching pursuit algorithm like OMP [19]. This sparse
representation is useful because it provides information about the contribution
of the classes for each sample. Thus, Xk can be seen as [X1

k ; . . .Xc
k ; . . .XN

k ],
where Xc

k represents the sparse matrix of class c in temporal order k. Therefore,
we can take advantage of this information for computing the contribution of a
certain class for a video.
Describing inter-temporal acts: Our purpose is to learn how to produce a
representation which characterizes the videos as a combination of the classes and
their temporal relationships. Let a video v represent a set of low-level features
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{Yc
k}Nc=1 for all classes for temporal order k, where Yc

k = flow-level(v, k, c). The
contribution of a given class and a given order to the video v is computed by
applying a sum pooling (SP) in the atoms from its class. We define the sum
pooling operator SP as:

φck =

P∑
l=1

xck(l), (3)

where the Xc
k = [xck(1); . . . ;xck(P )] indicates the P atoms of the sparse repre-

sentation of Yc
k according to dictionary Dk. Each low-level feature belongs to a

given video v of class c and temporal order k. The
∑

(·) term is the sum pooling
(SP) generated by projecting on the P -atoms of the class. Finally, the sum pool-
ing application produces a value φck that is interpreted as the contribution that
is delivered by the class c to the video v in the temporal order k. We can thus
represent a video v as the contribution of all classes to the composition of an act
descriptor Φk = [φ1k; · · · ;φck; · · · ;φNk ]. This feature is important because allows
us to express shared features between classes. Finally, in order to retrieve the
temporal relationship between key-sequences of the video, we define a function
to create an inter-temporal acts descriptor. The inter-temporal acts descriptor
of a video v is defined by concatenating each act descriptor from each ordering
as Φ(v) = [Φ1; . . . ;ΦK ].

2.3 Classification Strategy

The high-level features from the previous step can be used in any supervised
classification approach. Again, we chose to use a classification based on sparse
coding. Let βc be a dictionary learned from the inter-temporal acts descriptors
of the class c in the train stage. Let β = [β1 . . . βc . . . βN ] be a concatenated
overcomplete dictionary. Let Φ(v̂) be the matrix containing the inter-temporal
acts descriptor of the query video v̂. The classification consists of identifying a
sparse representation called α for the inter-temporal acts descriptor of the test
sample. This sparse representation is found using OMP [19]:

min
α
||Φ(v̂)− βα||2F subject to ||αl||0 ≤ λ3 (4)

Again the sparse representation α can be seen as a block matrix of the classes.
Thus, it is possible to calculate the contribution of each class by applying the sum
pooling operator SP. Finally, we choose ĉ, the class with the highest contribution.

3 Experiments and Results

In order to validate the method outlined in Section 2, in this section, we describe
the experimental settings and report the results obtained in three well-known
datasets of actions: KTH, UCF-Sports, and Olympic.
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3.1 Experimental Settings

We configure the training and testing parameters for each dataset as follows:
Decomposition in Key-Sequences: We believe that a key-sequence should
contain a short number of frames for two reasons. First, short sequences can
capture atomic motion. Second, short sequences can be processed quickly. Then,
we take a fixed group of t = 7 frames to form a sequence. In short videos, choosing
many key-sequences may imply a high overlap. Specifically, the key-sequences of
periodic actions can capture similar information because these actions are highly
repetitive. For example, the action ‘run’ is a monotone action (arms and legs have
a cyclic motion), and hence their key-sequences may be similar. A reasonable
strategy is thus to select a few key-sequences in order to avoid providing the
same information. We select a number of K = 3 key-sequences to represent a
video. For each key-sequence and for each body-part, we select 5 random body
part positions to select 5 patches of 20×20 pixels. Around each of these patches
we select another 8 patches of the same size to complete a total of 45 patches to
cover each of the 10 body-parts. Thus, each key-sequence produces 450 spatio-
temporal sub-cuboids with size 20× 20× 7. Each sub-cuboid is described using
HOG3D (300 dimensions). In order to deal with uninformative sub-cuboids, we
apply a threshold to the magnitude of the descriptor to filter them out. The
values of the threshold are 1.8, 1 and 2 to UCF-Sports, KTH and Olympic
dataset, respectively. Afterwards, the remaining descriptors are normalized.
Temporal Dictionaries: We create the class-based dictionaries using P = 600
atoms (i.e. with redundancy µ = 21). For each concatenated temporal dictionary,
we set µ = 2 and P = µ × N × K. In particular, the number of atoms for
KTH, Olympic and UCF-Sports are 36, 96 and 54, respectively. The parameter
of sparsity is set to the 10% of the number of atoms in both levels (λ1 = λ2) in
accordance with [10]. Finally, the dimension of our inter-temporal acts descriptor
is N × K. Therefore, the dimension of the final descriptors in KTH, Olympic
dataset and UCF-Sports are 36, 48 and 27, respectively.
Classification Strategy: We create a concatenated temporal dictionary for
classification containing P = µ × N atoms (µ = 2) and set λ3 to the 10% of
the number of atoms. Thus, the number of atoms in KTH, Olympic dataset and
UCF-Sports are 12, 32 and 18.

3.2 Results

• KTH Dataset: The dataset contains 2391 sequences from six types of human
actions. Each action is performed by 25 actors in four different scenarios with
view point changes and variations in scale, lighting and appearance (clothes). We
use the original setup [22], i.e. splitting the data in training and testing. In order
to engage in a fair comparison, we selected methods that use the same testing
protocol. Table 1 shows a summary of the comparison. We obtained 95.7 % ac-
curacy in the recognition compared to other state-of-the-art methods. Regarding

1 The redundancy indicates the folds of basis vectors that are to be identified with
respect to the dimension of the descriptor.
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Fig. 4. Confusion matrix on the tested datasets using proposed method.

the confusion matrix (see Fig. 4), actions such as boxing, clapping and waving
are confused. We anticipated these findings because these actions are charac-
terized by similar hand motions. The same situation is observable with actions
jogging, running and walking, due to the leg-centered motion. Nevertheless, our
method obtains high accuracy in all classes.

Method Year Acc.(%)

Laptev et al. [15] 2008 91.8
Niebles et al. [18] 2010 91.3
Zang et al. [27] 2012 94.0

Our method 95.7

Table 1. Comparison of accuracy using KTH dataset

• Olympic Dataset: The Olympic Sports Dataset contains 16 actions and about
783 videos of athletes practicing different sports from Youtube [18]. This dataset
is challenging because it contains camera motion and several views. Unlike the
KTH and UCF-Sports datasets, the bounding boxes are not available. Due to
the complexity of the scenes, applying the body-part model may produce errors
in the actor detection. Therefore, we use the raw frames from each key-sequence
to extract 450 random sub-cuboids. These sub-cuboids are used to obtain the
temporal dictionaries. Table 2 shows the results where we obtain an overall
performance of 81.3%.

We noted from the confusion matrix (see Fig. 4) that the actions associated
with javeling, long jump, triple jump and vault are perfectly classified. These
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Method Year Acc.(%)

Niebles et al. [18] 2010 72.1
Liu et al. [17] 2011 74.4
Jiang et al. [12] 2012 80.6

Our method 81.3

Table 2. Comparison of accuracy using Olympic dataset.

actions are characterized by a similar start and a different ending. In this case,
it seems that key-sequences are important for breaking the actions down into
atomic acts, which implies a good classification. However, actions that involve
moderate motion and short duration such as clean and jerk, discus throwing,
diving springboard and shot put have a lower recognition rate.

• UCF-Sports Dataset: This data set consists of 150 videos of several sports
obtained from several sources. We decided to present results in 9 actions: diving,
golf, kicking, lifting, riding horse, running, skateboarding, swinging and walking.
This dataset present many challenges, including dynamic backgrounds, camera
motion, scale changes, and variations in lighting and appearance. We increased
the amount of data samples by adding a vertically flipped version of each video.
We trained and tested all sequences (original and flipped version) and obtain an
overall performance of 80.4 %. Table 3 shows the comparison our results using
a leave-one-out setup.

Method Year Acc.(%)

Rodŕıguez et al. [20] 2008 69.2
Wang et al. [24] 2009 85.6
Guha et al. [10] 2012 83.8

Our method 80.4

Table 3. Comparison of accuracy using UCF-Sports dataset

Diving, lifting, kicking, running and swinging are correctly classified because
they were broken down into differentiable acts. In addition, our method notably
differentiates between running and kicking despite the fact that they involve
similar acts. Other actions such as golf, riding horse and skate boarding, which
involve objects and moderate body motions, present issues of misclassification.
However, we believe that this is due to the fact that the key-sequence may
contain similar information (due to the short duration of videos) and the lack of
context information (see Fig. 4).
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4 Conclusions

We proposed a non-supervised method to extract key-sequences that potentially
contain the acts to summarize a video. Also, our method describes the video
key-sequences as a mixture of different classes and different times called inter-
temporal acts descriptor. Our approach achieved a robust representation to face
the inner-class variations and several video lengths. The experiments have shown
that our approach is effective and it obtains a good performance compared to
other methods in the state-of-the-art in standard and challenging datasets. In
a future work, we plan to integrated the overall process of our method using
sparse dictionary learning.
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