
An Accelerated Algorithm for Density Estimation

in Large Databases Using Gaussian Mixtures

Alvaro SotoA1, Felipe ZavalaA1, and Anita AranedaA2

e-mail: [fzavala,asoto]@ing.puc.cl aaraneda@mat.puc.cl

A1Department of Computer Science

A2Department of Statistics

Pontificia Universidad Católica de Chile

Casilla 306 - Santiago 22 - Chile

Abstract

Today, with the advances of computer storage and technology, there

are huge datasets available, offering an opportunity to extract valuable

information. Probabilistic approaches are specially suited to learn from

data by representing knowledge as density functions. In this paper, we

choose Gaussian Mixture Models (GMMs) to represent densities, as they

possess great flexibility to adequate to a wide class of problems. The

classical estimation approach for GMMs corresponds to the iterative al-

gorithm of Expectation Maximization. This approach, however, does not

scale properly to meet the high demanding processing requirements of

large databases. In this paper we introduce an EM-based algorithm, that

solves the scalability problem. Our approach is based on the concept

1

of data condensation which, in addition to substantially diminishing the

computational load, provides sound starting values that allow the algo-

rithm to reach convergence faster. We also focus on the model selection

problem. We test our algorithm using synthetic and real databases, and

find several advantages, when compared to other standard existing proce-

dures.

1 Introduction

Today, when computers have the power to store and search huges amounts of

data, the process of learning from data is receiving considerable attention (?).

This is specially relevant, as learning can be applied to diverse areas, such as

business, science, and engineering. In particular, our research is inserted in the

context of a larger problem consisting of the detection of rare objects in huge

astronomical databases. The work we present here focuses on the development

of an efficient algorithm to estimate joint probability distributions, that will be

subsequently used to estimate a Bayes Network representing the structure of

the data.

There exists in the literature a wide variety of deterministic and probabilistic

approaches to learning. Probabilistic approaches possess the advantage over

deterministic ones, in that they provide a well known measure of uncertainty.

This is attained by representing knowledge by density functions that can be

learned from data. Problems benefiting from density estimation are, among

others, clustering and estimation of Bayes Networks.

In our research with astronomical databases, the problem is understood as

detecting points located in areas of low density of the underlying distribution.

2

We model the data through Bayes Networks, and we find that the process of

density estimation in each node accounts for almost 90% of the total computa-

tional load. Most traditional approaches to solve the outlier detection problem,

lack of good scalability properties, therefore, they are not applicable to our

problem.

The problem of density estimation corresponds to learning the probabilistic

structure of the process that generates the data. Gaussian Mixture Models

(GMMs) (?) appear as an appealing family of models, as their form is flexible

enough to accommodate to a large variety of distributions. GMMs also posses

the advantage of providing insight about the mechanism that generates the data,

as well as a sound interpretation of the parameters involved. Today, GMMs are

widely used in applications such as target tracking, pattern recognition, and

classification, among others.

In particular, the density function of a given data point in a dataset, x ∈ <d,

corresponds to a GMM with K components if it can be expressed as

p(x) =
K∑

h=1

wh f(x|µh,Σh),

where f(·|µh, Σh) corresponds to a d -dimensional Gaussian distribution with

parameters µh and Σh. Each term wh, commonly called the “weight of the

h-th distribution” corresponds to the relevance of the h-th Gaussian within the

model, and it is subject to
∑

h wh = 1.

The interpretation of GMMs data generation is as follows. We choose one of

K Gaussians, with probabilities wh, h = 1, . . . , K. We generate, afterwards, an

observation from the Gaussian distribution selected in the first step. In other

words, the “world” is composed by K Gaussian distributions, whose sizes are

proportional to their weights in the mixture.

3

The Expectation Maximization (EM) algorithm (?) is the common tool to

estimate the parameters in a GMM,

θ = (µh, Σh, wh, h = 1, . . . ,K). The EM algorithm aims to the maximiza-

tion of the density function of the data as a function of the θ, which is called

the likelihood function.

The EM algorithm is an iterative procedure. At each iteration, it uses its

current estimates of the parameters to compute an indicator of how each Gaus-

sian explains each observation (E-Step). Afterwards, it uses these indicators to

find updated estimations of the parameters in θ (M-Step).

Despite its popularity to estimate GMMs, EM presents a number of defi-

ciencies when applied to large databases. EM is guaranteed to converge to a

maximum of the likelihood function, however, depending on the starting point,

this maximum may correspond to a local one instead of the global maximum.

To overcome this problem, the algorithm is usually run a number of times, using

different starting points. This solution is, however, unfeasible when dealing with

large high dimensional databases, due to the considerable computational load

of the process. In effect, the computational complexity of each iteration of EM

is O(N K d2), where N is the number of points in the database, K the number

of Gaussians, and d the dimensionality of each data point.

An additional problem of the EM algorithm when applied to large databases

arises when we intend to perform model selection. The EM algorithm assumes

that the number of Gaussian distributions involved in the mixture is fixed,

and thus this number is not included in the set of parameters to be updated

during iterations. Traditional approaches estimate the number of Gaussians by

running the algorithm a number of times, using different a priori defined number

4

of Gaussians. The fitted models are compared afterwards using some relevant

goodness of fit indicator. These procedure is again unfeasible when dealing with

large databases.

In this work we propose a new algorithm aiming to overcome the deficiencies

above mentioned. Our approach in based on using a pre-clustering technique

that creates a condensed data tree. A first advantage of using this approach is

that the condensed data provides a sound starting value to initialize the EM

algorithm. This decreases the chances of reaching a local maximum instead of

the global one, while also needing fewer iterations to converge to the maximum.

A second advantage corresponds to the summarization of the data and thus,

EM does not need to sweep over all the observations during iterations, but just

over these summaries.

In terms of model selection, we propose to use an accepting-rejection crite-

rion to visit models with different number of Gaussian components. This algo-

rithm does not need to restart the estimation procedure every time it moves to

a different number of components model. Instead, it provides a way to decide

when to accept or reject the proposed model after the execution of a few iter-

ations of the EM algorithm. We obtain a further acceleration of the algorithm

by introducing a new incremental convergence property.

This paper is organized as follows. In Section 2 we discuss in more detail the

main problems of density estimation using EM, and how previews works have

dealt with these problems. In Section 3 we present our algorithm to accelerate

EM and to solve the model selection problem. In Section 4 we present the results

of applying our approach to synthetic and real databases. Finally, in Section 5

we present the main conclusions of this work.

5

2 Previous Work

Previous works have tried to improve the starting value and scalability problems

of EM using special data structures (?), making just one revision of the dataset

(?), or limiting the size of the data to be considered at each iteration (?).

However, in the last case, Hulten (?) shows cases where sampling is more

expensive than using the complete database.

There are a set of approaches exploiting the non-uniform spread of data

over space (?), (?), (?). In effect, data usually present high density regions,

allowing a simplification of the problem by exploiting the data configuration

through data condensation. In other words, similar data points are represented

by a single structure that summarizes the relevant qualities of the group. An

excellent way to condensate data is using sufficient statistics, which in the case

of GMMs correspond to

∑
xi,

∑
xi xT

i , (1)

as well as the number of observations in each group, and where summations

include all data points in a given group.

Omohundro (?) (?) unifies different types of tree structures under the

concept of Bumptree, based on the idea that each node carries information about

its children. Omohundro develops efficient algorithms to construct these trees,

showing that their use improves the speed of converge of the EM algorithm.

Moore (?) creates a fast algorithm to build balltrees exploiting the capa-

bilities of KD-trees (?), which contain all the data points and the sufficient

statistics in each node. Although KD-trees prove to scale well in the number

of observations, this is not true when increasing the dimensionality of the data.

6

Bradley (?) condensates the data points in a incremental way which is highly

efficient, but once a decision has been made, there is no way to go back, so

when all the data has been processed not further improvements can be done.

Zhang (?) creates a CF-tree which corresponds to a condensed data tree. This

approach provides a method to condensate data in a incremental way without

the need of keeping all the data points. A drawback of this data structure is

that all leaves in the tree are hyperspheres of the same radius, which makes

them inefficient as some of them may include regions with sparse or no data.

A common approach to the model selection problem is to compare models

with different number of Gaussians through the value of their fitted likelihoods.

These quantities may, however, be artificially increased by means of introduc-

ing additional number of Gaussians to the model. One way to overcome this

problem is to consider, instead, the Bayesian Information Criterium (BIC). BIC

evaluates the fit of a model through the likelihood function penalizing for ad-

ditional model complexity, i.e., the excessive number of Gaussians. The BIC

statistic is computed as

BIC(θ) = log(Λ(X; θ))− log(N)
2

p,

where Λ(X; ·) corresponds to the likelihood function, and p corresponds to the

number of parameters in the model. Other criteria for model comparison have

been developed, as the Maximum a Posteriori Probability (MAP) (?), the Min-

imum Description Length (MDL) (?), and the Bayesian Ying-Yang (BYY) (?).

Most previous works, however, suggest better behavior of the BIC statistic over

the others.

Using the BIC model selection criterion, it is possible to compare multiple

fitted models in order to choose the best one. This is not a trivial task, however,

7

when considering large datasets. The X-means algorithm (?) incrementally

modifies a model guided by BIC. In order to do so, it uses K-means (?) as a

fast clustering technique. The main restriction of the X-means algorithm is that

it needs the specification of a range for the number of components to perform

the search. Hamerly (?) shows a similar algorithm that uses a statistical test

based on a projection of all dimensions of the data over a single dimension. His

results seem to be better than the results obtained by X-means, however, the

projection of all dimensions onto a single one may be questioned. A further step

is taken by Sand (?) who proposes KD-Clust, an algorithm based on the idea of

accepting or rejecting potential models obtained by splitting or deleting existing

Gaussians during EM iterations. The results obtained by Sand are promising

but a main restriction corresponds to the number of EM iterations needed to

complete the task.

3 Our Approach

Our approach is based on the idea of summarizing data which is usually called

data condensation. The process of creating condensed data, however, is still

expensive an thus, we must ensure that every calculation results in benefits for

the estimating algorithm. With this goal in mind, we evaluate several data

structures to condensate data, such as KD-trees, Anchor Hierarchy (?), and

Zhang version of CF-trees. Comparing these approaches, we choose to build

our solution upon the idea of CF-trees, as they offer a good trade off between

quality of the results and computational load.

8

3.1 Data Structure

To improve the performance of our CF-tree like algorithm, we introduce some

features that take advantage of the tree structure. In particular, we select the

most relevant part of the tree for each Gaussian. In effect, our tree structure

reduces the number of nodes to be used for each Gaussian by identifying the

specific ones concerned to its domains. To do so, each Gaussian crosses the tree

in a Depth First Search way (?) and prunes the tree when it is no longer useful

to go deeper. When the likelihood of a node under a given Gaussian is above a

certain threshold, the algorithm goes down further in the tree. Otherwise, the

algorithm stops. The last node is kept to represent their children.

As we mentioned earlier, all the leaves in a CF-tree are hyper-spheres with

constant radius. In our implementation, each leaf is initialized with a radius that

is proportional to the variance in each dimension, avoiding volumes containing

little data in them. In order to do so, we compute the range of each attribute

and we define the radius of each leaf as:

r ∝ (Max−Min),

where Max and Min are the vectors containing maximum and minimum values

in each dimension.

Our data structure provides two desirable features to our algorithm that

enables it to scale to large databases. The first feature corresponds to the

direct consequence of condensing data. An adequate summary of the relevant

information allows the algorithm to run iterations with lower computational

load.

A second feature arises as a by-product. As we mentioned in Section 1,

9

avoidance of convergence to local maximums is usually obtained by running the

algorithm a number of times, using different starting values for the parameters.

Since this is unfeasible when dealing with large databases, we need the availabil-

ity of a sound starting point. The tree structure obtained through condensation

provides information in order to do so. If K components are required, we ran-

domly choose K non-repetitive end nodes from the tree, where an end node

corresponds to the deepest internal node of the tree. This means that each end

node represents a set of leaves. The parameters of the Gaussians considered are

obtained through the sufficient statistics presented in Eq. (1).

3.2 Convergence of Gaussian Components

As an additional strategy to diminish the computational load of the algorithm,

we track the change of each Gaussian component. If a Gaussian component

does not change substantially between successive iterations, we stop updating

it. This brings a reduction in the number of components to be considered in

subsequent iterations, therefore providing a faster algorithm.

Changes in the components are evaluated through the Kullback-Leibler (KL)

divergence between two density functions (?), which in the case of Gaussian

distributions corresponds to

1
2
(log

|Σ2|
|Σ1| + Tr(Σ−1

2 Σ1) + (µ1 − µ2)T Σ−1
2 (µ1 − µ2)− d),

where µi and Σi correspond to the parameters of the Gaussians to be compared,

i = 1, 2, and Tr corresponds to the trace function.

10

3.3 Merging, Splitting and Deleting Gaussians

In order to perform model selection during EM iterations, we create an algorithm

based on KD-Clust (?). The main idea of KD-Clust is the proposal of splitting

or deleting existing Gaussian components. One of these jumps, split or delete,

is proposed in a given iteration of the algorithm, and evaluated in a couple of

subsequent iterations. The algorithm decides where to stay with the previous

model or to adopt the proposed one based on the results of those iterations.

We improve the KD-Clust algorithm by adding a merging action. This action

consists of merging the two most similar Gaussians into one that represents both

of them. Again, we use the KL divergence as a measure of similarity.

In particular, our overall split-delete-merge algorithm corresponds to:

1. With probability pjump an action is taken. If so, go to 2. Else go to 4.

2. Save state of the GMM. Choose to merge, split or delete with probabilities

pmerge, psplit and pdelete, respectively. Go to 3.

3. Run EM few− iterations and compare the new fit with the previous one

using BIC criterion. Choose the best model and go to 1 for a new possible

jump.

4. Run EM few − iterations and return to 1 for a new possible jump.

In our study we run the algorithm proposing jumps every 5 and 10 iterations,

obtaining similar results under both schemes.

11

4 Applications of the Algorithm

In this section we compare the results obtained by our algorithm, that we call

an accelerated EM algorithm to estimate GMMs, AGMM-EM. We compare

AGMM-EM to the results of popular existing algorithms, as are regular EM,

KD-Clust (?), and FASTEM (?).

We first present the results obtained by the algorithms when applied to syn-

thetic datasets, generated to evaluate different aspects of the algorithms. To

evaluate the scalability of our algorithm with respect to data size and dimen-

sionality, we generate datasets with the same number of Gaussian components,

K = 10, but increasing the number of observations and dimensions, respectively.

As for model selection, we compare the algorithms when applied to datasets

with K = 10 Gaussian components. Considering that the ability of an algorithm

to detect the right number of Gaussians may depend on how far apart these

Gaussians are, we worked with three kind of databases: little, medium, and

considerable overlap between Gaussians.

We also show the results obtained by our algorithm when applied to two real

databases. The first of them contains several records related to metallic parts,

where the main goal corresponds to the detection of faulty pieces. The second

database contains records related to astronomical objects, where the main goal

corresponds to the detection of anomalies or rare objects.

4.1 Scalability of the Algorithm

Our first experience is designed to evaluate the scalability of our algorithm

when compared to a regular implementation of EM. Since regular EM does not

include a model selection criteria, in this experience we assume that the number

12

of Gaussian components is known, K = 10. We use databases with little overlap.

The starting values for the regular EM algorithm are chosen randomly, while

our AGMM-EM algorithm is initialized using the starting points suggested by

our tree structure. The time to build the tree is added to the first iteration of

the algorithm. Both algorithms are run during 100 iterations.

The quality of the resulting estimated models is shown in Table 1 through

their log-likelihood values. The table shows that our algorithm obtains larger

likelihoods than regular EM, ensuring that our fitted models are as good or

better than the models obtained by EM. We infer that this improvement in

quality of the estimated model is due to a better selection of the starting values.

The scalabilities of EM and AGMM-EM algorithms are compared in Figure

1. The figure shows that the additional time needed by EM, compared to that

of AGMM-EM, increases as data size does. Specifically, in the case of datasize

of 400K, EM takes 64 times the time needed by AGMM-EM to perform 100

iterations.

As for scalability in the number of dimensions, Figure 2 compares the speed

of the EM algorithm when using a data structure that considers all leaves,

to AGMM-EM using selected leaves only. The figure shows a faster behavior

of AGMM-EM. Speed differences between the two algorithms increase as the

dimensionality of the data does.

4.2 Model Selection of the Algorithm

Our model selection approach is built upon KD-Clust algorithm and thus, we

define KD-Clust as the reference algorithm. Performance is evaluated as the

quality of the estimated models in terms of their BIC statistic and their esti-

13

mated number of Gaussian components.

We test these algorithms with the three types of datasets, having little,

medium, and large overlap. We generated bidimensional data with K = 10

Gaussian components. Both algorithms are run during 100 iterations.

Considering that both algorithms present random steps when choosing changes

between the number of components, we run each algorithm several times using

the same databases, and we report here an average of the results.

The results of this experience are shown in Table 2. The table shows that

although our AGMM-EM algorithm presents slightly lower BICs, it provides

better estimation of the true number of Gaussian components, K = 10.

4.3 Speed to Reach an Adequate Model

This experiment is designed to compare our AGMM-EM algorithm against a

well known accelerated algorithm that performs model selection at the same

time. For this purposes we chose FASTEM (?) as the reference algorithm. As

in previous experiences, we work with databases with K = 10 Gaussian com-

ponents. All datasets are created with intermediate overlap. Initial values for

FASTEM are chosen according to the original implementation of the algorithm.

Initial values for AGMM-EM are chosen based on our tree structure.

We start by comparing the scalability of the two algorithms. Both algorithms

were run during 100 iterations and the amount of time required by each of them

is shown in Figure 3. The figure shows that AGMM-EM performs faster than

FASTEM and that the difference between both algorithms increases with the

number of dimensions.

As for the quality of the results, Table 3 shows the BIC statistics and the

14

number of Gaussian found by the algorithms. The table shows both, better

BICs and better estimates of the number of components, for AGMM-EM over

FASTEM.

A last experience was performed to evaluate the speed of the algorithms to

perform good model selection. In order to do so, we compare the qualities of the

estimated models at each iteration, using the BIC statistic. Figure 4 shows that

AGMM-EM finds good models during the first iterations, although the figure

suggests that both algorithms perform similarly when increasing the number of

iterations. As we showed before, the advantage of AGMM-EM consists of its

higher speed to perform the iterations.

4.4 Performance with two real databases

We test our algorithm in the estimation of the structure and probability densities

of a Bayes Networks, where the joint distributions of the nodes of the network

are assumed to follow GMMs. We estimate the structure of the network using

an scoring based approach. As described earlier, we work with two databases.

One of them contains records about metallic parts. The other database con-

tains records about astronomical objects. In both experiences, the estimation

of GMMs consumed almost 90% of the total time needed to build the Bayes

network, showing the importance of an efficient procedure to estimate GMMs.

In our test, the estimation of the Bayes Networks is performed using both,

GMM trained with regular EM and with the AGMM-EM algorithm. The times

needed by both algorithms to reach convergence are shown in Table 4. Consid-

erable savings of time are obtained when using AGMM-EM.

The quality of the estimated models can also be evaluated through the ac-

15

complishment of our final goal: to detect potential anomalies in the databases.

Here we assume that the anomalies are given by the data point with the lowest

likelihood. In particular, in the metallic parts database, we know that it contains

a total of 60 anomalous data points (faulty metallic parts). A Bayes Network

estimated using the regular EM ranked those failures among the first 1,500 ob-

servations with the lowest likelihoods, out of approximately 23,000 observations

in the database. On the other hand, AGMM-EM ranked those failures among

the first 1,000 observations with the lowest likelihoods, showing a better per-

formance than regular EM. Furthermore, AGMM-EM was able to rank 95% of

the failures among the 500 lowest likelihood observations.

5 Conclusions

In this paper we propose two features to enhance the behavior of regular EM al-

gorithm applied to GMMs in large databases. Our first contribution consists of

the use of a new improved version of CF-trees to condensate data observations.

Our condensation algorithm shows to be more efficient than CF-trees. This is

accomplished by both, pruning the tree and allowing leaves to have different

radius. Acceleration of the overall estimation procedure is then obtained in two

ways. The first is a direct consequence of designing a successful condensation

algorithm, as we are able to summarize the data through sufficient statistics

without losing relevant information. On the other hand, our condensation al-

gorithm provides sound starting values for both, the parameters that are to be

updated by EM, and the number of Gaussians used.

In our experiences, we find that AGMM-EM largely outperforms regular EM

16

and FASTEM in terms of their speed to perform a given number of iterations.

Also, our results indicate that the gap between the times needed in each iteration

by AGMM-EM and regular EM, and AGMM-EM and FASTEM, increases when

increasing the number of observations and dimensions, respectively.

Our second contribution relates to model selection. We propose a model

selection strategy that is able to evaluate models with different number of Gaus-

sian components, during iterations of a same run of the algorithm. Our strategy

introduces a new merging operator to an existing algorithm, KD-Clust. Fur-

thermore, our algorithm overcomes several deficiencies of KD-Clust. In effect,

the decision between two models is more efficient as it can be achieved in less

number of iterations that executes faster. Our results indicate that AGMM-

EM achieves better estimates of the true number of Gaussian components than

KD-Clust does.

The highlighted features of our algorithm enables it to be used in a wider

range of applications, as it provides good results in less time. In particular, the

application of the algorithm to two real database to estimate the structure of a

Bayes Network resulted in very encouraging results.

Acknowledgments

This work was partially funded by FONDECYT grant 1030336.

17

Table 1: Log-likelihood achieved by EM and AGMM-EM, after 100 iterations.

Size Loglikelihood

Regular EM AGMM-EM

100K -256.571 -234.452

200K -547.910 -526.537

300K -825312 -817.495

Table 2: Number of components and BIC statistics obtained by KD-Clust and

AGMM-EM algorithm. K = 10 components, 100 iterations.

Overlap KD-Clust AGMM-EM

K BIC K BIC

Minimum 11.7 -223759 10.3 -227192

Medium 14.0 -271716 10.0 -273848

Large 13.3 -292035 10.0 -298618

Table 3: Estimated number of components and BIC statistic for AGMM-EM

and FASTEM. True number of components K = 10.

Dim FASTEM AGMM-EM

K BIC K BIC

3 11 -155904 9 -155626

4 19 -173650 11 -172409

5 11 -205471 9 -203266

18

Table 4: Times needed by regular EM and AGMM-EM to construct a Bayes

Network.

Algorithm

Database Regular EM AGMM-EM

Metallic parts 2 hrs 25 min

Astronomical objects 5 days 251 min

19

Figure 1: Time required by regular EM (solid line) and AGMM-EM (dotted

line) to perform 100 iterations, vs. size of the database.

0

500

1000

1500

2000

2500

3000

3500

4000

100K 200K 300K 400K 500K

Data size

T
im

e
(s

)

Figure 2: Time required by EM using all leaves (solid line) and AGMM-EM

using selected leaves (dotted line) to perform 100 iterations, vs. dimensionality

of the database.

0

50

100

150

200

250

300

5 10 15 20Dimensions

T
im

e
(s

)

20

Figure 3: Time required by FASTEM (solid line) and AGMM-EM (dotted line)

to perform 100 iterations, vs. dimensionality of the database.

0

100

200

300

400

500

600

700

800

3 4 5 6 7

Dimensions

T
im

e
(s

)

Figure 4: BIC statistic of the models obtained by FASTEM (solid line) and

AGMM-EM (dotted line) vs. number of iterations.

-260

-240

-220

-200

-180

-160

-140

-120

-100

1 2 3 4 5 6

Iterations

B
IC

21

