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ABSTRACT
Motivation: Massive amounts of genome-wide gene expression
data have become available, motivating the development of com-
putational approaches that leverage this information to predict gene
function. Among successful approaches, black-box supervised mach-
ine learning methods, such as Support Vector Machines, have
shown superior prediction accuracy. However, these methods lack
the expressiveness and biological background found in coexpression
networks, limiting their practical usefulness.
Results: In this work we present Discriminative Local Subspaces
(DLS), a novel method that combines supervised machine learning
and coexpression techniques with the goal of systematically predict
genes involved in specific biological processes of interest. Unlike tra-
ditional coexpression networks, DLS uses the knowledge available in
Gene Ontology (GO) to generate informative training sets that guide
the discovery of expression signatures: expression patterns that are
discriminative for genes involved in the biological process of interest.
By linking genes coexpressed with these signatures, DLS is able to
construct a discriminative coexpression network that links both known
and not previously characterized genes for the selected process. This
paper focuses on the algorithm behind DLS and shows its predictive
power using an Arabidopsis thaliana dataset and 101 GO biological
processes. Our results show that DLS has a superior average accu-
racy than both Support Vector Machines and Coexpression Networks.
Thus, DLS is able to provide the prediction accuracy of black-box
supervised learning methods, while maintaining the expressiveness
and interpretability of coexpression networks.
Availability and Implementation: A MATLAB R© implementation
of DLS is available at http://virtualplant.bio.puc.cl/

cgi-bin/Lab/tools.cgi.
Contact: tfpuelma@uc.cl
Supplementary information: url.

1 INTRODUCTION
Discovering the biological processes that genes carry out inside the
cell is a major challenge to understand gene function at a genome-
wide scale. Unfortunately, many organisms lack in-depth under-
standing about the genes involved in specific biological processes.

∗to whom correspondence should be addressed

For example, in the favorite model in plant biology, Arabidopsis
thaliana, 16,319 (52%) of its genes lack annotations about their bio-
logical processes in the Gene Ontology (GO) database 1 (Ashburner
et al. (2000), www.geneontology.org).

Machine learning (Mitchell (1997)) has emerged as one of the
key technologies to support gene function discovery. In particular,
many methods have been proposed to take advantage of the massive
amount of microarray expression data available (See Valafar (2002);
Zhao et al. (2008) for reviews). These prediction methods can be
classified in two broad groups: supervised and semi-supervised
approaches. On one hand, supervised techniques use a labeled trai-
ning set of genes to learn how to discriminate the genes of each
label or function. On the other hand, semi-supervised approaches
first group genes in a unsupervised manner, without using any func-
tional information, and then a prediction is performed, usually by
propagating the over-represented functions among the genes of each
group (“guilt-by-association” rule, Walker et al. (1999)).

Among supervised machine learning techniques, Support Vector
Machines (SVMs) (Cortes and Vapnik (1995)) have been one of the
most successful approaches to predict gene function, as has been
shown by several works (Brown et al. (2000); Mateos et al. (2002);
Yang (2004); Barutcuoglu et al. (2006)). However, despite their the-
oretical advantage in terms of classification accuracy, in practice,
SVMs present the mayor inconvenience of operating as a black-
box (Barakat and Bradley (2010)). Although additional techniques
can be applied to extract comprehensible semantic information from
SVM models, their application is not straightforward and is usually
restricted to linear-SVM models (Guyon et al. (2002); Fung et al.
(2005); Wang et al. (2009)). In the general case of non-linear SVMs,
the transformation of the data to high-dimensional spaces complica-
tes any interpretation of the SVM solution. In our experience, this
is a mayor limitation for gene function discovery, as understanding
the predictions is a key aspect to evaluate their biological soundness
and guide research. This aspect is even more critical considering
the incomplete nature of annotations and the capability of genes to
have multiple functions, which prevents obtaining an error-free gold
standard and thus, evaluating the absolute accuracy of the methods
(false-negative problem, Mateos et al. (2002); Jansen and Gerstein
(2004)).

1 GO annotations date: November 09, 2010
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In contrast to supervised black-box methods, many semi-
supervised approaches have emerged based on simpler, but bio-
logically sound concepts, such as coexpression and the “guilt-by-
association” rule (Eisen et al. (1998); Walker et al. (1999); Kim
et al. (2001); Stuart et al. (2003); Blom et al. (2008); Horan et al.
(2008); Vandepoele et al. (2009); Lee et al. (2010); Ogata et al.
(2010); Bassel et al. (2011)). The basic assumption in these methods
is that if a group of genes shows synchronized (correlated) expres-
sion patterns, then there is a high chance for them to participate in
a common biological process. Common techniques used to group
genes are clustering (Eisen et al. (1998); Alon et al. (1999); Horan
et al. (2008)), biclustering (see Madeira and Oliveira (2004); Tanay
et al. (2005); Prelić et al. (2006) for reviews), and coexpression
networks (Stuart et al. (2003); Vandepoele et al. (2009); Bassel et al.
(2011)).

Unfortunately, current methods based on coexpression networks
do not offer the accuracy of supervised methods to predict gene
function, as we show in this work by comparing the performances
of coexpression networks and SVMs. Furthermore, their classifi-
cation strategy poses some relevant inconveniences. In particular,
the selection of a suitable correlation threshold to define coex-
pressed genes is often difficult and arbitrary. Furthermore, both
coexpression networks and clustering rely on global coexpression
patterns, meaning that genes need to be coexpressed in a large pro-
portion of the data in order to be grouped together. Usually, this
data involves hundreds or thousands of microarray experiments,
each measured under a wide range of experimental conditions, such
as different time points, tissues, environmental conditions, gene-
tic backgrounds, and mutations. In this scenario, expecting global
coexpression becomes a strong imposition and limitation.

The previous observation has motivated the development of biclu-
stering algorithms (Cheng and Church (2000)). The main idea
behind biclustering is to find clusters of genes that coexpress in sub-
sets of experimental conditions. After the seminal work by Cheng
and Church (2000), an extensive list of biclustering approaches
has been developed (see Madeira and Oliveira (2004); Tanay et al.
(2005); Prelić et al. (2006) for reviews). However, besides their
theoretical advantages, these approaches have not been extensi-
vely used in practice. Based on our experience, the unsupervised
local search of experimental conditions often leads to clusters with
genes from a broad range of functions, thus, limiting their discri-
minative properties. This problem is even worse considering the
noisy nature of microarray data, which often leads to the disco-
very of biologically meaningless biclusters. Selecting datasets in a
“condition-dependent” fashion should more precisely identify gene
interactions relevant to a specific biological question at hand (Bas-
sel et al. (2011)). However, given the amount of expression data
available today, manual selection of the relevant conditions is not a
practical solution in most cases.

To overcome the state of the art limitations exposed above and
aid gene functional research, we present Discriminative Local
Subspaces (DLS), a novel machine learning method that discri-
minatively predicts new genes involved in a biological process of
interest by building a discriminative coexpression network. DLS
takes advantage of the discriminative nature of supervised lear-
ning, while maintaining the expressiveness of coexpression network
approaches.

Unlike other coexpression based methods, DLS exploits the exi-
sting knowledge available in GO to construct informative training

sets. These training sets guide the search of suitable subsets of expe-
rimental conditions containing expression signatures. An expression
signature corresponds to a discriminative expression pattern with
two key properties: i) It is defined in a local subspace of the data
(i.e. a particular gene and a subset of experimental conditions) and
ii) It is highly discriminative (exclusive) for the positive training
genes associated to a biological process of interest. As a further fea-
ture and to tackle the inherent noise of negative training sets (genes
not related to a biological process), DLS incorporates a procedure
that iteratively predicts false negative genes and refines the training
set in order to improve its prediction performance.

The discriminative nature of expression signatures allows DLS to
reveal novel coexpression associations for the selected process. In
contrast to discriminative black-box models, such as SVMs, these
predicted associations can be exposed in the context of a discrimi-
native coexpression network, giving the scientist the possibility to
visualize, evaluate, and interpret the predicted associations.

Unlike traditional Coexpression Networks (CN), DLS does not
rely on a predefined and fixed correlation threshold to construct the
networks. Instead, DLS uses a Bayesian probabilistic approach that
adaptively derives a confidence score for each predicted associa-
tion. A network is then constructed based on a desired minimum
confidence, which is translated into different correlation thresholds
depending on the discriminative level of each signature.

In order to test the prediction power of our method, we use an
Arabidopsis thaliana expression dataset containing 2017 microarray
slides. We compare DLS performance with respect to CN and two
versions of SVM, linear-SVM and RBF-SVM. The accuracy and
predictive power of the methods are tested using cross-validation
and testing the enrichment of year 2008 predictions in new 2010
annotations, respectively, over 101 GO biological processes. Our
results reveal that DLS attains superior average accuracy and similar
predictive power than RBF-SVM. Also, they show a clear advan-
tage for DLS over linear-SVM and CN in both tests. Remarkably,
they show that unlike SVM and CN, DLS is able to systemati-
cally improve its predictive power when increasing the number of
available experimental conditions.

The rest of the paper presents the details behind DLS method
(Section 2), our experimental setup (Section 3), the main results
(Section 4) and our principal conclusions of this work (Section 5).

2 METHODS
DLS consists of four main consecutive steps: pre-processing of raw data,
construction of a labeled training set, training and classification (or predic-
tion). Additionally, DLS has two relevant steps for gene function prediction:
the construction of a discriminative coexpression network of predictions and
the discovery of potential false negatives in the training set. We detail next
eah of these main parts that compose the proposed DLS method.

2.1 Expression data pre-processing
A key aspect to use massive microarray data to perform effective gene
functional predictions is to apply suitable pre-processing steps to extract
informative features and to handle the noisy nature of raw expression data.
We consider a generic case, in which we have a dataset containing mul-
tiple microarray experiments, each performed in replicates among several
experimental conditions and coming from different sources. We organize
this dataset in M control-test pairs of experimental conditions. These pairs
can be manually defined by an expert or by using the automatic procedure
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described in the following paragraph. For each defined pair, we apply the
RankProducts algorithm (Breitling et al. (2004)), which provides a statisti-
cal methodology to find the significance level between expression changes of
genes over two experimental conditions with replicates. From this procedure,
we obtain a N ×M matrix XLR with N genes andM log-ratio expression
features, each corresponding to the logarithm of the fold change between the
gene expressions in the test with respect to the control condition. The sta-
tistical significance of each change is provided in a second N ×M matrix
XFDR containing false discovery rates (FDR). In few words, a small FDR
value indicates that the corresponding change has a highly consistent rank
among the replicates of the compared experiments and thus, a low probabi-
lity of being a false positive detection (Breitling et al. (2004)). The XFDR
matrix is used by DLS to guide the search of discriminative expression pat-
tern in XLR, by favoring the features with significant expression changes.
A schematic view of this process can be seen in Figure S1 of Supplementary
material.

Manual definition of control-test pairs of experimental conditions can be
a tedious and time consuming task when using public databases containing
thousands of microarray slides. Unfortunately, few public databases provide
well formatted annotations and labels for the available slides. Thus, in most
cases it is impossible to systematically find the control-test pairs of con-
ditions originally defined for each experiment. However, in many cases it
is possible to define which slides are replicates and which are part of the
same experimental set. Thus, we propose an automatic procedure that uses
this information in order to generate all possible pairs of conditions within
a given experimental set, generating one log-ratio feature vector for each of
them using the RankProducts method. Thus, if an experiment has Nc diffe-
rent conditions, our procedure generatesNc(Nc−1)/2 log-ratio expression
features. In order to minimize the redundancy that this procedure might
generate, we consider a feature vector only if it does not have a high cor-
relation with any of the already added features of the same experiment. In
the dataset used in this work we define as high a correlation greater than
0.9. Although this procedure might generate some biologically meaningless
comparisons, they should not affect the performance of DLS, because its
automatic selection of discriminative features should filter non informative
features. Moreover, even if some unexpected informative comparisons are
found, these may provide new biological insights about the predictions and
the process.

2.2 Training set: acquisition of functional labels
In order to search for discriminative expression patterns for a specific bio-
logical process of interest BP , DLS needs a labeled training set of genes.
Each training gene must be labeled as positive or negative, depending if
the gene participate or do not participates in BP , respectively. DLS deri-
ves these labels using the gene annotations available in Gene Ontology (GO)
(Ashburner et al. (2000)). These annotations are organized hierarchically as
a directed acyclic graph (DAG) of functional terms, going from the most
general term, at the root node, down to the most specific terms, at the leaves
of the graph. A relevant fact of this hierarchical organization is the upward
propagation of functional annotations. More precisely, genes that receive
a direct annotation at a specific level of the hierarchy, also inherit all the
functional annotations of their more general ancestors in the hierarchy.

The derivation of positive classC1
BP consists of selecting the genes anno-

tated directly or by inheritance in GO-terms related to BP . Optionally, this
list can also be customized by the user. The derivation of the negative class
C0
BP is a more ambiguous task, mainly due to the missing functional labels.

In effect, the list of annotations in GO is still incomplete, therefore, it does
not preclude that a gene not annotated with a particular biological process
might indeed participate in it. Furthermore, the almost total absence of nega-
tive annotations and the ability of genes to be involved in multiple biological
processes add extra complications. We face these inconveniences by using
the multiple GO annotations of the positive genes to build a set C0

BP com-
posed of genes that have a low chance of being involved in BP . Our main
intuition is that GO-terms containing a substantial number of positive genes

are likely to be functionally related to BP , and hence, they have a high cha-
nce to contain genes involved inBP . Following this intuition, we consider a
GO-term as negative if it contains no more than a percentage p of genes
already included in C1

BP . Consequently, the negative training set C0
BP

is formed by genes that have at least one direct annotation in a negative
GO-term and do not have annotations in positive (non-negative) GO-terms.
According to our experiments, a value of p = 5% provides a good trade-off
between the rates of false and true negatives. To handle the case of misla-
beled genes, DLS also incorporates a false negatives discovery option that
helps to refine the training set (details in section 2.6).

2.3 Training: identifying expression signatures
The aim of the training scheme used by DLS is to identify a set of suitable
expression signatures for the biological process of interestBP . Each expres-
sion signature is defined by a discriminative local subspace of the expression
data matrix XLR described in Section 2.1. The core of this scheme is based
on four concepts about gene expression:

1. Coexpression: genes exhibiting coexpression patterns are likely to be
coregulated, and hence, they are likely to participate in a common bio-
logical process. Consequently, DLS uses the positive genes C1

BP to
search for characteristic coexpression patterns for genes involved in
BP .

2. Subspaces: genes participating in the same biological process are
usually not coregulated under all cellular conditions. Consequently,
DLS searches for coexpression patterns among subsets of experimental
conditions.

3. Discrimination: genes not sharing a common biological process may
coexpress under some experimental conditions. Consequently, DLS
uses the negative genes C0

BP to filter out non-discriminative subsets
of conditions where positive and negative genes show coexpression
patterns.

4. Locality: genes participating in the same biological process might
be regulated by different transcription factors and hence, they might
coexpress under different experimental conditions. Consequently, DLS
independently searches for a suitable subset of discriminative condi-
tions for each positive gene in C1

BP .

In agreement with the previous concepts, the core of the training process
consists of a feature selection algorithm that looks for a suitable expression
signature for each gene gi ∈ C1

BP , by selecting a subset of features where
gi shows a strong coexpression with genes inC1

BP and a weak coexpression
with genes in C0

BP . This feature selection algorithm explores the space of
possible subsets of features using the Expression Signature Score presented
in Equation 1. This score evaluates the discriminative power of each potential
subset (pattern). Once the feature selection scheme is finished, each positive
gene gi ∈ C1

BP has an associated subset of features fsel corresponding
to the most discriminative expression pattern found by signFS. However,
only expression patterns having anESS(gi[fsel]) > 0 are selected as valid
expression signatures and used in the classification process. We describe next
the details of the ESS score and then the main steps behind the operation of
the feature selection scheme.

2.3.1 Expression signature score Let vector fsel be a subset of the
total set of available features. Also, let gi[fsel] be the expression pattern of
gene gi considering only the features in fsel (i.e. gi[fsel] = XLR(i, fsel).
Then, the expression signature scoreESS of gene gi for a subset of features
fsel is defined as:

ESS(gi[fsel]) = w1 · Score1(gi[fsel])− w0 · Score0(gi[fsel]), (1)

where Score1(·) and Score0(·) are functions that quantify the level of
coexpression of gene gi with respect to the set of genes in C1

BP and C0
BP ,

respectively, considering only features in fsel. More precisely,
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Score∗(gi[fsel]) =
∑

j∈C∗
BP

sgd(coexp(gi[fsel], gj [fsel])), (2)

where coexp(·, ·) measures the coexpression between two patterns and
sgd(·) corresponds to a sigmoidal function used to establish a continuous
threshold to separate strong from weak coexpressions. The shape of this
sigmoidal function was tuned for best performance for function prediction
using tests described in Section 4 and taking into account our biological and
mathematical knowledge (Figure S2 of Supplementary material). As a result,
the function returns values between 0 and 1, being close to 0 for coexpres-
sions with values below 0.6 (weak), and above 0.5 for coexpressions above
0.8 (strong).

To measure coexpression between the expression patterns of two genes
gi and gj considering features in fsel, we use the absolute value of the
cosine correlation, which can be expressed as the dot product of two vectors,
normalized by their respective magnitudes:

coexp(gi[fsel], gj [fsel]) = abs(cos corr(gi[fsel], gj [fsel]))

= abs

(
gi[fsel] · gj [fsel]
‖gi[fsel]‖‖gj [fsel]‖

)
. (3)

The cosine correlation (cos corr) returns a continuous value between 1

and −1, taking a value of 1 if the two patterns are correlated, −1 if they
are negatively correlated, and 0 if they change independently. We use the
absolute value abs(·) to capture positive and negative correlations indisti-
nctively among genes, which improves the prediction performance in our
test. Despite its simplicity, we consider this measure more suited than the
traditional Pearson Correlation Coefficient (PCC) to measure coexpression
in log-ratio expression data, in which each feature is a comparison in itself
between two conditions. This can be more clearly seen by the following
example: consider the log-ratio expression patterns of genes g1 = [1, 1, 0, 0]
and g2 = [0, 0,−1,−1]. Intuitively, analyzing these two patterns, we
do not expect any relation between their corresponding genes, because the
expression of gene g1 is not affected at all when gene g2 changes (i.e.
g1 == 0 ↔ g1 6= 0), and vice versa. This is very well expressed by
the cosine correlation, which returns a value cos corr(p1, p2) = 0. Con-
trarily, the PCC only considers the relative changes within the features of the
patterns, which in this example are perfectly synchronized, thus returning a
PCC(p1, p2) = 1, the opposite from what we expect.

In Equation (1), w1 and w0 weight the influence of Score1(·) and
Score0(·), respectively; w1 is used to penalize expression signatures with
a small number of features (details in Section 1 of Supplementary material),
whilew0 is a parameter that allows us to adjust the level of discrimination of
the expression signatures providing discriminativity, but avoiding overfitting
the training samples.

2.3.2 Feature selection The feature selection algorithm uses theESS
score in Equation (1) to find a suitable expression signature for each positive
gene gi ∈ C1

BP . An exhaustive search however is not possible, because
it requires the evaluation of 2M − 1 possible subsets of features for each
positive gene. Consequently, we use an iterative and fast exploration scheme,
referred as signFS, which uses suitable heuristics to efficiently search for
discriminative expression signatures.

Given a gene expression pattern gi = XLR(i, :), signFS starts by sele-
cting an initial set fsel(0) of features where gene i significantly changes its
level of expression. We define as significant a change with a FDR value lower
than 0.1 inXFDR(i, :). Afterwards, signFS performs an iterative process
that, at each iteration t, adds and/or removes (swaps) a suitable subset of fea-
tures Ft from fsel(t) that increases the expression pattern score ESS(·),
such that the resulting subset fsel(t+1) provides better discriminative pro-
perties for gene function prediction. This iterative process continues until
consecutive modifications of fsel(t) do not increase the respective score
ESS(·). Details about the scheme used to select the subset Ft can be seen
in Section 2 of Supplementary material. This scheme favors the selection of
features with highly significant changes, by limiting the features that can be

added on each iteration t, to the 20% of the features not in fsel(t) with the
lowest FDR.

2.4 Classification: using expression signatures to
predict new gene associations

The aim of the classification scheme used by DLS is to predict new genes for
a biological process of interest BP . In few words, as expression signatures
are discriminative, DLS considers that if a gene is highly coexpressed with
the expression signature of a gene in C1

BP , then it is likely to be involved in
BP .

A relevant issue with respect to the previous classification scheme is that
not all the expression signatures have the same potential to predict func-
tional associations. In effect, this potential depends on several factors such
as type of gene, type of biological process, level of noise in the data, and
biological complexity of interprocess co-regulations. DLS overcomes these
issues by using a Bayesian inference approach that allows it to adaptively
decide the minimum coexpression level needed by each signature to pre-
dict a gene with a given confidence. Consider a hypothesis h representing
that an unknown gene gj belongs to the positive class C1

BP . Also, consider
evidence e indicating that gene gj has a coexpression level L with respect
to expression signature ES(gi). We can estimate the posterior probability
P (h|e) by using the Bayes rule: P (h|e) = P (e|h) · P (h)/P (e).

The prior probability P (h) can be estimated directly from training data,
by calculating the proportion of positive versus negative genes in the training
set. The estimation of the likelihood term P (e|h) is not so straightforward,
as we need to estimate the probability density function (pdf) of the coex-
pressions with respect to ES(gi). In this work, we estimate P (e|h) using
a kernel based density function estimation (Parzen (1962)). Given a data
sample xi and a bandwidth σ, we use a Gaussian kernel function K(x) =

N(xi, σ), which measures the influence of sample xi in a location x of the
input space. The bandwidth σ is a parameter that controls the smoothness of
the density estimation and it is optimized using the cross-validation analysis
described in Section 3.

Using the previous procedure, a gene gj is predicted as positive by an
expression signature ES(gi), if the coexpression L between them results in
a confidence P (h|e) greater than a desired threshold. A graphical example
of the above procedure can be seen in Figure S3 of Supplementary material.

2.5 Construction of a discriminative coexpression
network

One of the main features behind DLS is its ability to represent its predic-
tions as a discriminative coexpression network (DCN), providing additional
insights about the predictions and the biological process of interest. For-
mally, a DCN for a biological process BP is defined by a graph GBP =<

V,E >, where vertices in set V represent genes, and edges in set E repre-
sent predictions from expression signatures to other genes. More precisely,
there is an edge from gene gi ∈ C1

BP to gene gj , if there is an expression
signature ES(gi) predicting that gj is related to BP with a confidence gre-
ater than a predifined threshold. In order to construct a DCN that involves
all the genes related to BP , DLS applies the classification method to all the
N genes in matrix X , including the ones in CBP used for training. This
allows DLS to display the connections between training genes and predicted
genes, but also to expose relevant relations among the positive genes, known
to be involved in BP . Additionally, it allows DLS to compute relevant sta-
tistics for the graph structure, such as the node degree of the genes in the
DCN, which can give additional insights about the genes that are central and
highly coordinated in the process.

2.6 Overcoming the false negatives problem
One of the most relevant issues in using supervised learning methods to
predict gene function is the false negatives (FNs) problem. In Section 2.2,
we present a method to obtain an informative negative training set C0

BP .
Unfortunately, due to the inherent complexity of gene behavior and the
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incompleteness of annotations it is not possible to obtain a negative set with-
out mislabeled genes, which may damage the prediction performance and
evaluation.

To tackle the previous problem, we add the option of a bootstrap step
to our training algorithm, which is able to automatically identify, and tem-
porarily discard from the set C0

BP , genes that are potential FNs. More
specifically, this strategy is applied at the start of each iteration t of the
feature selection algorithm signFS, performed in the training of each posi-
tive gene gi. The strategy discards a negative gene gj from iteration t if its
coexpression with gene gi, using the selected features in fsel(t), satisfies 2
conditions: i) it has a value of at least min FN coexp, ii) it is among the
top pfn% most highly coexpressed negative genes. Notice that these poten-
tial FN genes are not discarded permanently from the negative training set,
but they are only not considered in the evaluations of the patterns genera-
ted during step t. At the end of the training process, the method outputs the
potential FNs detected by each expression signature.

The bootstrap option explained above allows us to avoid overfitting pro-
blems due to the presence of FNs in the training set, however, it may affect
the discriminative level of the signatures by ignoring some true negatives
during the training process. Thus, we develop an iterative method, False
Negatives Discovery (FND), that takes advantage of this option in order to
predict FN genes in a more precise and informative manner.

Initially, the list GFN of potential FNs contains all negative genes in
C0
BP (GFN = C0

BP ). Then, each iteration of the method applies three con-
secutive steps, used to incrementally bound and refine the list GFN . In the
first step, a model is trained using the bootstrap option explained in the pre-
vious paragraph. GFN is then bounded to the potential FN genes detected
by at least one trained signature. In the second step, the trained signatures
are used to classify the genes in GFN , filtering out the ones not predicted
as positive. Finally, in the third step, the training algorithm is used to search
for a suitable expression signature for each gene in GFN . This algorithm is
used without the bootstrap option. Then, a gene gj inGFN is predicted as a
false negative if the method is able to find an expression signature ES(gj)
that satisfies two conditions: i) ESS(gj [fsel]) > 0 (Equation 1), and ii)
Score1(gj [fsel]) (Equation 2) is greater than the average Score1(·) obtai-
ned among the valid expression signatures of the positive class C1

BP . The
first condition imposes to the predicted FNs to be discriminatively conne-
cted to other positive genes, while the second condition imposes them to be
at least as connected as an average positive gene.

The three steps described above are executed iteratively by the FND
method, automatically moving the predicted false negatives to the positive
set of the next iteration. The method stops if no new false negatives are pre-
dicted or if a maximum number of iterations are reached. After performing
the FND method, the training set can be refined, either by eliminating the
predicted false negatives from the negative set or by moving them to the
positive set. This refined set is then used to train a DLS model and obtain the
final predictions.

3 EXPERIMENTAL SETUP
A systematic evaluation was done using an Arabidopsis thaliana expres-
sion dataset and 101 GO biological processes. We compare the performance
of DLS with two widely used state-of-the-art algorithms: Support Vector
Machines (SVM, Brown et al. (2000)) and Coexpression Networks (CN,
Vandepoele et al. (2009)).

For the tests we used two expression datasets, pre-processed as descri-
bed in Section 2.1, but using a different procedure to define the control-test
pairs of experimental conditions. In the first dataset, M = 643 pairs were
manually defined by an expert, starting from a raw dataset containing 2017

A. thaliana ATH1 microarray slides (including replicates). We refer to this
dataset as the expert-dataset. For the second dataset, a total of M = 3911
features were derived by the automatic procedure described in Section 2.1,
starting from an updated raw dataset containing 3352 slides. We refer to this
dataset as the automated-dataset. Most slides were obtained from NASC’s

International Affymetrix Service (www.affymetrix.arabidopsis.
info).

The evaluations consider the selection of 101 representative GO-terms of
the 3500+ GO-terms available for A. thaliana in the biological process onto-
logy. The selection was done using the annotations available in GO on May
8, 2008. First, we filtered out all the annotations with IEA evidence code
(Inferred from Electronic Annotation), as they are not reviewed by a cura-
tor. Then, we selected representative functional GO-terms using a depth-first
strategy, searching for the first GO-term of each branch containing between
30 and 500 annotated genes. This selection is representative in the sense
that all the branches of the GO DAG are represented by at least one GO-
term in our selection. In other words, all the GO-terms that were filtered
out are either subcategories (descendants) or broader categories (ancestors)
of at least one of the selected GO-terms. The complete list of selected GO-
terms is available in a Supplementary material spreadsheet file. All of them
are level 2 to 6 in the GO hierarchy and cover a wide range of biological
processes, such as responses to different stimulus and various metabolic and
developmental processes.

We derived a labeled training set for each selected GO-term, as described
in Section 2.2. The number of positive genes in these training sets varies
from 30 to 474, with an average of 162 genes. The number of negative genes
varies from 1011 to 4112, with an average of 3105 genes. As can be seen,
negative training sets are much bigger than positive ones, which is expected,
because most genes are not involved in a particular biological process.

Cross-validation tests were done using three 10-fold cross-validation tests
over each GO-term. Each test was performed using a different 10-fold
partition. As evaluation metrics we used:

Precision =
|TP |

|TP |+ |FP |
, Recall =

|TP |
|TP |+ |FN |

Fβ − score =
1 + β2

1
recall +

β2

precision

, (4)

where |TP |, |FP |, and |FN | correspond to the number of true positi-
ves, false positives, and false negatives, respectively. Precision measures
the proportion of positive predictions that are correct. Recall measures the
proportion of positive genes that are predicted as positive. Finally, the Fβ -
score provides a joint evaluation of both precision and recall, by calculating
their harmonic mean. The β parameter controls the weight given to precision
with respect to recall. In our tests we used β = 2 (F2-score), in order to
favor accurate models over models with high recalls but large false positive
rates.

In addition to the cross-validation analysis, an alternative, more realistic
evaluation was done, testing the enrichment of new annotations available
on September 7, 2010, in the positive predictions of each method trai-
ned using the annotations of year 2008. This enrichment was tested using
a hypergeometric distribution and a p-value threshold of 0.1 to consider
enrichment.

In order to facilitate the analysis of the results, we summarize them
using three criteria. The first criterium consists of counting the number
of GO-terms in which each method attains useful predictions. In the case
of cross-validations, we consider as useful the GO-terms with precisions
greater than 0.33, meaning that at least one out of three predictions are
correct (Figure 1A). In the case of enrichment analyses, we consider as
useful the GO-terms attaining enriched predictions (Figure 2A). The second
criterium consists of evaluating the average performances of the methods
considering the 101 tested GO-terms. In cross-validations, we include pre-
cision, recall, and F2-score averages (Figures 1B, 1C, and 1D), while we
include p-value averages for the enrichment analyses (Figure 2). Finally,
the third criterium consists of a pairwise comparison of the performances
of the methods over each GO-term. Given two methods A and B, we count
the number of GO-terms in which A outperforms B and vice versa. Only
GO-terms with useful predictions are counted. The F2-scores and p-values
were considered as performance measures for cross-validations (Figure 1E)
and enrichment analyses (Figure 2C), respectively.
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The workflow used for the evaluations is as follows. We first perform
cross-validation and enrichment analyses using the expert-dataset as descri-
bed above. The automated dataset is evidently more prone to both useless
and redundant features, as some of them may be defined using biologi-
cally meaningless comparisons. Thus, the expert-dataset is used in order to
ensure quality control-test condition pairs for the evaluations. Additionally,
we perform enrichment analyses using the automated-dataset with two speci-
fic aims: i) test the potential of the automated-dataset for function prediction;
and ii) test the performance of the methods in datasets with an increasing
number of conditions (features). Thus, in addition to the complete dataset of
M = 3911 features, we use two additional smaller datasets, defined by a
random selection of M = {1000, 2000} features.

In terms of the evaluated methods, we use the configuration and parame-
ters providing the higher average F2-score in the cross-validation analysis.
In the particular case of the proposed method, we report the performance
of two alternative configurations, one using the False Negative Discovery
method (FND-DLS), described in Section 2.6, and other without using it
(DLS). In the case of FND-DLS, the final predicted false negatives are added
to the positive training set. For the SVM method, we use the implementa-
tions available in the LIBSVM library (Chang and Lin (2001)). Similarly
to Brown et al. (2000), we tested four types of kernels: radial basis kernel
(RBF), linear kernel, and two polynomial kernels with degrees equal to two
and three, respectively. As reported by Brown et al. (2000), RBF-SVM show
the best performance. However, linear-SVMs have the advantage of being
more easily interpreted and thus, provides a good reference point to compare
the performance of our method. Consequently, we report the results of both,
RBF-SVM and linear-SVM. For the CN method, we construct the networks
using the cosine correlation metric. Predictions are performed using a guilt-
by-association criteria, using the hypergeometric distribution and Bonferroni
correction for multiple tests. We tested five networks, constructed using the
cosine correlation metric and applying thresholds of 0.5, 0.6, 0.7, 0.8, and
0.9, respectively. Also, we tested three p-value thresholds, 0.1, 0.05, and
0.01. We report the results of the CN model using a correlation and p-value
thresholds of 0.6 and 0.1, respectively, as this provides the higher average
F2-score.

The code and data to run these analyses over each method are available
for MATLAB R© programming software and can be downloaded from the
link provided in the Availability Section.

4 RESULTS AND DISCUSSION
The results of cross-validation and enrichment analyses using the
expert-matrix are summarized in Figures 1 and 2, respectively. The
results of the enrichment analysis using the automated-matrix are
summarized in Figure 3. The complete report of results can be found
in Supplementary material spreadsheets available online. The rest of
this Section presents and discusses these results.

FND-DLS shows the best overall prediction performance
Our results show that FND-DLS outperforms all competing meth-
ods, while RBF-SVM consistently attains the second best perfor-
mance. In the case of the cross-validation analysis, FND-DLS
attains useful predictions (precision > 0.33) in 96% of the consi-
dered GO-terms, corresponding to 15%, 24%, 33%, and 49% more
GO-terms than RBF-SVM, DLS, linear-SVM, and CN, respectively
(Figure 1A). Also, it attains an average F2-score of 0.44, while
RBF-SVM, DLS, linear-SVM, and CN attain averages equal to 0.29,
0.22, 0.20, and 0.15, respectively (Figure 1B). Although FND-DLS
attains better average precisions than the other methods (Figure 1C),
its supremacy in terms of the F2-score is mostly explained by its
higher recalls. FND-DLS attains an average recall of 0.29, while

RBF-SVM, DLS, linear-SVM, and CN attain average recalls equal
to 0.11, 0.11, 0.08, and 0.10, respectively (Figure 1D).

We see four main factor that may explain the overall small recalls
obtained by the methods: i) Some genes may be regulated under
experimental conditions not available in the expression dataset; ii)
Some genes may not be regulated at a transcriptional level and thus,
may not have (common) expression patterns; iii) Due to missing
functional labels, some genes may be regulated by (or regulate) only
genes not present in the positive training set and thus, it may be
impossible for the methods to discriminate them; iv) False nega-
tive (FNs) genes may share and mask some discriminative patterns
present among positive genes.

The importance of the two last factors is evident in the mayor
improvement achieved by FND-DLS over the other methods, but
mostly when compared with DLS, as they only differ in the execu-
tion of the process to discover FNs. Note that cross-validation tests
are performed over partitions of the training sets. As a consequence,
the presence of false negatives leads to underestimated evaluations
of the performances of the methods. In this sense, it may be seem
obvious for FND-DLS to attain better precisions, as it moves the
predicted FNs out of the negative sets, which are then used to test its
precision. However, the predicted FNs are iteratively moved to the
positive set. Thus, if they were negative genes, one would expect
for them to be more associated with other negative genes instead
of positive genes, which in turn, would prevent the FND method to
converge or would decrease the final precisions.

Interestingly, the results of the enrichment analysis confirm
the supremacy of FND-DLS over RBF-SVM, although its overall
advantage is small (Figure 2). In contrast to cross-validation, this
analysis evaluates the enrichment of correct predictions over sets of
genes that are independent from the ones used for training (Section
3). Note that some GO-terms have few or none new genes anno-
tated on the year 2010 with respect to the year 2008 and thus, it
is very difficult or even impossible for the predictions to be enri-
ched. Moreover, the enrichment performance is affected by the same
four factors exposed above for recall performances. Nevertheless,
FND-DLS attains enriched predictions in 53% of the GO-terms,
while RBF-SVM, DLS, linear-SVM, and CN attain enriched pre-
dictions in 52%, 44%, 43%, and 39% of the GO-terms, respectively
(Figure 2A). In terms of enrichment p-values (lower p-values repre-
sent higher enrichments), FND-DLS attains an average of 0.39,
while RBF-SVM, DLS, linear-SVM, and CN attain averages equal
to 0.40, 0.46, 0.54, and 0.55, respectively (Figure 2B).

Discriminative methods, DLS and SVM, provide more
accurate gene function predictions than Coexpression
Networks
Both versions of DLS and SVM outperform CN in all overall
analyses. Although CN obtains similar average recall levels than
SVMs and DLS (without FND), it fails in providing predictions
as precisely as them (Figures 1C and 1D). These results show the
advantages of using discriminative training techniques in contrast
to semi-supervised techniques in attaining accurate gene functional
predictions. This assertion is further supported by the results of the
enrichment analysis.
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Fig. 1. Summary of the results of a 10-fold cross-validation analysis done over 101 representative GO biological processes. FND-DLS consistently shows the
best overall performance, demonstrating the power of our method and the importance of handling false negatives present in training sets. Despite this noise,
all the tested supervised methods show superior prediction performances than the semi-supervised method CN. Figures (A)-(D) are self explanatory. Figure
(E) shows the number of GO-terms in which one method attains better F2-scores than the other (details in Section 3).

Fig. 2. Summary of the results of an enrichment analysis done over 101 representative GO biological processes. The analysis consists of testing the enrichment
of new annotations from year 2010, in the predictions done by each method using annotation from year 2008. FND-DLS and RBF-SVM show the best overall
performances, with a small advantage for FND-DLS. Figures (A),(B) are self explanatory. Figure (C) shows the number of GO-terms in which one method
attains better enrichments (lower p-values) than the other (details in Section 3).
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There is no method to rule them all
Although FND-DLS and RBF-SVM show the best overall perfor-
mances, when comparing the performance at a term-by-term scale,
we can only conclude that there is no method able to attain the best
performance through all GO-terms (Figures 1E and 2C). There are
many factors that can bias the predictability of genes of a biological
process towards one method or another. For example, in GO-terms
related to responses, we see a bias in the predictability towards DLS
in expense of CN, as the responses are usually expressed under spe-
cific environmental or physiological conditions, which DLS is able
to detect due to its local search for discriminative features.

The discriminative and local expression patterns of DLS
provide effective and meaningful predictions
According to the FDR matrix XFDR, 96.2% of the expression
changes in the log-ratio matrix XLR are not significant in the expert-
dataset (considering an FDR < 0.1 for significance), meaning that
on average, genes show differential expression in only 24 (3.8%)
of the 643 features. This sparseness emphasizes the importance of
the selection of relevant features to achieve effective predictions,
as the one performed by DLS. SVMs perform transformations to
more discriminative higher dimensions, which can also be viewed
as an implicit selection of relevant features. However, these implicit
transformations complicate any attempt to interpret the predictions
and extract the relevant data. Thus, besides the prediction power
of DLS, we argue that a key advantage over SVMs and other state
of the art prediction methods is its ability to provide biologically
meaningful and interpretable predictions, while maintaining highly
accurate predictions. Unlike SVMs, DLS is able to visually expose
its predictions in the form of a network, which is both intuitive and
familiar to most scientists in the field. Moreover, unlike both SVMs
and CNs, DLS is able to explicitly reveal the experimental condi-
tions and genes that are relevant for each prediction, by extracting
the features and genes that define each expression signature.

DLS systematically improves its performance as more
experimental conditions are added to the dataset
As stated above, the lack of informative features is one of the factors
that may affect the prediction potential of the methods. In this sense,
the increasing amount and variety of gene expression experiments
represent both an opportunity and a challenge. If the number of
available experiments increases, chances to find informative features
among them also increase. However, the amount of uninformative
and redundant features should also increase, adding extra noise that
must be correctly handled by the prediction methods.

The results of the enrichment analyses performed using the
automated-dataset supports our previous hypothesis (Figure 3).
When using the expert-dataset, containing 643 features, DLS ach-
ieves an overall p-value of 0.46. In contrast, when using the
automated-datasets, containing 1000, 2000 and 3911 features,
its average p-value improves to 0.42, 0.34 and 0.32 respecti-
vely. Linear-SVM also achieves increasing performances in the
automated-dataset, but they are not nearly as prominent as the ones
obtained by DLS. Surprisingly, RBF-SVM is not able to improve
its performance. Furthermore, the performance of CN gets deterio-
rated. Notice that when using the automated-dataset, DLS achieves
the highest overall performance in terms of enrichment.

Fig. 3. Results of enrichment analyses done over gene expression datasets
with an increasing number of features (details in section 3). In contrast to
both SVM and CN, DLS shows a remarkable ability to systematically incre-
ase its performance when more features are added to the dataset. In fact, for
the datasets with M ≥ 1000 DLS outperforms all other methods, showing
the greatest potential to exploit the increasing amounts of gene expression
data.

These results show that DLS is able to overcome the underlying
noise added by the automated-dataset by effectively extracting rele-
vant and informative features. Additionally, they support the use-
fulness of our automatic procedure to generate log-ratio expression
datasets from poorly annotated experiments. But, most remarkably,
they suggest that DLS should be the most benefited method as, in
the future, more microarray experimental data becomes available.

5 CONCLUSION
In this work, we described Discriminative Local Subspaces (DLS), a
novel method that combines supervised machine learning and coex-
pression approaches to effectively predict new genes involved in
a biological process of interest. We introduced four key concepts
that allow DLS to effectively predict gene function: the derivation
of informative training sets of genes by discovering false negative
training genes, the supervised search of discriminative expression
patterns in subsets of experimental conditions (expression signatu-
res), a Bayesian probabilistic approach to derive the confidence for
each prediction, and the construction of discriminative coexpression
networks to represent predictions.

By using an Arabidopsis thaliana expression dataset and 101
GO biological processes, our experiments showed that DLS is able
to provide effective gene functional predictions, with accuracies
comparable to the highly discriminative Support Vector Machines
(SVMs), while maintaining the expressiveness of coexpression
networks (CNs). Interestingly, they also show that, unlike SVMs
and CNs, DLS systematically improves its prediction performance
as more experimental conditions are added to the dataset. Thus,
we believe that the supervised use of coexpression proposed in
this work opens new opportunities to extract meaningful biologi-
cal hypothesis from the increasing amounts of expression data, and
therefore, to cope with the need to understand gene functions and
biological processes.
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