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Note
The latest version of this document can be found online at https://dr-knz.net/
categories-from-scratch.html. Alternate formats: Source, PDF.

Prologue

The concept of category from mathematics happens to be useful to computer programmers in many ways.
Unfortunately, all “good” explanations of categories so far have been designed by mathematicians, or at
least theoreticians with a strong background in mathematics, and this makes categories especially in-
scrutable to external audiences.

More specifically, the common explanatory route to approach categories is usually: “here is a formal
specification of what a category is; then look at these known things from maths and theoretical computer
science, and admire how they can be described using the notions of category theory.” This approach is only
successful if the audience can fully understand a conceptual object using only its formal specification.

In practice, quite a few people only adopt conceptual objects by abstracting from two or more contexts
where the concepts are applicable, instead. This is the road taken below: reconstruct the abstractions from
category theory using scratches of understanding from various fields of computer engineering.

Overview

The rest of this document is structured as follows:

1. introduction of example Topics of study: unix process pipelines, program statement sequences and
signal processing circuits;

2. Recollections of some previous knowledge about each example; highlight of interesting analogies
between the examples;

3. Identification of the analogies with existing concepts from category theory;

4. a quick preview of Goodies from category theory;

5. references to Further reading.

Topics of study

“Pipes” Unix process pipelines: chains of Unix processes linked by FIFOs.

“Compilers” Programs that transform programs.

“Circuits” Signal processing circuits: circuits in the real world with physical connectors for input and
output of electrical signals.

Many introductory texts about category theory use another group of examples: type systems for pro-
gramming languages, matrices from linear algebra and sometimes directed graphs. I did not choose them
here as I believe they are already too abstract for many computing engineers. Instead, I believe these ex-
amples should only be mentioned as additional instances of categories after the concept has been properly
recognized.
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Recollections

Background terminology

Pipes:
In a Unix system, processing
activities are organized in pro-
cesses. Nearly all communication
between processes and with I/O
devices is organized via file de-
scriptors: to real files on disk,
to terminals with the user, but
also FIFO buffers between pro-
cesses. Communication can be
monitored directly on terminals,
or by looking at the contents of
files on disk, or interleaving the
program tee between programs
chained by FIFOs.

Compilers:
A compiler is a program that
takes another program as input,
and transforms it to produce an-
other program as output. The set
of valid inputs for a compiler is
its input language, and the set of
possible outputs is its output lan-
guage. For example, a “C com-
piler” accepts C code as input and
produces assembly code as out-
put (for some specific ISA).

Circuits:
An electronic circuit is usually
recognized when one sees a plas-
tic enclosurewith somemetal bits
sticking out. Signal processors are
a specific type of circuit, with
a notion of “input” and “output”
connectors: For example, a hi-
fi amplifier has distinct pins for
the “audio source” and one or
more “speaker” output connec-
tors. When plugged in to an ac-
tive input signal, the circuit is it-
self activated and starts driving
its output pins. The output sig-
nal can be exploited by further
plugging to other circuits, or out-
put devices. It can also be mea-
sured, for example using an oscil-
loscope.

Observability

Each topic has two "groups" of things: things that can be observed from the “outside”, and things that
appear (mostly) as black boxes from the outside but are “connected” between the things in the first group:

Example: Pipes Compilers Circuits
Observables: The data streams going

through file descriptors.
The set of all possible pro-
grams written in the input
languages or generated in the
output language.

The electric signals over time.

Black boxes: The running processes with
their internal state (program
counter, stack, heap, etc.).

The program transformation
algorithms.

The circuits themselves.

Grouping things together

Each topic provides a mechanism to plug the "black box" things together:
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Pipes:
Given the two commands "grep -v

foo" and "grep -v bar", one canwrite
the command "grep -v foo | grep -v

bar", which combines the two be-
haviors.

Compilers:
Given a compiler from C to as-
sembly text, and a compiler from
assembly text to machine code,
one can combine them (eg. by
means of a script) to create a com-
piler from C to machine code.

Circuits:
Given the a DVI-VGA adapter
and a VGA-SVideo adapter, it is
possible to plug them together to
form a DVI-SVideo adapter.

Composition semantics

Each topic has a notion of "good" compositions that "make sense", and "bad" compositions that nonsensical
and not expected to "work properly":

Pipes:
Piping ls with grep foo is sensical.

Compilers:
Connecting the output of a C-to-
assembly compiler to the input
of a assembly-to-code compiler is
sensical.

Circuits:
Plugging a USB-serial adapter to
a DB9-DB25 serial adapter (with
a 9-pin interface between them)
is sensical.

Piping ls with gv (PostScript
viewer) is nonsensical.

Connecting the output of a C-
to-C compiler to the input of
an assembly-to-code compiler is
nonsensical.

Plugging a USB-serial adapter to
an EGA display (physically pos-
sible as they share the same DB9
connector) is nonsensical.

To identify "good" from "bad" compositions, each topic places a large emphasis on the notion of inter-
face:

Pipes:
Both ls and grep operate on plain
text streams, which is why they
compose well with pipes. In con-
trast gv expects PostScript as in-
put, which ls cannot produce.

Compilers:
Each compiler has a notion of in-
put language for the set of ac-
cepted input programs and out-
put language for the set of possi-
ble outputs. The languages must
match when composing the com-
pilers together.

Circuits:
The USB-serial adapter and
serial-serial adapter plug well to-
gether because they both use the
same standard (RS232) signalling
protocol at the interface.

Remarkably, users understand or conceptualize interfaces, despite the fact they are not always defined
explicitly beforehand.

Neutral behaviors

Each topic has some instances of black box things that "do nothing", ie have a neutral behavior:

Pipes:
when the input and output data
streams are the same (byte-wise).

Compilers:
when the input and output lan-
guages are the same.

Circuits:
when the output signals are mea-
sured the same as the input.
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The knowledge of whether a black box is neutral can be gained in either or three ways.
Either it is known to be neutral by construction, because the specification is available for scrutinity and

can be proven to define a neutral behavior:

Pipes:
The program source code con-
tains a loop that iteratively inputs
a byte and outputs the same byte,
stopping at end-of-stream.

Compilers:
The transformation algorithm
does not change the semantics of
the program.

Circuits:
The blue print defines direct links
between the input and output
pins.

Or, the knowledge is provided externally, eg. by fiat:

Pipes:
The manual page for a command
specifies that the process will
replicate its input to its output
unchanged.

Compilers:
The documentation says it is a
“source-to-source” compiler, or
explicitly indicates that its in-
put and output language are the
same.

Circuits:
The manufacturer guarantees
that the circuit is fully pass-
through.

Or, it is discovered: to find out whether a black box thing A is neutral, assuming an observer has access
to a pre-existing, valid "observable thing" that can be fed to A, then the observer can deduce the behavior
of A is "neutral" if the observable as a result of A’s activity is the same as the original observable:

Pipes:
An unknown program xxx is
known a priori to only read from
its standard input and write to its
standard output. So one can run
the command "xxx <iN >oN" for var-
ious input files iN and compare
whether the contents of each file
oN are equal to the corresponding
iN. If so, xxx appears to be "neu-
tral".

Compilers:
The input language is known, but
not the output language. So one
can generate some random but
valid input programs and feed
them to the compiler. If the out-
put programs are also valid input
programs, then original program
piece appears to be "neutral".

Circuits:
A signal processor appears to
have the same number of input
and output pins, and its input sig-
nal specification is known a pri-
ori. So one can use various valid
input signals, feed them to the
circuit, and measure the output.
If the output signals measures the
same as the input every time, the
circuit appears to be "neutral".

Once a black box thing N is known to be neutral, then its composition "left" and "right" with another
black box thing A can be assumed to have the same behavior as A on its own:

Pipes:
Both "xxx | grep foo" and "grep foo |

xxx" can be assumed to behave like
grep foo once xxx is known to be
neutral.

Compilers:
A compiler built by composing a
neutral compiler N either before
or after another compiler C will
have the same input and output
languages as C.

Circuits:
Plugging a neutral circuit on ei-
ther the input or output side of
another circuit Awill process sig-
nals as A alone would.
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Associativity

When one composes three black box things A, B and C together (assuming the compositions are point-wise
sensical), the order in which the composition is realized does not change the behavior:

Pipes:
The commands "(ls | grep -v foo) |

grep -v bar" and "ls | (grep -v foo |

grep -v bar)" have equivalent be-
havior on their data streams.

Compilers:
If a script A invokes a Scheme-
to-C compiler C1 followed by a
C-to-assembly compiler C2, and
another script B invokes A and
then an assembly-to-code com-
piler C3, then B has the same
input and output language as a
script C that calls C1 then D,
where D calls C2 then C3.

Circuits:
Whether a DVI-VGA adapter
is plugged into a VGA-SVideo
adapter, and then the result is
plugged into a TV screen with
SVideo input, or if a VGA-SVideo
adapter is first plugged into the
TV, and then plugged to a DVI-
VGA adapter, both resulting cir-
cuits are working TVs from a DVI
input signal.

Identification of the analogies

The previous section has introduced the following key concepts:

• things that can be "observed" from the outside, and "black box" things connected between observ-
ables;

• neutral black box things that preserve behavior;

• associative composition of black box things.

These are the concepts manipulated in category theory.

Objects and morphisms

First, the observables are named objects. The black boxes things are named morphisms or arrows.

Example: Pipes Compilers Circuits
Objects: Data streams. Languages. Signals.
Morphisms: Processes. Compilers. Circuits.

Modeling: be careful about equivalences

Categories are defined over mathematical sets of objects and morphisms. Sets are different from simple
“collections” (or “bag”) of things from the real world: all their elements are distinct, according to some
equivalence relation.

So in order to talk about categories over things from the real world, we must first choose how to
define the mathematical sets. This choice is called a model and multiple models are possible for the same
collection of things.

The most focus should be given to the set of morphisms. The set of objects is simply derived from it
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once the morphisms are properly identified. For example, in our pipes example, considering what happens
to data streams. What does it mean for two processes to be equal or different?

We can choose for example “data stream equality”. By this standard, two processes that filter out lines
containing the text “foo” over any data stream are the “same thing.” So “sed '/foo/d'” and “grep -v foo” are
the same morphism.

If we choose this definition for morphisms, then the objects are not individual files (or time-particular
datastreams over FIFOs), but rather entire classes of all possible data streams that compare equal to each
other byte by byte. For example, a stream that delivers “helloworld” in one go is the same stream as another
that delivers “hello” and then “world” 5 seconds later.

Another possible choice for a definition is "physical equality". By this standard, two processes that
run at different times or in different physical regions of the system are distinct, even if they perform the
same task. So two processes run from the same command (eg cat) at different times end up as different
morphisms in the set.

If we choose this definition, then themathematical objects are not only data streams, but alsowhere and
when the bytes are physically encoded. So two streams that deliver “helloworld” in different places/times
are distinct objects.

The rule of thumb while choosing a definition is the following: if one wants to talk about categories
over sets of objects and morphisms that are already mathematically defined, then all is well. If one wants
to use category theory over things that are not yet mathematical, be careful to explain clearly and explicitly
how they are modeled using mathematical sets, and which equivalence relation is used.

For the next sections, we use the following definitions:

Pipes:
We use “data stream equality” as
defined above. With this, the
commands “sed '/foo/d'” and “grep
-v foo” define the samemorphism;
so do “tr x y” and “sed s/x/y/g”.
With this definition, each mor-
phism may have multiple names
(different commands to define it).
This is ok.

Compilers:
We use “program equality”: two
compilers are the samemorphism
if they produce the same out-
put program from the same input
program. By this definition, two
different C-to-assembly compil-
ers (eg. gcc and clang) are differ-
ent morphisms, but a compiler
defined by a script combining cpp

with gcc is the same morphism as
gcc on its own.
Again, with this definition, each
morphism may have multiple
names.

Circuits:
We use “interface and protocol
equality”. With this, both the
USBGEAR/USBG-232FT-1 and
MCT/U232-P9 are the same
morphism, as they both interface
USB to RS232. However, a
USB-to-EGA adapter would not
be the same morphism, because
it uses a different signal protocol
even though the interface (DB9)
is the same.

Arrow notation

The arrow notation describes a morphism: “A → B” is a description for a morphism from object A to
object B. The two sides of a morphism can be named “input” and “output”, but are usually named “source”
and “target”.

There may be multiple morphisms between any two objects, so the arrow notation does not identify a
particular morphism; instead, it can be seen as an “interface” or “type” for the set of all morphisms between
the designated objects:
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Pipes:
Both the processes resulting from
running “tr x y <f1 >f2” and “tr yz

<f1 >f2” are different morphisms,
and both can be described by the
arrow “f1 → f2”.

Compilers:
Both the gcc and clang programs
are morphisms, and both can be
described by the arrow “C →
assembly”.

Circuits:
Both the USBGEAR/USBG-
232FT-1 and MCT/U232-P9
are morphisms, and both can
be described by the arrow
“USB → RS232”.

Composition

If two morphisms have the same intermediary object, it is possible to compose them together (cf. Com-
position semantics above). This is abstracted by an composition operator noted "·": given two compatible
morphisms f and g, "g · f " designates their composition, ie. (g · f)(x) = g(f(x)).

By construction, if f can be described by A → B and g by B → C , then g · f can be described by
A → C .

Composition is associative: for any f, g, h, (f · g) · h = f · (g · h).

Identity

For any object, there must exist at least one morphism that keeps the object unchanged. Each such identity
morphism for an object x is called “idx” (sometimes also “1x”) and can be described as x → x; it must satisfy
the following property: for every morphism f : A → B, idB · f = f = f · idA.

So there must be at least as many identity morphisms as there are objects.
For categories defined by modeling over concrete things, it may be necessary to extend the mathemat-

ical set of morphisms with “theoretical” identity morphisms, when there are no concrete identities.
For example, it is not possible to build a concrete identity circuit: any one-to-one pairing of physical

input and output connectors with direct wires between them is bound to introduce noise in the signal due
to the physical distance. However, the mathematical set modeling circuits can be naturally extended to
include “virtual” identity circuits that preserve signals unchanged.

Hopefully, with many categories the identity morphisms can be concretely constructed in the applica-
tion domain:

Pipes:
For any data stream, the mor-
phism defined from the com-
mands “cat” or “grep '.*'” is an
identity.

Compilers:
For the C language, the prepro-
cessor (cpp) is an identity.

Circuits:
see above.

Definition of a category

A category is an algebraic structure formed over:

• a (mathematical) set of objects,

• a (mathematical) set of morphisms over these objects containing at least one identity morphism for
each object,

• an associative composition operator.
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Category: Pipes Compilers Circuits
Objects: Data streams. Languages. Signals.
Morphisms: Stream transformers. Compilers. Models of circuits.
Identities: Running cat or similar pass-

through commands.
cpp for C, in general cat for
any langage.

Virtual pass-through cir-
cuits.

Composition: Chaining processes via
FIFO buffers, eg by run-
ning them with the pipe
operator in commands.

Creating a script that in-
vokes two existing compil-
ers, applying the 2nd on the
output of the 1st.

Plugging the circuits to-
gether.

Goodies from category theory

Unicity of the identity

Although the existence of identity morphisms is a prerequisite to form a category (axiomatic), it is possible
to prove within category theory that each identity is unique.

You can do this as follows.
Suppose you have two morphisms id1x and id2x that preserve object x and satisfy the axiomatic iden-

tity properties:

1. for every f : y → x, id1x · f = id2x · f = f ; and

2. for every g : x → y, g · id1x = g · id2x = g.

In equation #1, replace f by id2x, and you find that id1x · id2x = id2x.
In equation #2, replace g by id1x, and you find that id1x · id2x = id1x.
Since both left-hand sides are equal, you have proven that id2x = id1x. ■
What this means in practice: if you can construct/define two morphisms in a category and prove they

satisfy the identity laws, then you have proven they are the same morphism. In our examples, that means
identity commands (pipes), compilers or circuits become interchangeable with regards to their properties
in category theory. This can be used to simplify formulas that use complex morphisms into simpler ones.

Invertibility and isomorphisms

The general notion of invertibility for a morphism can be expressed purely in the vocabulary of category
theory:

f : A → B is invertible if there exists g : B → A such that g · f : idA and f · g : idB .
Invertible morphisms are also called isomorphisms.
By extension, two objects A and B are isomorphic if there exists at least one isomorphism described by

A → B.

Duality

For any category C , it is possible to define mathematically another category Cop where the source and
target of every morphism are interchanged. This is called the “opposite category” or dual category of C .

Duality is “invertible”: (Cop)op is the same category as C .
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The dual category of a category C of concrete objects may be purely abstract, ie. without concrete
representations for morphisms in the application domain of C , for example if the morphisms in C are not
invertible.

Nevertheless, duality serves an important purpose: say, you have demonstrated a property that holds
within a category C , which you can express within the language of category theory using a formula σ
(some text string).

If you then replace all occurences of “source” by “target” and vice-versa in σ, and all occurences of f ·g
by g · f , you obtain a new formula σop. By construction, this formula is true in Cop. It is said to be the
dual property of σ. Conversely, if you know a property σ to be true in Cop, then σop will be true in C as
well.

Why this is useful: many important/useful results and properties of mathematics come in pairs that are
expressed using “symmetric” formulas, which are dual in category theory. For example, monomorphisms
and epimorphisms are morphisms for which different properties hold, but their definitions are dual. From
this, if one can derive another unrelated property ϕ that relies on the fact a morphism is monomorphic,
then thanks to duality, automatically the dual property ϕop is also proven over epimorphisms. Thanks to
category theory, many pairs of results/theorems in algebra can be obtained with half the effort.

Functors

The observation that there are some common features between different categories intuitively brings the
idea to transform one category into another, while preserving its structure.

For example, our category of “pipes” over Unix data streams can be transformed into a category of
“networked services” over network data streams trivially, by attaching the program nc around each Unix
processes.

Such a transformation of a category into another is called a functor. Generally, a functor F from a
category C to a category D has the following properties:

• for each object x in C, F associates an object in D noted F(x);

• for each morphism f : x → y in C, F associates a morphism in D that can be described by F (x) →
F (y), noted F(f);

• for every identity morphism h : x → x in C, F(h) is an identity morphism for F(x) in D;

• for every pair of morphisms f and g in C, F (g · f) = F (g) · F (f) in D.

(This specific flavor of functors is called “covariant.” If F maps each arrow inC to an arrowwith opposite
direction in D, it is called “contravariant” instead. Covariant and contravariant functors are dual.)

Side property: Because of the properties of functors, the algebraic structure formed by 1) a set of
categories 2) a set of functors over these categories 3) the identity functors that leave each category in set
#1 unchanged, and 4) the natural generalization of composition, together, is itself a category.

Some follow-up concepts to read about

• Natural transformations: a constuction that transforms a functor into another functor, that respects
the category structure of the functor transformations.
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• Functor category: category where the objects are functors, and the morphisms are natural trans-
formations between them.

• Categorical logic, especially used in computer science, focuses on semantic systems with a differ-
ence between syntax and semantics. To use categorical logic, one defines one category for syntax,
one category for semantics, and phrases interpretation as a functor between them. An example ap-
plication is proofs of behavior correctness, or “correct by construction” languages: by choosing an
appropriate interpretation functor, proofs over the syntax category can be carried over transparently
to the category of semantics.

Further reading

• Benjamin L. Russell. Motivating Category Theory for Haskell for Non-mathematicians. Benjamin’s
Adventures in Programming Language Theory Wonderland, January 2009.

• James Cheney. Category theory for dummies (I). Programming Languages Discussion Group, March
2004.

• José Antonio Ortega Ruiz. Programmers go banana. Programming musings, March 2006. Contains
an extremely synthetic yet approachable definition of categories with diagrams.

• Gabriel Gonzalez. Model-view-controller in Haskell. Haskell for All, April 2014. Explains how to use
category theory to abstract the model-view-controller pattern of software engineering in a type-safe
manner.
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