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Abstract This paper describes the main activities
and achievements of our research group on Ma-
chine Intelligence and Robotics (Grima) at the
Computer Science Department, Pontificia Uni-
versidad Catolica de Chile (PUC). Since 2002,
we have been developing an active research in
the area of indoor autonomous social robots.
Our main focus has been the cognitive side of
Robotics, where we have developed algorithms
for autonomous navigation using wheeled robots,
scene recognition using vision and 3D range sen-
sors, and social behaviors using Markov Deci-
sion Processes, among others. As a distinguish-
ing feature, in our research we have followed
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a probabilistic approach, deeply rooted in ma-
chine learning and Bayesian statistical techniques.
Among our main achievements are an increasing
list of publications in main Robotics conference
and journals, and the consolidation of a research
group with more than 25 people among full-
time professors, visiting researchers, and graduate
students.
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1 Introduction

Robotics is reaching a level of maturity that is
starting to allow robots to move out of research
labs. During the last years, diverse companies
have emerged offering a first generation of ro-
bots aimed to operate in partially structured ap-
plications such as lawn mowing [60], building
surveillance [32, 43], and floor cleaning [33, 60],
among others. This new technological scenario
illustrates some of the notable progress in the
field, however, the creation of truly adaptive and
robust robots is still an open research issue. In
particular, research issues such as robust opera-
tion in dynamic environments, high level semantic
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understanding, human-computer interaction, rea-
soning about other agents, knowledge transfer,
real time inference schemes, and integration of be-
haviors and tasks, appear as some of the research
challenges in the cognitive side of Robotics [10].

At Grima [30], our research group on Machine
Intelligence, we are facing some of the previous
challenges by conducting theoretical and applied
research on three main areas: Robotics, Computer
Vision, and Machine Learning. In particular, in
terms of Robotics our focus has been the cre-
ation of new techniques for the development of
autonomous social mobile robots for the case of
indoor environments. Since its inception in 2002,
our group has been actively working in this task.
At present, our group is composed by four full-
time faculty professors and more than 20 graduate
students, including PhDs and MSc.

Autonomous robots able to interact with peo-
ple and to perform useful tasks in indoor envi-
ronments have been a long standing goal for the
Robotics community. Leaving aside hardware and
locomotion issues, this goal requires the devel-
opment and interconnection of a large number
of robot behaviors such as mapping, localization,
path planning, people detection and recognition,
and scene undertanding, among many others. Fur-
thermore, the social aspects of a robot behavior
requires the development of algorithms able to
follow social rules, detect and eventually recog-
nize humans, express emotions, etc. Most of these
issues have marked our research agenda, where
our main efforts have been focused on the cogni-
tive aspects of mobile robotics.

In this paper, we describe our main research
activities and contributions to the area of indoor
mobile robotics. Most of our activities are closely
connected, however, to improve the clarity of this
document, we classify them around three main
lines of research: autonomous indoor navigation,
semantic scene understanding, and social robots.
Accordingly, this paper is organized as follows.
Section 2 describes our progress in autonomous
indoor navigation. Section 3 presents our algo-
rithms for scene understanding. Section 4 presents
our social robot, as well as activities using ro-
bots in the area of education. Finally, Section 5
presents the main conclusions of this work and
future avenues of research.

2 Autonomous Indoor Navigation

Starting from the restrictions of the block world
of Shakey [52] and the static world limitations
of the Stanford Cart [50], the mobile robotics
community has made lots of progress during the
last 50 years. The research emphasis has been on
providing robots with the ability of autonomously
navigate natural environments using information
collected by their sensors. In terms of indoor
environments, one of the main peculiarities is
that globally accurate positioning systems, such
as GPS, are not available. As a result, the prob-
lems of automatic construction of maps of the
environment and accurate estimation of the po-
sition of the robot within a map, tasks known
as mapping and localization, have been highly
relevant. Most practical activities of mobile robots
require that the robot knows its location within
the environment, and this in turn requires that the
robot knows the environment where it is moving.
This has led to research considering the problem
of mapping and localization at the same time,
which has been called the Simultaneous Localiza-
tion and Mapping (SLAM) problem, or the Con-
current Mapping and Localization (CML) prob-
lem [40].

There has been an extensive research literature
dealing with mapping and localization for mobile
robots, e.g. see [5, 19, 69, 72]. The pioneering
development in this area was the paper by Smith
et al. [63] who proposed a SLAM technique based
on the Kalman filter to the problem of estimat-
ing topological maps. For the non-Gaussian case,
Thrun et al. [71] presented a general approach
that can be used with general distribution func-
tions. A more recent successful approach to solve
the SLAM problem is the FastSLAM algorithm
[49]. This approach applies to topological maps,
and is based on a factorization of the posterior
distribution of maps and locations. During the last
couple years new developments in the area of
computer vision have led to intensive research to
the so-called area of visual SLAM, where illustra-
tive papers are [14] and [37]. In our case, our focus
has been on developing new techniques for the
problem of localization and mapping for indoor
wheeled robots. Similarly to most works in this
area [62, 72], our research evolution has closely
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followed advances in the perceptual side, starting
from early work using sonar and basic visual per-
ception routines [66], then using 2D laser range
finders [2, 3], and, more recently, incorporating
3D range sensors and more robust semantic vision
based solutions [22]. As a distinguishing feature,
in all these cases we have followed a probabilistic
approach, deeply rooted in machine learning and
Bayesian statistical techniques. We describe next
some of our contributions to this area.

2.1 Localization and Mapping Using Range
Sensors

In terms of SLAM, in [3] and [2] we present a com-
plete probabilistic representation to this problem.
We consider the case of a robot equipped with an
odometer and range sensors, such as sonars or 2D
laser range finders. We formalize the problem of
mapping as the problem of learning the posterior
distribution of the map given sensing information,
where the map is represented by an occupancy
grid [20]. Our key idea is based on noting that the
posterior distribution of the map is determined
by the posterior joint distribution of the locations
visited by the robot and the distances to the ob-
stacles from those locations. The advantage of this
method is that it does not provide a single estimate
of the map, as the EM-based solution [71], but
it produces multiple maps showing the notion of
variability from the expected posterior map.

Figure 1 shows a graphical representation of
our probabilistic model, where non-observable
variables have been circled for clarity. This rep-
resentation forms the basis of our model and
has some similarities to the work in [51], as well
as to probabilistic graphs of the sort we could
formulate related to Kalman filter approaches.
Our representation was developed in earlier un-
published work and has been implicitly adopted
in [72].

According to Fig. 1, the distribution of the
process is determined by three models. A motion
model [68] describes the dependency of the cur-
rent location, Zt, on the previous one and the cur-
rent odometer reading, Zt−1 and Ut, respectively.
We adopt a Gaussian motion model. A percep-
tion model [68] describes the dependency of laser
readings Vt on the true distances to obstacles, θt.
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Fig. 1 Graphical representation of our approach to the
SLAM problem

We adopt a truncated Gaussian distribution, with
standard deviation σ . The limits of the distribution
correspond to 0 and dmax, where dmax corresponds
to the maximum range of the laser device. Finally,
we need a prior distribution for the map, M. We
assume that cells in the map are independent,
having the same probability of being occupied, p.
These models are discussed in greater detail in [2].

Using these models we derive expressions for
the posterior joint distribution of locations Zt

and distances θt given odometer readings Ut and
range readings Vt. We show that there is no closed
form solution to the posterior, but by exploit-
ing different factorizations of this distribution, we
derive three sampling algorithms based on im-
portance sampling [2]. We test these algorithms
using real data obtained from two indoor office
environments at Carnegie Mellon University and
Pontificia Universidad Catolica de Chile. In both
cases, we obtain maps that closely match ground
true information. Figure 2 shows an example of
the map obtained using raw odometry and laser
data, as well as, the maps obtained using the pro-
posed approach.

After developing tools to build maps from
the environment, in [24] we propose a method
to achieve real time global localization as well
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Fig. 2 a Map obtained from raw odometry and laser data.
b, c Samples from the posterior distribution

as position tracking. This method takes advan-
tage of structural regularities of indoor environ-
ments to speed-up the likelihood estimation step
in a Monte Carlo localization scheme [16]. More
precisely, the proposed Monte Carlo localiza-
tion strategy works over a map of line segments
corresponding to the main walls of the environ-
ment. The likelihood function that computes each
particle weight is based on a Modified Hausdorff
Distance [18]. This provides a score for the match-
ing between line segments extracted from the map
and current laser readings. Additionally, the num-
ber of particles of the Monte Carlo localization
method is adapted, allowing the system to have
a large number of particles during the global lo-
calization phase, where the position of the robot
is unknown, and a reduced set of particles during
the state tracking phase, where the position of the
robot is limited to a small area. We use data from
a real office environment to compare the perfor-
mances of this method and a classic localization
scheme based on a cell to cell comparison using an
occupancy grid representation [72]. Our results in-
dicate that the proposed method converges faster
from global to state tracking localization. Fur-
thermore, the proposed method uses less particles
that in average have higher likelihood values. A
summary of the comparison results is shown in
Table 1.

In further research related to robot navigation,
in [31] we analyze and compare popular path
planning methods for omni-directional robots in

Table 1 Comparison of the proposed robot localiza-
tion method with respect to a point to point traditional
approach

Number of Iterations Average
particles to converge likelihood
(same (best
speed) sample)

Traditional MC 2,700 14 0.91
localization

Proposed 5,000 9 0.94
method

a dynamic environment with the presence of mul-
tiple agents. Also, in [56] we analyze and compare
different estimation and prediction techniques
applied to the problem of tracking of multiple
robots.

2.2 Topological Maps Using Visual Perception

The previous methods are based on 2D metric
representations of the environment. This type of
approaches has shown a high degree of success
when operating in real time in natural environ-
ments [62, 72], however, they suffer from some
limitations. For example, the usual structural sym-
metries of indoor building produce data associa-
tion problems that are hard to solve with the 2D
view of a laser range finder. Furthermore, prob-
lems such as modifications of the environment due
to changes in the position of furniture, uncertain-
ties due to the state of doors, or partial occlusions
due to people walking around, also diminish the
robustness of solutions based on 2D laser range
finders. As a complementary solution to SLAM
methods based on metric maps, we also develop
topological representations of the environment
using visual perception. In particular, in [23] and
[39], we present a method for unsupervised selec-
tion and posterior recognition of visual landmarks
in images acquired by a mobile robot. Figure 3
shows an overall view of this approach.

Our approach is based on a mixture of bottom-
up visual features based on color, intensity, and
depth cues, with top-down feedback given by spa-
tial relations and memories of the most successful
predicting features of previously recognized land-
marks. Our overall goal is to select interesting,
meaningful, and useful landmarks that can be used
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Fig. 3 Schematic
operation of our
approach for
unsupervised selection
and recognition of
relevant visual landmarks.
This approach integrates
attention, segmentation,
and landmark
characterization
mechanisms, in addition
to top-down feedback
mechanisms

by a mobile robot to achieve indoor autonomous
navigation.

The bottom-up approach for the selection of
candidate landmarks is based on the integration
of three main mechanisms: visual attention, area
segmentation, and landmark characterization. Vi-
sual attention provides the ability to focus the
processing resources on the most salient parts of
the input image. This eliminates the detection of
irrelevant landmarks and significantly reduces the
computational cost. Area segmentation provides
the ability to delimit the spanning area of each
potential landmark. As there is no segmentation
method that works properly in every situation, we
adaptively integrate multiple segmentation algo-
rithms in order to increase the robustness of the
approach. The idea is to learn, for each landmark,
the segmentation that provides the best recogni-
tion. Finally, landmark characterization provides
a fingerprint for each landmark given by a set of
specific features. These features allow the system
to recognize and distinguish each landmark in
subsequent images.

We complement the bottom-up landmark se-
lection approach introducing two modalities of
top-down feedback. First, to increase efficiency,
we use an estimation of the robot position to
reduce the searching scope for a potential match
with a previously selected landmark. The estima-
tion of the robot position is based on a Sequential
Monte Carlo Localization method [64] using a
metric map representation augmented with topo-

logical information. Second, to increase robust-
ness, we keep a record of the previous successful
recognitions of each landmark. We use this infor-
mation to bias the influence that each bottom-up
segmentation plays in the recognition. We achieve
this goal by adaptively updating a set of weights
that control the relevance of each segmentation in
the recognition of each landmark.

Figure 4 shows images that highlight the typi-
cal landmarks detected in the sequences. Rectan-
gles with identification labels are superimposed
around new landmarks (ADD) and recognized
landmarks (REC). As an example, Fig. 4c shows
two landmarks that are aggregated to the data-
base, while Fig. 4d shows the recognition of these
landmarks in a posterior frame captured from a
different position.

We perform a more intensive evaluation us-
ing ten video sequences captured by a stereo vi-
sion system in an indoor office environment (see
Fig. 4a). In this case, the images are automati-
cally obtained by a mobile robot navigating inside
an office building. Each sequence corresponds to
the trip of the robot crossing the long corridor
displayed in the map of Fig. 2. The images of
this dataset do not feature relevant illumination
changes but they include moving objects. Given
that our final goal is to achieve autonomous ro-
bot navigation, recall is measured as the number
of times that a selected landmark is correctly
recognized in posterior times that the robot visits
a given place of the environment. To run this
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Fig. 4 a, b Images from
the testing sets. Examples
of typical landmarks
detected by the system
are highlighted. c Two
selected landmarks are
added (ADD) to a
database. d The two
selected landmarks are
recognized (REC) in a
posterior frame taken
from a different point
of view

experiment, we use the ten sequences of the office
dataset. We obtain an average recall performance
of 5.8.

2.3 Active Localization Using Visual Perception

Most state-of-the-art techniques for visual per-
ception are mainly based on passively extracting
knowledge from sets of images. In contrast, a
mobile robot can actively explore the visual world
looking for relevant views and features that can fa-
cilitate the recognition of relevant objects, scenes,
or situations. This type of active visual perception
scheme is highly pervasive in the biological world
where, from human to bees, perceptual actions
drive visual inference [6, 11].

In [12], we use concepts from information the-
ory and planning under uncertainty to develop
a sound strategy to actively control the robot
sensors. As a testbed, we use a differential drive
wheeled robot provided with an odometer on each
wheel and a color camera. This camera has a
limited field of view and is mounted on a pan-
tilt mechanism. By using the odometer, the robot
is able to track its motions. By using the video
camera and suitable computer vision algorithms,
the robot is able to distinguish a set of visual land-
marks that represent the map of the environment.
We assume that the map of the environment is
known in advance.

The basic idea of our localization approach
resides on actively using the pan-tilt mechanism
to direct the visual sensor to areas of the envi-
ronment where the robot expects to obtain the
most useful information to achieve an accurate
localization. We accomplish this goal by adding a
new step between the prediction and observation
steps of the Monte Carlo localization. In this new
step, the robot uses the prediction of its current
position and the map of the environment to assign
a score to each possible perceptual action. This
score considers the expected utility and the cost
of executing each action.

We test the approach using a Pioneer-3 AT
robot, equipped with a Directed Perception PTU-
C46 pan-tilt unit and a Point Grey Dragonfly2
camera. We facilitate the landmark detection task
by using a set of artificial visual landmarks. These
landmarks consist of cylinders covered by two
small patches of distinctive and easily detectable
colors. Figure 5 shows pictures displaying the ro-
bot, the testing environment, and some of the ar-
tificial visual landmarks used in our tests. We test
two strategies: (i) A fixed camera always oriented
according to the robot direction of motion, and
(ii) The proposed strategy to select perceptual
actions. Figure 5c shows the results of one of
our tests. In the figure the robot moves from left
to right. We observe that the active perceptual
scheme achieves a better position estimation. This
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Fig. 5 a, b Robot, testing
environment, and some of
the artificial visual
landmarks. c Estimation
of robot position.
d Variance of estimation
of robot position
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is explained by the fact that the robot is able to
sense landmarks that are not available to the fixed
camera case. Towards the end of the robot trajec-
tory, the landmark sensing algorithm misses the
two last landmarks closer to the robot path, and
as a result, both approaches decrease the accuracy
of the estimation. Figure 5d shows that the active
sensing scheme also provides an estimation with
less variance than the fixed camera case.

3 Semantic Scene Understanding

Clearly, a robot with autonomous navigation ca-
pabilities is a valuable technology, however, to
perform useful tasks in an indoor environments,
such as fetching objects or delivering messages,
one also needs to provide the robot with a higher
semantic understanding of the environment. As
an example, a robot operating in an indoor envi-
ronment must recognize when a busy space does
not correspond to an obstacle that needs to be
avoided, but it corresponds to a door or an eleva-
tor, which in turn might have a handle or a push
button that can be manipulated to successfully

complete a task. Current efforts under these lines
are still limited to highly specific situations, there-
fore, there is a need for more general solutions.

Our research agenda in the area of high level
semantic understanding has been closely related
to recent advances in the area of computer vision
[25, 26, 42, 74]. These advances have been based
on the successful application of machine learning
techniques to the computer vision area. Following
this trend, we have developed new techniques
for people detection and tracking using a mo-
bile platform [13, 38, 48], people recognition [45]
and, recently, scene recognition by a mobile robot
[21, 22]. Next we provide further details of our
application on scene recognition.

3.1 Indoor Scene Recognition

Current approaches for scene recognition present
a significant drop in performance for the case
of indoor scenes [61]. This can be explained by
the high appearance variability of indoor environ-
ments. To face this limitation, in [22] we propose
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a method that includes high-level semantic in-
formation in the recognition process. Specifically,
we propose to use common indoor objects as
a key intermediate semantic representation. We
frame our method as a generative probabilistic
hierarchical model, where we use object category
classifiers to associate low-level visual features
to objects, and contextual relations to associate
objects to scenes. As an important advantage,
the inherent semantic interpretation of common
objects facilitates the acquisition of training data
from public websites [36] and also provides a
straighforward interpretation of results, for ex-
ample, by identifying failure cases where some
relevant objects are not detected. This contrasts
to current state-of-the-art methods based on gen-
erative unsupervised latent models, such as PLSA
and DLA [7, 25], where the intermediate repre-
sentation does not provide a direct interpretation.

We base our category-level object detectors
on Adaboost classifiers operating on visual fea-
tures based on integral histograms using grayscale
[17], fine grained saliency [48], Gabor [73], Local
Binary Patterns (LBPs) [55], and HOG visual
channels [15]. Additionally, we enhance our pure
visual based classifiers using geometrical informa-
tion obtained from a 3D range sensor on-board
our robot. This facilitates the implementation of
a focus of attention mechanism that allows us to
reduce the computational load.

A comparison to several state-of-the-art meth-
ods using images acquired by mobile robots in
two different office environments indicates that
our approach achieves a significant increase in
recognition performance. Specifically, when train-
ing the different models with similar amounts of
generic data taken from the web and testing af-
terwards each model using images where relevant
objects are present, our results indicate that the
proposed method achieves an average recognition
rate of 90%, while the accuracy of alternative
methods ranges around 65%. In a second exper-
iment, when we train the alternative models with
images coming from the same office environment
used for testing, we observe more competitive re-
sults. In this case, the best performing alternative
model reaches an average accuracy of 82% that is
closer but still lower than the 90% average accu-
racy of the proposed method trained with generic

data. These results demonstrate suitable general-
ization capabilities of the proposed method and
also support previous claims indicating that cur-
rent state-of-the-art methods for scene recogni-
tion present low generalization capabilities for the
case of indoor scenes [61].

Figure 6a shows examples of scene recogni-
tion using the proposed method. In this case,
the method is able to recognize a conference
room through the correct detection of a projection
screen and a wall clock. Figure 6b shows a map
of part of one of our office environments where
we test the approach. This figure displays the
trajectory followed by the robot during one of its
runs and the labels assigned by the robot to the
visited places (ground truth/estimation). The only
situation when one place is not labeled correctly
occurs during the second time the robot crosses
the central hall, as no objects are detected in that
part of the sequence. We believe that a more
extensive implementation, based on a larger set of
object detectors, can help to solve these situations.

One inconvenient with the previous approach
is that it needs to run all the object classifiers
available at each inference step. This is highly
inefficient because it is usually enough to detect
a subset of the available objects to recognize a
scene with enough confidence. To solve this lim-
itation, in [21] we use concepts from information
theory to propose an adaptive scheme to plan a
suitable strategy for object search. The key idea
is to execute only the most informative object
classifiers. Under the proposed scheme, we use
the current scene estimate to sequentially exe-
cute the classifier that maximizes the expected
information gain. We select classifiers until it is
possible to identify the current scene with enough
confidence.

Figure 7 shows executions of our method in an
office environment using a total of seven object
detectors. Figure 7a shows a case without using
adaptive object search, while Fig. 7b shows a case
where we include adaptive object search. In the
adaptive case, we add classifiers until the value of
the respective information gain is not significant.
We can see that, in both cases, detections are
almost identical, and results differ slightly due to
a sampling effect. The main difference between
both executions is that in the first case all the avail-
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Fig. 6 a Correct
detection of a conference
room. b Map of an office
environment indicating
the robot trajectory and
the label assigned to the
different scenes (ground
truth /estimation)

a

b

able object detectors are executed, while in the
second case the method runs only five object de-
tectors: Screen, Urinal, Railing, Soap Dispenser,
and Monitor. The reason of this behavior is that
at the beginning of the inference process, when no
objects are detected, the adaptive object search
scheme chooses to run classifiers associated with
objects that are highly discriminative with respect
to a specific scene type, such as a Screen or an
Urinal, because the eventual detection of those
objects maximizes information gain. This is an
expected result because we initially use a flat prior

for the scene distribution and therefore the detec-
tion of informative objects produce peaked pos-
teriors. By avoiding to run two object classifiers,
the computational time for the object recognition
task is speeded-up by a factor of ≈1.41. While
this gain in performance might be considered mar-
ginal, the advantage of using an adaptive object
search grows with the number of object classifiers
available, where in a large scale case an efficient
object search can avoid the execution of hundreds
of object detectors. Also, it is important to notice
that using adaptive object search also produces an



160 J Intell Robot Syst (2012) 66:151–165

Fig. 7 Executions of the
performance of our scene
recognition approach in
an office environment

(a) Without adaptive object search (b) With adaptive object search

overhead but, according to our experiments, this
overhead is not significant.

4 Social Robots

A particular feature of a robot that operates in a
human inhabited environment, such as an office
building or a hospital, is that it needs to interact
with people on a daily basis. In this case, it is
highly useful, and in some cases a requirement, to
provide the robot with suitable social behaviors.
For example, in the case of boarding an elevator
the robot must wait its turn.

Robots, such as Pearl [59] and Valerie [29],
are examples of a new generation of social robots
able to interact with people and to play the role
of mediators to specific knowledge sources. Pearl
is intended to assist elderly individuals with mild
cognitive and physical impairments, as well as sup-
port nurses in their daily activities. Valerie oper-
ates as a robot receptionist for Newell-Simon Hall
at Carnegie Mellon University, helping people
by providing information about university mem-
bers, campus directions, or retrieving data from
the web. Although these robots perform specific
tasks, they are designed to operate in highly gen-
eral environments.

In particular, an intensive research activity on
social robots has focused on museum robots that
guide their human counterparts through the mu-
seum, explaining them the relevant aspects of the
different expositions and halls. This is the case of
robots such as Rhino [9], Minerva [70], Sage [53]
and Joe Historybot [54]. As an example, Rhino

was the first museum tour-guide robot, installed
in mid-1997 at a museum in Germany. Rhino was
responsible for greeting visitors and guiding them
through a fixed set of museum attractions. As
another example, Sage, later renamed as Chips,
was a robot that operated in the Dinosaur Hall
at Carnegie Museum of Natural History, USA,
providing tours and presenting audiovisual infor-
mation regarding bone collections. See [27] and
[8] for reviews about social robots.

In the context of social robots, the detection
of humans plays a key role. In [38] and [48] we
target this problem using vision and range sensors
mounted on a mobile platform. In [38], we present
a method for human detection fusing information
from different visual cues. In [48], we extend the
approach to the case of detecting people under
several poses and partial views of the body. The
main novelty of this approach is the feature ex-
traction step, where we propose novel features
derived from a visual saliency mechanism. In con-
trast to previous works, we do not use a pyramidal
decomposition to run the saliency algorithm, but
we implement the algorithm at the original im-
age resolution using the so-called integral image.
Examples of the different poses detected by this
system can be seen in Fig. 8.

Besides human detection, we also work on hu-
man tracking [13, 65] and recognition [44, 45]. For
example, recently in [45] we propose a novel ap-
proach to face recognition using a generalization
of the popular visual features known as Local Bi-
nary Patterns (LBPs) [55]. While many variations
of LBP exist, so far none of them can automat-
ically adapt to the training data [1, 41, 67, 77].



J Intell Robot Syst (2012) 66:151–165 161

a b c

d e f

a

Fig. 8 Figures a–f present results of our human detection
system able to detect people under different poses. The
system uses a new fast feature descriptor based on visual

saliency and the integral image. a Full body, frontal. b Full
body, back. c Full body, profile. d Upper body, frontal.
e Upper body, back. f Upper body, profile

Our algorithm is based on the observation that the
operation of a LBP over a given neighborhood
is equivalent to the application of a fixed binary
decision tree. Therefore, we use standard decision
tree induction algorithms, in place of a fixed tree,
to learn discriminative LBP-like descriptors from
training data. As a major advantage, by using
training data to learn the structure of the tree, we

can effectively build an adaptive tree, whose main
branches are specially tuned to encode discrimina-
tive patterns for the relevant target class. In par-
ticular, in the case of face recognition, our com-
parative results indicate that our approach outper-
forms several state-of-the-art solutions when it is
tested on the FERET [58] and the CAS-PEAL-R1
[28] benchmark datasets [45, 46].

a b c

Fig. 9 General setting of the proposed educational frame-
work. a The robot is augmented with remote interfaces.
b The robot can communicate independently with each

student by handheld devices. c The robot can communicate
visually with the group of students
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In terms of robots interacting with people, in
[47] we present an application of mobile robots
in education. So far, most of the approaches
that use robotics technologies in education aim
to teach subjects closely related to the Robotics
field [34, 35, 57]. Examples of these subjects are
robot programming, robot construction, artificial
intelligence, algorithm development, and mecha-
tronics [4, 34, 75, 76]. In our application, we use
a robot to help students in the creation of ab-
stract models of relevant concepts and properties
of the real world by physically illustrating them.
For example, a mobile robot can use its rotational
capabilities to illustrate angular relations, or it
can use its acceleration and velocity capabilities
to illustrate relevant kinematic principles. Fur-
thermore, by acting as a situated mediator of the
educational activity, and using a collaborative and
constructivist learning approach, the robot can
guide the educational activity, playing a key role
to increase the motivation and social bonds among
the students. As far as we know, this is the first
time that robotics technologies are used in such
educational settings, opening a new paradigm to
apply robots in education.

Figure 9 shows the general setting of our ed-
ucational framework. As shown, we extend the
local capabilities of our mobile robot by provid-
ing it with remote wireless interfaces. These re-
mote interfaces correspond to handheld devices
distributed to each of the students. Using these
devices, the robot can either, individually interact
with each student by sending an exclusive message
to the corresponding handheld device, or it can
communicate with the group as a whole, by send-
ing a shared message to all the students. In [47]
we describe details of the implementation of this
educational framework on two real cases used to
teach concepts related to geometry and physics.

In a parallel research track, we recently devel-
oped a social robot that has the ability to express
emotions. The interface of this robot is the result
of a collaboration with people from the School
of Art. The body of the robot corresponds to
a sculpture (1.6 m tall) that exhibits an eye in
its upper part. It has an eye-ball with a pan-tilt
system, a video camera, and a 3D range sensor.
By moving its eyelid and activating different sets
of lights, the robot can express emotions, such as

a b

Fig. 10 a Our social robot where its body correspond to a
sculpture. b The robot eye is its main emotional interface

happiness, tiredness, and so on. Figure 10a shows
the complete body of the robot, while Fig. 10b
shows its main emotional interface. Our goal is
to use this robot to autonomously guide the visit
of groups of high school students who often visit
our Department of Computer Science to learn
about our facilities and main research activities.
We believe that this is a challenging problem that
will provide us with a suitable scenario to integrate
and test several of the technologies developed in
our group.

5 Conclusions

In this paper we present some of the main re-
search activities that we have been developing
since 2002 at our research group on Robotics
and Machine Intelligence. Our research focus has
been on the cognitive side of Robotics, mainly
using machine learning and Bayesian statistical
techniques. As a major achievement we have a
working robot able to navigate in indoor buildings
using visual and range sensors. Furthermore, our
robot is able to perform high level perceptual
behaviors such as scene recognition, and human
detection, tracking, and recognition.

In terms of human and funding resources, dur-
ing the last years there has been an increasing
interest in Chile and our university about robotics
technologies. To illustrate this we can consider
that at PUC in the year 2002 the only course
related to Machine Intelligence was the traditional
AI deductive class. Today, our research group
counts with more than 25 people among full-
time professors, visiting researchers, and graduate
students, and more than 15 courses in the area.
Furthermore, during 2010 the first three graduate
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students obtained a doctoral degree as part of
the group. We believe that the development of
a critical mass of researchers and the need for a
major association are some of the priorities for
the development of Robotics in Latin America. In
this sense, currently our group has collaborations
with robotics groups at the Instituto Nacional
de Astrofísica, Óptica y Electrónica (INAOE)
in Mexico, and the Robust Robotics Group at
Massachusetts Institute of Technology (MIT) in
USA.

As future work, we believe that currently high
level scene understanding is one of the major
challenges to deploy robust robots in natural in-
door environments. Motivated by current success-
ful combination of computer vision and machine
learning techniques, we believe that the learning
scheme is the right path to cope with the high
ambiguity and complexity of the visual world.
Furthermore, we foresee that the embodied and
decision making nature of a mobile robot can be
of great help by facilitating the development of
active vision schemes, currently not deeply ex-
plored by main approaches to recognize relevant
parts of the visual world. In particular, we believe
that a synergistic ensemble of robust feature and
region detectors from computer vision combined
with suitable machine learning based classifiers
and feature selectors, all guided by active vision
modules, is a fruitful approach to improve the
current semantic perceptual capabilities of mobile
robots.
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