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Abstract

A useful strategy to deal with complex classification scenarios is the “divide and con-

quer” approach. The mixture of experts (MoE) technique makes use of this strategy by

jointly training a set of classifiers, or experts, that are specialized in different regions of

the input space. A global model, or gate function, complements the experts by learn-

ing a function that weighs their relevance in different parts of the input space. Local

feature selection appears as an attractive alternative to improve the specialization of

experts and gate function, particularly, in the case of high dimensional data. In general,

subsets of dimensions, or subspaces, are usually more appropriate to classify instances

located in different regions of the input space. Accordingly, this work contributes with

a regularized variant of MoE that incorporates an embedded process for local feature

selection using L1 regularization. Experiments using artificial and real-world datasets

provide evidence that the proposed method improves the classical MoE technique, in

terms of accuracy and sparseness of the solution. Furthermore, our results indicate that

the advantages of the proposed technique increase with the dimensionality of the data.
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1. Introduction

Performing classification in scenarios with large and complex intra and inter-class

variation is a challenging task for most classification methods. In these cases, different

subsets of instances might respond to different patterns and, even more, these patterns

might arise in different subsets of dimensions. As an example, in visual recognition,

changes in illumination or pose conditions usually produce drastic variations in the vi-

sual appearance of relevant objects, affecting the discriminative properties of different

visual features [35]. As a further example, in gene function prediction, the expression

level of particular genes can change substantially under different experimental condi-

tions, affecting the discriminative properties of different co-expression patterns that

usually arise on subsets of experiments [15].

A useful strategy to deal with complex classification scenarios is the “divide and

conquer” approach. Under this strategy, a complex problem is divided into multiple

simpler problems. Decision trees (DTs) are one of the oldest and most widely used

classification techniques based on this strategy [36]. This technique consists of building

a tree using a partitioning scheme that recursively divides the input space and adjusts

local classifiers within each partition. Interestingly, each branch of the resulting tree

is in charge of classifying a different subset of instances. Furthermore, classification in

each branch is performed using a particular subset of dimensions. We believe that this

double “divide and conquer” strategy, that adaptively adjusts each branch of the tree

to deal with a selected subsets of instances and dimensions, is one of the main reasons

to explain the good performance shown by DTs and their later extensions based on

ensemble strategies [8]. Unfortunately, the representational space and usual learning

strategies used by DTs impose relevant limitations that affect their abilities to deal

with complex classification scenarios. In particular, a DT embeds a hypothesis space

given by a disjunction of conjunctions of constraints. These constraints are usually

based on single [36] or low dimensional [31] partitions of the input space. Furthermore,

common training strategies are based on greedy schemes that can lead to suboptimal
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solutions. As an example, the greedy decision at the root node of the tree constrains

the conjunctions embedded by all the branches of the tree.

A probabilistic approach to the “divide and conquer” strategy is the mixture of

experts (MoE) technique [19]. In contrast to DTs, this technique uses a probabilistic

framework that is advantageous in managing the intrinsic uncertainty in the data. MoE

divides the data into multiple regions where each region has its own classifier or expert

[19]. Each expert is specified by a probability distribution that is conditioned on class

values. In the mixture, predictions of experts are weighed using a global model known

as gate function. This function adaptively estimates the relevance or weight assigned

to each expert for the classification of each input instance.

Both, DTs and MoE, use a “divide and conquer” strategy that divides the input

space to perform classification, using a hard partitioning in the case of a DT and

a probabilistic, or soft, partitioning in the case of MoE. A relevant difference arises

in terms of how each technique handle the dimensionality of each instance: while a

DT incorporates an embedded feature selection scheme, MoE does not. We believe

that a suitable embedded feature selection scheme can be a useful tool to boost the

performance of the MoE technique. In particular, in our experiments for the case of

high dimensional datasets we notice that the traditional MoE technique has serious

difficulties to learn adequate models. Also, as the number of parameters increases with

the number of dimensions, the resulting MoE models become complex usually leading

to overfitting problems.

This work contributes with a MoE model that incorporates embedded local feature

selection using L1 regularization. Our main intuition is that particular subsets of di-

mensions, or subspaces, are usually more appropriate to classify certain input instances.

Consequently, we expect to improve the accuracy of traditional MoE models by intro-

ducing a technique that adaptively selects subsets of dimensions to train each expert

in the mixture.

This paper is organized as follows. Section 2 presents background information about

feature selection methods, in particular L1 regularization. Section 3 describes relevant
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previous works. Section 4 presents the proposed approach. Section 5 presents and

discusses the results of our experiments. Finally, Section 6 presents our main conclusions

and future avenues of research.

2. Background

2.1. Feature selection

In classification problems, the goal corresponds to learn a mapping from an input

vector x to an output value y, where x is a vector with D dimensions and y takes

categorical values. If vector x is high-dimensional, one can usually improve classification

accuracy by discarding irrelevant and redundant features [14, 22]. This process is known

as feature or variable selection. In general, there are three main methods for feature

selection:

� Filter methods rank each input feature xj in relation to predicting y using a

metric of goodness, such as mutual information [3], Pearson correlation [16], Fisher

score [10], and chi-square statistic [26], among others [14]. Next, the features are

selected according to ranking results. These methods can be incorporated in a

sequential forward selection in order to find a subset of discriminant dimensions

[16]. Generally, the chosen metric is independent of the final classification model

[14]. Filter methods are usually fast and simple, in comparison to alternative

techniques.

� Wrapper methods search the feature space looking for possible subsets that im-

prove performance. For each subset, these methods execute the classification

model and evaluate its resulting predictive power [22], usually using accuracy or

F-measure [46]. Then, the subset of features with greatest predictive power is

chosen. Main issues associated with these methods are difficulties defining the

best metric to measure predictive power, as well as the computational complex-

ity associated to the evaluation of a large number of subsets of features, 2D − 1

subsets in the worst case (exhaustive search).
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� Embedded methods combine feature selection and model fitting into a single opti-

mization problem. DT [36] and Adaboost [12] can be considered embedded tech-

niques, although an explicit criterium for feature minimization is not included

during the training process. Two popular techniques to embed feature selection

inside a classification algorithm are L1-regularization [42] and automatic relevancy

determination [27].

This paper concentrates on embedded models, specifically L1-regularization, due to

their computational tractability and formal soundness. Although filter methods are

faster than alternative techniques, they are usually less effective, as they use a metric

that is independent of the final classification scheme. On the other hand, wrapper

methods are generally more reliable, as they can take advantage of robust classification

algorithms. Nevertheless, these methods are slow due to the usually large number

of subsets to explore, and the complexity associated to repeatedly training a robust

classifier [22]. Embedded models are attractive because they use a reliable measure of

goodness, similar to wrapper methods, but they avoid retraining a predictor for each

feature subset explored.

2.2. L1 regularization

Consider the context of linear models given by the expression y = wTx + b, where

x ∈ <D is the input vector, y ∈ < is the output value, w ∈ <D is the vector of

coefficients, and b ∈ < is the bias [4]. Selecting features by means of regularization fits

a vector w of parameters, and at the same time maximizes the number of coefficients

wi of w that takes value equal to zero. . As a consequence, for each coefficient wi = 0,

the associated dimension xi of x can be ignored.

The details of L1 regularization are derived in the context of probabilistic models

[42]. Specifically, the optimization for simultaneous fitting and regularization of the

likelihood function of a probabilistic model can be expressed as:

L̂0 = L(w) + λ ‖w‖0 , (1)
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where L is the likelihood function that depends on the parameter w. In this case,

‖w‖0 =
∑D

j=1 I(|wj| > 0) counts the number of nonzero elements of vector w. λ > 0 is

a trade-off constant

that balances between model fitting and regularization. The direct maximization of

Equation (1) is in general unfeasible due to the discrete nature of I(|wj|). Considering

a relaxation of the previous objective function, one has:

L̂1 = L(w) + λ ‖w‖1 , (2)

where ‖w‖1 =
∑d

j=1 |wj|. This results in a sparse weight vector w, which means that

many of its elements are zero. The nonzero elements correspond to relevant features.

This method is known in the statistics community as Lasso (least absolute shrinkage

and selection operator), or L1 regularization [42]. Equation (2) can be rewritten as:

ŵ = arg max
w

L(w)

subject to ||w||1 ≤ t,

where t is an upper bound on the L1 norm of weights. More precisely, a tight bound t is

equivalent to a heavy regularization λ, whereas a loose bound t corresponds to a small

value of λ. Lasso can be interpreted similarly to a quadratic cost function with linear

constraints and is thus a convex quadratic problem, which has efficient algorithms to

solve it [6].

3. Related work

In a seminal work, Jacobs et al. [19] introduce the MoE technique. They divide the

space of data into several separate models, where each model has its own supervised

classifier. Then, they use a gradient approach to learn parameters which, in this case, is

a vector of weights. Finally, they apply this model to multi-speaker vocal recognition.
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They base their work on Hampshire et al. [17], who combine the outputs of local experts

but without considering localization.

Jordan and Jacobs [20] extend the MoE formulation to a hierarchical case. They

treat this model as a conditional mixture model where the distribution of outputs is

given by a mixture of component distributions referred as experts. These experts and

mixing coefficients are conditioned on input features. Also, the mixing coefficients

are controlled by gating distributions. They use the EM algorithm [9] to learn model

parameters through a maximum likelihood scheme. They experiment with a robot

dynamic problem where they obtain results that are comparable to a neural network

trained with the Backpropagation algorithm, but with greater speed. A comparison

of MoE with other ensemble methods is given by Vogdrup [47], where a variant of

MoE outperforms Adaboost, Bagging, and hierarchical MoE techniques in terms of

classification performance.

Titsias and Likas [43] present a three-level hierarchical mixture model for classifica-

tion where each mixture component has an independent class-conditional mixture. The

model estimates the posterior probability of class membership using a similar scheme

to the MoE classifier. Model parameters are learned using maximum likelihood. Their

results indicate that the final model improves classification with respect to the case

where class-conditional information is not considered in each mixture component.

Bishop and Svensén [5] propose a full Bayesian treatment of the hierarchical mixture

of experts combining local and global variational methods. For doing this, they establish

a lower bound on the marginal probability of data under the model. The greatest

difficulty with this Bayesian approach comes from the resulting gating distribution that

do not admit a conjugate prior. They use a variational approximation for the logistic

function and approximate the joint distribution of the model parameters by a factorized

distribution. They apply this method to a kinematics problem, outperforming the

results of a hierarchical MoE.

In the context of nonparametric Bayesian models, Rasmussen and Ghahramani [37]

present a nonparametric extension to MoE models, where they use Gaussian processes
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to model the experts. Also, they use an input-dependent adaptation of the Dirichlet

Process to implement a gating network for an infinite number of experts. Inference is

performed using Gibbs sampling. This model adjusts the covariance function according

to inputs. Simulations show the viability of their approach, however, this model is

complex, as it depends on many hyperparameters where interpretability is not natural.

Meeds and Osindero propose an alternative infinite mixture of experts where each

expert comprises a multivariate Gaussian distribution to model its inputs, and a Gaus-

sian Process to model its outputs [29]. They use a full generative model over input and

output spaces. This approach presents some advantages related to conditional models

due to its capability to deal with incomplete data, however, as in [37], this work requires

fitting a large number of hyperparameters.

Additionally, some variations in the form of gating and expert functions have been

proposed. Xu et al. [53] suggest to replace the usual multinomial logit model with

Gaussian basis functions, where each expert is modeled by a Gaussian function. This

idea adds flexibility to model the local covariance of the data. Nguyen et al. [32]

propose a variation to the classical MoE by using an evolutionary algorithm to learn

the model. The overall model is an ensemble, where each component is a mixture of

experts. In the context of regression, Lima et al. [24] combine MoE with support vector

machines in a probabilistic framework, where the gate functions are represented by a

normalized kernel function and the experts correspond to support vector machines.

On the other hand, there have been recently some interesting applications of MoE.

Saragih et al. [39] apply MoE to a deformable model fitting problem. Ebrahimpour and

Jafarlou [11] apply a hierarchical MoE to view-independent face recognition. They use

principal component analysis to find a suitable representation of the data and neural

networks to model experts and the gate function.

Closely related to our approach, in terms of embedded local feature selection in a

mixture model, Pan and Shen [34] propose the use of L1 regularization for selecting

features in the unsupervised case of model-based clustering. In experiments with real

datasets, as they state, they do not attain good results for the case of classification,
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most likely due to a mismatch between true labels and resulting clusters. Wang and

Zhu [50] also apply regularization over clustering but using L∞ norm. They propose to

use quadratic programming to solve equations related to a constrained optimization.

As it can be seen from the our review, a common issue among previous works on

MoE for classification is the fact that they do not consider an explicit feature selection

scheme. Notable exceptions are [34] and [50] where an embedded feature selection

step is applied, but in the context of clustering and not of classification. Also, in

the context of regression and closely related to our work, Khalili [21] presents a MoE

model that includes an embedded feature selection approach based on a regularization

scheme and Gaussian models. Similarly, we propose a regularization scheme to add

feature selection to the MoE model, however, we formulate our model in the context

of classification using multinomial logit functions. As a consequence, our domain of

applications, mathematical formulation, and optimization solution are highly different

from the one proposed in [21]. In particular, we use an iterative optimization scheme

similar to the one used in [23], while [21] uses a local quadratic approximation for the

regularization term.

In the context of alternative techniques to MoE, there are also interesting works

on approaches to combine classifiers, and to perform embedded feature selection. Xiao

et al. [52] propose to combine classifiers by jointly maximizing accuracy and ensemble

diversity using a neural network architecture. Ulas et al. [45] combine classifiers by

employing the most informative components of the eigenvectors corresponding to the

correlation matrix among classifier outputs. Ñanculef et al. [33] propose to learn an

ensemble of regressors using a sequential scheme and a score minimizing classification

error and ensemble diversity. All these works do not include an embedded feature

selection mechanism.

In terms of classification schemes that include an embedded feature selection pro-

cess. Wu et al. [51] propose to select groups of features for image classification arguing

that, usually, subsets of visual features are related to specific group of instances. Conse-

quently, they incorporate a group Lasso regularizer inside a logistic regression classifier,
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solving the resulting optimization problem using a co-ordinate descent method. In the

context of object recognition, Yang et al. [54] boost a standard object classifier based

on parts, by adding supplementary parts. These additional parts are selected using a

classification scheme that includes Lasso regularization over the selected parts. Mal-

donado et al. [28] perform feature selection inside a support vector machine considering

a penalization score over the features used by the kernel functions. In contrast to our

approach, [51] and [28] consider a global feature selection and [54] performs a global

part selection scheme, while our work considers local feature selection for each expert

classifier.

The idea of adding a regularizer over weights that are used to integrate multiple

models has been explored in previous works. Hua et al. [48] propose a framework to

annotate videos considering different aspects such as low level features and temporal

consistency, where each aspect is represented by multiple instance graphs. In particular,

they develop a procedure to find a weight for each graph by jointly optimizing all graphs

and a regularization score over the weights. Geng et al. [13] develop a method to learn

the intrinsic ensemble of manifolds for unlabeled data in a semi-supervised scenario.

Their method begins with a guess for initial manifolds, iterating then to find suitable

weights that increase the smoothing and discriminative power of the manifolds. Wang et

al. [49] also present a model that learns the weights of a graph ensemble. In particular,

their method re-ranks web images, constrained to be near the outputs of a textual

search. A relevance score for each graph is learned jointly with the weight of each

graph by constraining that visually similar images should have similar relevance scores.

In this way, these previous works regularize the parameters of the respective models

in order to smooth the labels of a graph [48][13], increase discrimination [13][49], or

construct a suitable similarity metric between pairs of instances [49]. Our work can

be considered complementary to these previous works, in the sense that it focuses on

sparsely selecting the features used by the local models of a MoE scheme.
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4. Proposed Approach

In this section we present our main contribution, RMoE, a regularized version of

MoE technique that incorporates a local feature selection scheme inside each expert

and gate function. Our main intuition is that, in the context of classification, different

partitions of the input data can be best represented by specific subsets of features.

This is particularly relevant in the case of high dimensional spaces, where the common

presence of noisy or irrelevant features might obscure the detection of particular class

patterns. Specifically, our approach takes advantage of the linear nature of each local

expert and gate function in the classical MoE formulation [19], meaning that L1 reg-

ularization can be directly applied. Below, we first briefly describe the classical MoE

formulation for classification. Afterwards, we discuss the proposed modification to the

MoE model that provides embedded feature selection.

4.1. Mixture of Experts

In the context of supervised classification, there is available a set of N training

examples, or instance-label pairs (xn, yn), representative of the domain data (x, y),

where xn ∈ <D and yn ∈ C. Here C is a discrete set of Q class labels {c1, ..., cQ}. The

goal is to use training data to find a function f that minimizes a loss function which

scores the capacity of f to predict the true underlying relation between x and y. From

a probabilistic point of view [4], a useful approach to find f is to use a conditional

probability formulation:

f(x) = arg max
ci∈C

p(y = ci|x).

In the general case of complex relations between x and y, a useful strategy consists

of approximating f through a mixture of local functions. This is similar to the case of

modeling a mixture distribution [40] and it leads to the MoE model.

We decompose the conditional likelihood p(y|x) as:

p(y|x) =
K∑
i=1

p(y,mi|x) =
K∑
i=1

p(y|mi, x) p(mi|x), (3)
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where Equation (3) represents a MoE model with K experts mi. Figure 1 shows a

schematic diagram of the MoE approach. The main idea is to obtain local models in

such a way that they are specialized in a particular region of the data. In Figure 1,

x corresponds to the input instance, p(y|mi, x) is the expert function, p(mi|x) is the

gating function, and p(y|x) is the weighted sum of experts. Note that the output of

each expert model is weighed by the gating function. This weight can be interpreted

as the relevance of expert mi for the classification of input instance x. Also note that

the gate function has K outputs, one for each expert. There are K expert functions

that have Q components, one for each class.
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Figure 1: Mixture of experts scheme.

The traditional MoE technique uses multinomial logit models, also known as soft-

max functions [4], to represent the gate and expert functions. An important character-

istic of this model is that it forces competition among its components. In MoE, such

components are expert functions for the gates and class-conditional functions for the

experts. The competition in soft-max functions enforces the especialization of experts

in different areas of the input space [55].

Using multinomial logit models, a gate function is defined as:

p(mi|x) =
exp(νTi x)∑K
j=1 exp(ν

T
j x)

(4)
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where i ∈ {1, . . . , K} indexes expert i and νi ∈ <D is a vector of model parameters.

Component νij of vector νi models the relation between the gate and dimension j of

input instance x.

Similarly, an expert function is defined as:

p(y = cl|x,mi) =
exp(ωTlix)∑M
j=1 exp(ω

T
jix)

(5)

where ωli depends on class label cl and expert i. In this way, there are a total of Q×K

vectors ωli. Component ωlij of vector ωli models the relation between expert function

i and dimension j of input instance x.

There are several methods to find the value of the hidden parameters νij and ωlij

[30]. An attractive alternative is to use the EM algorithm. In the case of MoE, the EM

formulation augments the model by introducing a set of latent variables, or responsi-

bilities, indicating the expert that generates each instance. Accordingly, EM iterations

consider an expectation step that estimates expected values for responsibilities, and a

maximization step that updates the values of parameters νij and ωlij. Specifically, the

posterior probability of the responsibility Rin assigned by the gate function to expert

mi for an instance xn is given by [30]:

Rin = p(mi|xn, yn) (6)

=
p(yn|xn,mi) p(mi|xn)∑K
j=1 p(yn|xn,mj) p(mj|xn)

Considering these responsibilities and Equation (3), the expected complete log-

likelihood 〈Lc〉 used in EM iterations is [30]:

〈Lc〉 =
N∑
n=1

K∑
i=1

Rin [log p(yn|xn,mi) + log p(mi|xn)] (7)
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4.2. Regularized Mixture of Experts (RMoE)

To embed a feature selection process in the MoE approach, we use the fact that

in Equations (4) and (5), the multinomial logit models for gate and experts functions

contain linear relations in the relevant parameters. This linearity can be straightfor-

wardly used in feature selection by considering that a null parameter component νij or

ωlij implies that dimension j is irrelevant for gate function p(mi|x), or expert model

p(y|mi, x), respectively. Consequently, we propose to penalize complex models using L1

regularization. A similar consideration is used in [34], but in the context of unsuper-

vised learning. The idea is to maximize the likelihood of the data while simultaneously

minimizing the number of non-null parameter components νij and ωlij. Considering

that there are Q classes, K experts, and D dimensions, the expected L1 regularized

log-likelihood
〈
LRc
〉

is given by:

〈
LRc
〉

= 〈Lc〉 − λν
K∑
i=1

D∑
j=1

|νij| − λω
Q∑
l=1

K∑
i=1

D∑
j=1

|ωlij| . (8)

To maximize Equation (8) with respect to model parameters, we first use the stan-

dard fact that the likelihood function in Equation (7) can be decomposed in terms of

independent expressions for gate and expert models [30]. In this way, the maximization

step of the EM based solution can be performed independently for gate and expert pa-

rameters [30]. In our problem, each of these optimizations has an additional term given

by the respective regularization term in Equation (8). To handle this case, we observe

that each of these optimizations is equivalent to a regularized logistic regression [23].

As shown in [23], this problem can be solved by using a coordinate ascent optimization

strategy [44] given by a sequential two-step approach that first models the problem

as an unregularized logistic regression and afterwards incorporates the regularization

constraints.

In summary, we handle Equation (8) by using an EM based strategy that, at each

step, solves the maximization with respect to model parameters by decomposing the
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problem in terms of gate and expert parameters. Each of these problems is, in turn,

solved using the strategy proposed in [23]. Next, we provide details of this procedure.

Optimization of the unregularized log-likelihood

In this case, we solve the unconstrained maximization of the log-likelihood given

by Equation (7). First, we optimize the log-likelihood with respect to vector ωli. The

maximization of the expected log-likelihood 〈Lc〉 implies differentiating Equation (7)

with respect to ωli:

∂
∑N

n=1

∑K
i=1Rin [log p(yn|xn,mi) ]

∂ωli
= 0 (9)

which is equivalent to:

−
N∑
n=1

Rin (p(yn|xn,mi)− yn)xn = 0. (10)

In this case, the classical technique of least-squares cannot be directly applied be-

cause of the soft-max function in p(yn|xn,mi). Fortunately, as described in [20] and

later in [30], Equation (10) can be approximated by using a transformation that implies

inverting the soft-max function. Using this transformation, Equation (10) is equivalent

to an optimization problem that can be solved using a weighted least squares technique

[4]:

min
ωli

∑N
n=1Rin

(
ωTlixn − log yn

)2
(11)

A similar derivation can be performed with respect to vectors νi. Again differ-

entiating Equation (7), in this case with respect to parameters νij and applying the

transformation suggested in [20], we obtain:

min
νi

∑N
n=1

(
νTi xn − logRin

)2
(12)
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Optimization of the regularized likelihood

Following the procedure in [23], we add the regularization term to the optimization

problem given by Equation (11), obtaining an expression that can be solved by any

standard algorithm for Lasso resolution [42]:

min
ωli

∑N
n=1Rin

(
log yn − ωTlixn

)2
subject to: ||ωli||1 ≤ λω (13)

Similarly, we can also obtain a standard Lasso optimization problem to find param-

eters νij :

min
νi

∑N
n=1

(
logRin − νTi xn

)2
subject: to ||νi||1 ≤ λν (14)

Specifically, in the case of T iterations, there are a total of T ∗K ∗ (Q + 1) Lasso

optimization problems related to the maximization step of the EM algorithm. To further

reduce this computational load, we slightly modify this maximization by applying the

following two-steps scheme:

� Step-1: Solve K Lasso optimization problems to find gate parameters νij assuming

that each expert uses all the available dimensions. In this case, there are T − 1

iterations.

� Step-2: Solve K ∗ (Q+ 1) Lasso optimization problems to find expert parameters

ωlij applying the feature selection process. In this case, there is a single iteration.

Using the previous scheme we reduce from T ∗K ∗(Q+1) to K ∗(T−1)+K ∗(Q+1)

the number of Lasso optimization problems that we need to solve in the maximization

step of the EM algorithm. In our experiments, we do not notice a drop in performance

by using this simplification, but we are able to increase processing speed in one order

of magnitude.
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In summary, starting by assigning random values to the relevant parameters νij and

ωlij, our EM implementation consists of iterating the following two steps:

� Expectation: estimating responsabilities for each expert using Equation (6), and

then estimating the outputs of gate and experts using Equations (4) and (5).

� Maximization: updating the values of parameters νij and ωlij in Equations (13)

and (14) by solving K∗(T−1)+K∗(Q+1) Lasso optimization problems according

to the approximation described above in Step-1 and Step-2.

5. Experiments

In this section, we use synthetic and real datasets to analyze the performance of

RMoE. In particular, we compare its performance against the traditional MoE tech-

nique. Furthermore, we analyze RMoE in terms of classification accuracy and dimen-

sionality reduction under different parameter configurations. RMoE is oriented to clas-

sification tasks, therefore, it requires categorical class variables. Finally, we compare

the performance of RMoE against three popular classification algorithms that also con-

sider embedded feature selection: Random Subspace (RS ) [18], Decision Trees (DT )

[36], and Adaboost (AB) [12]. In the case of Adaboost, we use decision stumps as weak

classifiers.

All results reported in this section are obtained by averaging performances on 30

hold-out folds. In each case, classification performance is measured by using an indepen-

dent test set that is not used in the determination of any of the parameters associated

to each method. For each case, the estimation of parameters is performed by using

training sets corresponding to 50% of the available data. In particular, in the case

of RMoE, we first use the training set to apply a 3-fold cross-validation procedure to

obtain suitable values for the regularization parameters λν and λω. Specifically, we test

a total of 24 combinations of parameter values for λν and λω. For parameter λω we

test the set of values: {20, 10, 5, 2, 1, 0.5, 0.2, 0.1} and, for each of these cases, we select

the corresponding λν by multiplying λω by the factors in: {2, 1, 0.5}. We choose the
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combination of λν and λω with highest accuracy, according to the 3-fold cross valida-

tion. After the values of λν and λω are selected, we use the complete training set to

estimate parameters for experts and gate function. For the cases of Random Subspace,

Decision Trees, and Adaboost, main parameters are the number of trees in the forest,

the minimum number of records in leaf nodes, and the number of decision stumps (weak

classifiers), respectively. These parameters are obtained from the best model according

to 2-fold cross-validation inside the training set of each hold-out fold. For Random

Subspace, we experiment using from 5 to 50 trees in the forest with a step size of 5.

For Decision Trees, we test using from 1 to 10 records in leaf nodes with a step size of

1. For Adaboost, we test using from 10 to 100 decision stumps with a step size of 10.

5.1. Synthetic datasets

We generate 6 synthetic datasets, each consisting of two equiprobable classes. We

define relevant patterns for each class using a subset of the total number of dimen-

sions. Specifically, relevant dimensions for each class are represented by a multivariate

Gaussian distribution using a randomly selected subset consisting of 4 to 6 dimensions.

For each training instance the remaining dimensions are filled using samples from an

Uniform distribution. As shown in Table 1, we vary the total number of dimensions in

the datasets from 200 to 1200 dimensions. In terms of parameters, Gaussian distribu-

tions are selected in such a way that their central parts do not overlap. Means vectors

are randomly selected within the range [0, 20], while covariance matrices are diagonal

with non-zero values randomly selected within the range [0, 1]. In case of Uniform

distributions, they are defined within the range [0, 20].

Table 2 shows that, in terms of classification accuracy, RMoE outperforms MoE

technique in all the tested datasets. We can observe that the level of improvement of

RMoE with respect to MoE fluctuates among the different datasets. For example, in

Dataset 1 RMoE improves the performance of MoE by 40%, while in Dataset 8 the

improvement is 46%.

Table 3 compares RMoE and MoE in terms of parameter dimensionality for the
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Table 1: Synthetic datasets used for experiments.

Dataset name #Instances #Dimensions #Relevant dimensions

{class-1,class-2}

Dataset 1 400 200 {4, 4}

Dataset 2 400 400 {4, 4}

Dataset 3 500 600 {5, 5}

Dataset 4 500 800 {5, 5}

Dataset 5 600 1000 {6, 6}

Dataset 6 600 1200 {6, 6}

Table 2: Accuracy on synthetic datasets using 30 hold-out partitions. RMoE(λ∗ν ,λ∗ω) indicates

average (std. deviation) classification accuracy for best parameters configuration. The pair

(λ
′
ν ,λ
′
ω) show the median of the best parameters obtained by 3-fold cross-validation inside the

training set of each hold-out partition (see main text for details).

Dataset name MoE RMoE(λ
′
ν ,λ

′
ω) (λ∗ν ,λ

∗
ω)

Dataset 1 52.9(4.6) 93.1(2.0) (5,10)

Dataset 2 54.4(4.0) 98.3(1.3) (10,10)

Dataset 3 53.4(2.9) 97.0(1.2) (5,5)

Dataset 4 51.7(3.0) 96.4(1.1) (10,10)

Dataset 5 52.6(4.0) 97.4(1.0) (7.5,10)

Dataset 6 51.9(2.8) 98.2(0.9) (10,5)

classification results shown in Table 2. The main observation is that, as expected, for

these types of high dimensional datasets RMoE provides sparse models.

Finally, we evaluate the performance of the feature selection step included in RMoE.

In this case, we use the fact that for the synthetic datasets we know the true dimensions

used to generate the class pattern behind each instance. Specifically, we define the

following score that quantifies the relevance assigned by RMoE to dimension j for the

classification of input instance x:
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Table 3: Average parameter dimensionality for results shown in Table 2.

Dataset name MoE RMoE(λ∗ν ,λ
∗
ω) Feature reduction

Dataset 1 200 33 83.5%

Dataset 2 400 23 94.2%

Dataset 3 600 38 93.7%

Dataset 4 800 22 97.2%

Dataset 5 1000 30 97.0%

Dataset 6 1200 39 96.7%

ϕ(j;x) =
K∑
i=1

p(mi|x)× |ωy∗ij|, (15)

where K is the number of experts, y∗ is the class label provided by RMoE to input

instance x, ωy∗ij is the parameter associated to dimension j when expert i is applied

to class y∗, and p(mi|x) is the posterior probability assigned by the gate to expert

i given input x. In short, this score evaluates the relevance of each data dimension

considering both: the weight assigned to the data dimension by each expert and the

weight assigned by the gate to the respective expert. Equation (15) considers absolute

values for parameters ωy∗ij because, according to the regularization, only weight values

near zero imply that the corresponding feature is irrelevant for the mixture.

Given scores ϕ(j;x) for each instance x, we construct a feature relevance ranking, by

sorting these scores in descending order. Afterwards, we analyze the positions reached

in the ranking by the true dimensions used to build each data instance. Table 4 indicates

position in the ranking under which, in average, it is possible to find a given percentage

of the relevant dimensions. We use average percentage because each data instance has

a different ranking of relevance. As an example, Table 4 shows that in Dataset 3,

according to the ranking, on average of 90% of the relevant features are among the first

10 dimensions with highest score.

In general, results differ from one dataset to another. For example, for Dataset 2
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all relevant dimensions appear among the first 18 positions of the ranking, while for

Dataset 1 all relevant dimensions appear among the first 75 dimensions of the ranking.

These positions correspond to approximately 4.5% and 37.5% of the total number of

dimensions, respectively. The presence of irrelevant features at the top of rankings can

be related to the work of [14], that unexpectedly, shows that redundant features can

improve classification.

Table 4: Relative relevance assigned by RMoE to features used to generate class patterns in

synthetic datasets using the score in Equation (15). Each column indicates the position in

the ranking where, on average, it is possible to find a given percentage (column header) of

the relevant dimensions.

Dataset name 60% 70% 80% 90% 100% Total Dimensions

Dataset 1 15 72 73 74 75 200

Dataset 2 12 13 16 17 18 400

Dataset 3 7 8 9 10 46 600

Dataset 4 10 25 30 31 33 800

Dataset 5 8 9 15 16 17 1000

Dataset 6 6 8 50 51 52 1200

5.2. Real datasets

We test performance of RMoE using 13 real datasets. Table 5 describes the main

characteristics of each of these datasets. Arrhythmia, Ionosphere, Musk-1, Secom,

Semeion, Spectf, and Sonar datasets are taken from UCI Machine Learning Repository

[2]. Leukemia, Lymphoma, Colon, and Dataset-C are biological datasets taken from

[1]. BrainTumor is a biological dataset taken from [41]. PIE10P is a face recognition

dataset taken from [25]. In the case of PIE10P and Leukemia datasets, we select the

top 1000 and 1500 features, respectively, according to the Fisher score filter [10]. We

reduce the number of features in these two datasets to obtain a pool of datasets with a

highly diverse number of features, as shown in Figure 2. Finally, in all cases we removed
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the variables with zero variance.

Table 5: Real datasets used for experiments.

Dataset name #Objects #Dimensions #Classes

Ionosphere 351 33 2

Spectf 267 44 2

Sonar 208 61 2

Musk-1 486 168 2

Semeion 1593 256 10

Arrhythmia 452 279 16

Secom 1567 471 2

PIE10P 210 1000 10

Leukemia 75 1500 2

Colon 62 2001 2

Lymphoma 45 4027 2

BrainTumor 90 5921 5

Dataset-C 60 7130 2

We test RMoE using the same combinations of parameter values for λν and λω

considered in the case of synthetic datasets. Table 6 shows the accuracy of the best

RMoE model obtained for each dataset (RMoE(λ∗ν ,λ
∗
ω)).

Regarding the results in Table 6, RMoE outperforms the traditional MoE technique

in all the tested datasets. The increase in performance depends on each particular

dataset but, as expected, the advantages of RMoE with respect to MoE increase with

the dimensionality of the dataset. This is the case of datasets such as Secom, PIE10P,

Leukemia, Lymphoma, Colon, BrainTumor, and Dataset-C.

To check if these results are statistically significant, we run a paired Student’s t-test

(Behrens-Fisher problem [38]) to compare the results of RMoE against the results of

each of the alternative techniques. When comparing RMoE to MoE, RMoE has greater

accuracy than MoE with over 95% of confidence in all but one of the datasets where
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Table 6: Accuracy on real datasets using 30 hold-out partitions. RMoE(λ∗ν ,λ∗ω) indicates

average (std. deviation) classification accuracy for best parameters configuration. The pair

(λ
′
ν ,λ
′
ω) shows the median of the best parameters obtained by 3-fold cross-validation inside

the training set of each hold-out partition (see main text for details).

Dataset name MoE RMoE(λ∗ν ,λ
∗
ω) (λ

′
ν ,λ

′
ω) RS DT AB

Ionosphere 82.7(3.0) 84.1(2.6) (0.25,0.5) 93.0 (1.6) 87.8 (2.2) 91.3 (1.7)

Spectf 70.1(3.7) 76.6(3.4) (10,20) 80.2(1.5) 74.7(3.9) 79.5(2.6)

Sonar 64.1(5.6) 74.1(4.2) (2.25,2) 79.1(4.0) 70.8(4.9) 79.1(3.6)

Musk-1 67.2(4.9) 80.0(2.0) (1,0.75) 85.5(2.4) 75.3(3.4) 82.1(2.7)

Semeion 66.1(2.3) 85.1(1.5) (2.5,2) 91.7(0.9) 66.6(1.9) 60.9(2.4)

Arrhythmia 45.0(10.9) 66.0(2.2) (1,2) 69.8(1.9) 65.2(3.2) 82.1(2.7)

Secom 59.4(7.3) 73.1(1.6) (10,10) 74.6(1.3) 66.3(4.0) 71.9(2.4)

PIE10P 32.9(11.0) 99.4(1.1) (4,2) 95.2(1.8) 78.8(5.1) 76.5(6.5)

Leukemia 59.0(13.1) 93.1(5.6) (0.5,1) 95.9(3.1) 90.5(4.3) 80.8(16.3)

Colon 54.7(11.8) 82.0(5.2) (1.5,1.5) 59.7(4.9) 57.7(8.2) 60.0(9.3)

Lymphoma 53.3(10.0) 88.8(4.7) (3.25,3.5) 85.1(7.1) 72.2(9.5) 68.3(19.9)

BrainTumor 36.9(7.1) 83.8(4.1) (1.5,2) 79.3(3.3) 65.7(5.2) 74.5(6.1)

Dataset-C 51.2(8.3) 62.7(9.0) (1,1) 59.7(4.9) 57.7(8.2) 60.0(9.3)

the confidence drops to 93% (Ionosphere). In terms of the other alternative techniques

under test and all six high-dimensional datasets under evaluation (over 500 dimensions),

RMoE also shows superior performance with over 95% of confidence. Exceptions are

some cases of the Random Subspace (RS) technique, where for the datasets Lymphoma

and Dataset-C, RMoE has better accuracy than RS with a 83% and 82% of confidence,

respectively, and for the case of Leukemia dataset, where RS has better accuracy than

RMoE with a 96% of confidence.

Figure 2 shows the accuracy achieved by the methods under consideration as a

function of the dimensionality of the dataset. We observe that, for datasets with low

dimensionality ( < 500 dimensions), the performance of RMoE is slightly lower than
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classifiers such as Random Forest and Adaboost. However, in the case of datasets with

high dimensionality, RMoE shows comparable and, in most cases, superior performances

than the alternative techniques under evaluation. This confirms our intuition about

the relevance of a suitable embedded feature selection scheme when dealing with high

dimensional data. A complementary advantage of our method is that it provides a

sound probabilistic framework for classification.
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Figure 2: Average accuracy on real datasets for all tested algorithms versus number of dimensions of

the datasets.

Table 7 shows average parameter dimensionality as well as percentage of features

reduction provided by RMoE with respect to MoE. As in the case of synthetic datasets,

Table 7 shows that RMoE favors sparse solutions with a competitive or superior accu-

racy than the traditional MoE technique. In general, results are variable in terms of

sparsity. For example, for datasets Colon, Lymphoma, BrainTumor, and Dataset-C,

the best models provided by RMoE use less than 1% of the available dimensions. On

the other hand, for the dataset Ionosphere, RMoE uses 78.1% of all dimensions. In

general, when the dataset has few dimensions, the difference between RMoE and MoE

is less noticeable. Therefore, as expected, feature selection tends to be more useful

when datasets have more dimensions.

Finally, we analyze execution times of MoE and RMoE. By considering n records

and d dimensions, with d > n, in the case of MoE the main parameters are obtained by

solving a weighted least square optimization that is usually dominated by complexity
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Table 7: Average dimensionality of parameters in real datasets.

Dataset name MoE RMoE(λ∗ν ,λ
∗
ω) Dimensionality reduction of RMoE

Ionosphere 32 25 21.9%

Spectf 43 5 88.4%

Sonar 60 17 71.7%

Musk-1 167 34 79.6%

Semeion 256 77 70.0%

Arrhythmia 279 18 93.5%

Secom 471 12 97.5%

PIE10P 1000 20 98.0%

Leukemia 1500 23 98.5%

Colon 2000 19 99.1%

Lymphoma 4026 13 99.7%

BrainTumor 5921 24 99.6%

Dataset-C 7129 14 99.8%

O(d3), while in the case of RMoE such step depends on the method used to solve a Lasso

optimization problem. In the case of RMoE, we use the iterative solution proposed by

[7]. Using λν = λω = 1, Table 8 shows that RMoE is usually slower than MoE in the

case of few dimensions. However, in high dimensional cases, RMoE is able to run faster

than MoE by taking advantage of the sparsity given by Lasso optimization.
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Table 8: Average execution time (in miliseconds) of MoE and RMoE for different datasets using 100

independent executions in each case.

Dataset name MoE RMoE

Ionosphere 80 110

Spectf 40 310

Sonar 40 450

Musk-1 170 850

Semeion 2270 5130

Arrhythmia 920 2110

Secom 430 1550

PIE10P 1220 2700

Leukemia 3160 420

Colon 5160 2260

Lymphoma 2.6E4 0.1E4

BrainTumor 43.2E4 1.8E4

Dataset-C 13.5E4 0.4E4

6. Conclusions

This paper introduces RMoE, a regularized variant of mixture of experts, where local

feature selection is performed on experts and gate function using L1 regularization. Our

experiments provide evidence that the proposed technique improves classical mixture

of experts in terms of accuracy and sparseness of the solution. In particular, using a

diverse set of synthetic and real datasets, RMoE is able to find classification models that

provide not only greater accuracy but also use less than 5% of the available features. In

this respect, as expected, the proposed technique has demonstrated greater utility for

the case of high dimensional datasets. In the case of low dimensional datasets, there is

no significant difference in terms of classification accuracy when comparing RMoE to

the classical MoE model. As for goodness of feature selection, in the case of synthetic
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datasets, where there is ground truth information about the process used to generate

the data, the proposed method is able to recover most of the true relevant dimensions.

In terms of the performance of RMoE with respect to popular alternative techniques

that also uses embedded feature selection, we also observe that RMoE shows a superior

classification accuracy for the case of datasets with a high number of dimensions. As

future work, we believe that an important constraint of RMoE is the assumption that

the conditional distributions for each expert follows a logistic regression. We plan to

explore alternative and more flexible distributions to model gate and expert functions.

Another avenue of future research is to explore the incorporation of an embedded feature

selection scheme for the case of hierarchical mixture of experts.
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