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Abstract. Object-oriented and generic programming are both supported
in C++. OOP provides high expressiveness whereas GP leads to more ef-
ficient programs by avoiding dynamic typing. This paper presents SCOOP,
a new paradigm which enables both classical OO design and high per-
formance in C++ by mixing OOP and GP. We show how classical and
advanced OO features such as virtual methods, multiple inheritance, ar-
gument covariance, virtual types and multimethods can be implemented
in a fully statically typed model, hence without run-time overhead.

1 Introduction

In the context of writing libraries dedicated to scientific numerical computing, ex-
pressiveness, reusability and efficiency are highly valuable. Algorithms are turned
into software components that handle mathematical abstractions while these ab-
stractions are mapped into types within programs.

The object-oriented programming (OOP) paradigm offers a solution to ex-
press reusable algorithms and abstractions through abstract data types and in-
heritance. However, as studied by Driesen and Hölzle [18], manipulating ab-
stractions usually results in a run-time overhead. We cannot afford this loss of
performance since efficiency is a crucial issue in scientific computing.

To both reach a high level of expressiveness and reusability in the design of
object-oriented scientific libraries and keep an effective run-time efficiency for
their routines, we have to overcome the problem of “abstractions being ineffi-
cient”. To cope with that, one can imagine different strategies.

A first idea is to find an existing language that meets our requirements, i.e.,
a language able to handle abstractions within programs without any penalty at
execution time. This language has to be either well-known or simple enough to
ensure that a scientist will not be reluctant to use our library. Unfortunately we
do not feel satisfied with existing languages; for instance LOOM and PolyTOIL
by Bruce et al. [11, 9] have the precise flavor that we expect but, as prototypes,
they do not feature all what a complete language can offer.



A second approach, chosen by Baumgartner and Russo [6] and Bracha et al.
[8] respectively for C++ and Java, is to extend an existing expressive language
by adding ad hoc features making programs more efficient at run-time. Yet,
this approach requires a too great amount of work without any guarantee that
extensions will be adopted by the language community and by compiler vendors.
To overcome this problem, an alternate approach is to propose a front-end to
translate an extended language, more expressive, into its corresponding primary
language, efficient, such as Stroustrup [49] did with his erstwhile version of the
C++ language. This approach has been made easier than in the past thanks to
recently available tools dedicated to program translation, for instance Xt [57].
However, we have not chosen this way since we are not experimented enough
with this field.

Another strategy is to provide a compiler that produces efficient source codes
or binaries from programs written in an expressive language. For that, several
solutions have been developed that belong to the fields of static analysis and
partial evaluation, as described by Chambers et al. [14], Schultz [42], Veldhuizen
and Lumsdaine [56]. In particular, how to avoid the overhead of polymorphic
method calls is studied by Aigner and Hölzle [2], Bacon and Sweeney [4] for
C++ and by Zendra et al. [58] for Eiffel. However, most of these solutions remain
prototypes and are not implemented in well-spread compilers.

Last, we can take an existing object-oriented language and try to bend it to
make some constructs more efficient. That was for instance the case of the ex-
pression templates construct defined by Veldhuizen [54] in C++, later brought to
Ada by Duret-Lutz [19], and of mixin-based programming by Smaragdakis and
Batory [44] in C++. These solutions belong to the field of the generic program-
ming (GP) paradigm, as described by Jazayeri et al. [26]. This programming
style aims at implementing algorithms as general so reusable as possible without
sacrificing efficiency obtained by parameterization—related to the template key-
word in C++ and to the generic keyword in Ada and Eiffel. However, from our
experience in developing a scientific library, we notice several major drawbacks
of GP that seriously reduce expressiveness and affect user-friendliness, whereas
these drawbacks do not exist with “classical” OOP. A key point of this paper is
that we do not subscribe to “traditional” GP because of these drawbacks. Said
shortly, they have their origin in the unbounded structural typing of param-
eterization in C++ which prevents from having strongly typed signatures for
functions or methods. Consequently, type checking at compile-time is awkward
and overloading is extremely restricted. Justifications of our position and details
about GP limitations are given later on in this paper.

Actually, we want to keep the best of both OOP and GP paradigms—
inheritance, overloading, overriding, and efficiency—without resorting to a new
language or new tools—translators, compilers, or optimizers. The advent of the
C++ Standard Template Library, mostly inspired by the work of Stepanov et al.
[47], is one the first serious well-known artifact of GP. Following that example
a lot of scientific computing C++ libraries arose during the past few years(they
are referenced by oonumerics [39]), one of the most predominant being Boost



[7]. Meanwhile, due to the numerous features of C++, many related GP tech-
niques appeared and are described in the books by Czarnecki and Eisenecker
[17], Alexandrescu [3], Vandevoorde and Josuttis [53]. Moreover, Striegnitz and
Smith [48], Järvi and Powell [25], Smaragdakis and McNamara [45] have shown
that some features offered by a non-object-oriented paradigm, namely the func-
tional one, can be supported by the native C++ language. Knowing these C++
programming techniques, we then thought that this language was able to sup-
port an OOP-like paradigm without compromising efficiency. The present paper
describes this paradigm, namely a proposal for “Static C++ Object-Oriented
Programming”: SCOOP.

This paper is composed of three parts. Section 2 discusses the OOP and GP
paradigms, their limitations, existing solutions to overcome some of these limita-
tions, and finally what we expect from SCOOP. Section 3 shows how SCOOP is
implemented. Finally some technical details and extra features have been moved
into appendices.

2 OOP, GP, and SCOOP

A scientific library offers data structures and algorithms. This procedural point
of view is now consensual [35] although it seems to go against OOP. Actually,
an algorithm is intrinsically a general entity since it deals with abstractions. To
get the highest decoupling as possible between data and algorithms, a solution
adopted by the C++ Standard Library and many others is to map algorithms
into functions. At the same time, data structures are mapped into classes where
most of the methods are nothing but the means to access data. Last, providing
reusable algorithms is an important objective of libraries so we have to focus on
algorithms. It is then easier to consider that algorithms and all other entities
are functions (such as in functional languages) to discuss typing issues. For all
these reasons, we therefore adopt in this section a function-oriented approach of
algorithms.

2.1 About Polymorphisms

A function is polymorphic when its operands can have more than one type, either
because there are several definitions of the function, or because its definition
allows some freedom in the input types. The right function to call has to be
chosen depending on the context. Cardelli and Wegner [13] outline four different
kinds of polymorphism.

In inclusion polymorphism, a function can work on any type in a type
class. Type classes are named sets of types that follow a uniform interface. Func-
tional languages like Haskell allow programmers to define type classes explicitly,
but this polymorphism is also at the heart of OO languages. In C++, inclusion
polymorphism is achieved via two mechanisms: subclassing and overriding of
virtual functions.



Subclassing is used to define sets of types. The class (or struct) keyword is
used to define types that can be partially ordered through a hierarchy: i.e., an
inclusion relation1. A function which expects a pointer or reference to a class A

will accept an instance of A or any subclass of A. It can be noted that C++’s
typing rules make no difference between a pointer to an object whose type is
exactly A and a pointer to an object whose type belongs to the type class of A2.

Overriding of virtual functions allows types whose operations have different
implementations to share the same interface. This way, an operation can be
implemented differently in a subclass of A than it is in A. Inclusion polymorphism
is sometime called operation polymorphism for this reason.

These two aspects of inclusion polymorphism are hardly dissociable: it would
make no sense to support overriding of virtual functions without subclassing,
and subclassing would be nearly useless if all subclasses had to share the same
implementation.

In parametric polymorphism, the type of the function is represented using
at least one generic type variable. Parametric polymorphism really corresponds
to ML generic functions, which are compiled only once, even if they are used
with different types. Cardelli and Wegner states that Ada’s generic functions
are not to be considered as parametric polymorphism because they have to be
instantiated explicitly each time they are used with a different type. They see
Ada’s generic functions as a way to produce several monomorphic functions by
macro expansion. It would therefore be legitimate to wonder whether C++’s
function templates achieve parametric polymorphism. We claim it does, because
unlike Ada’s generics, C++’s templates are instantiated implicitly. In effect,
it does not matter that C++ instantiates a function for each type while ML
compiles only one function, because this is transparent to the user and can be
regarded as an implementation detail3.

These two kinds of polymorphism are called universal. A nice property is
that they are open-ended: it is always possible to introduce new types and to
use them with existing functions. Two other kinds of polymorphism do not share
this property. Cardelli and Wegner call them ad-hoc.

Overloading corresponds to the case where several functions with different
types have the same name.

Coercion polymorphism comes from implicit conversions of arguments.
These conversions allow a monomorphic function to appear to be polymorphic.

All these polymorphisms coexist in C++, although we will discuss some no-
table incompatibilities in section 2.3. Furthermore, apart from virtual functions,

1 Inclusion polymorphism is usually based on a subtyping relation, but we do not enter
the debate about “subclassing v. subtyping” [15].

2 In Ada, one can write access A or access A’Class to distinguish a pointer to an
instance of A from a pointer to an instance of any subclass of A.

3 This implementation detail has an advantage, though: it allows specialized instan-
tiations (i.e., template specializations). To establish a rough parallel with inclusion
polymorphism, template specializations are to templates what method overriding is
to subclassing. They allow to change the implementation for some types.



the resolution of a polymorphic function call (i.e., choosing the right definition
to use) is performed at compile-time.

2.2 About the Duality of OOP and GP

Duality of OOP and GP has been widely discussed since Meyer [33]. So we just
recall here the aspects of this duality that are related to our problem.

Let us consider a simple function foo that has to run on different image types.
In traditional OOP, the image abstraction is represented by an abstract class,
Image, while a concrete image type (for instance Image2D) for a particular kind
of 2D images, is a concrete subclass of the former. The same goes for the notion
of “point” that gives rise to a similar family of classes: Point, which is abstract,
and Point2D, a concrete subclass of Point. That leads to the following code4:

struct Image {
virtual void set(const Point& p, int val) = 0;

};

struct Image2D : public Image {
virtual void set(const Point& p, int val) { /∗ impl ∗/ }

};

void foo(Image& input, const Point& p) {
// does something like :
input.set(p , 51);

}

int main() {
Image2D ima; Point2D p;
foo(ima, p);

}

foo is a polymorphic function thanks to inclusion through class inheritance.
The call input.set(p, 51) results in a run-time dispatch mechanism which binds
this call to the proper implementation, namely Image2D::set. In the equivalent
GP code, there is no need for inheritance.

struct Image2D {
void set(const Point2D& p, int val) { /∗ impl ∗/ }

};

template <class IMAGE, class POINT>
void foo(IMAGE& input, const POINT& p) {

// does something like :
input.set(p , 51);

}

4 Please note that, for simplification purpose, we use struct instead of class and that
we do not show the source code corresponding to the Point hierarchy.



int main() {
Image2D ima; Point2D p;
foo(ima, p);

}

foo is now polymorphic through parameterization. At compile-time, a par-
ticular version of foo is instantiated, foo<Image2D, Point2d>, dedicated to the
particular call to foo in main. The basic idea of GP is that all exact types are
known at compile-time. Consequently, functions are specialized by the compiler;
moreover, every function call can be inlined. This kind of programming thus
leads to efficient executable codes.

The table below briefly compares different aspects of OOP and GP.

notion OOP GP

typing named typing through class names structural
so explicit in class definitions so only described in documentation

abstraction abstract class formal parameter
(e.g., image) (e.g., Image) (e.g., IMAGE)
inheritance is the way to handle abstractions is only a way to factorize code

method no-variant —
(set) (Image::set(Point, int) —

Image2D::set(Point, int)) —
algorithm a single code at program-time a single meta-code at program-time

(foo) (foo) (template<..> foo)
and a unique version at compile-time and several versions at compile-time

(foo) (foo<Image2D,Point2D>, etc.)
efficiency poor high

From the C++ compiler typing point of view, our OOP code can be trans-
lated into:

type Image = { set : Point → Int → Void }
foo : Image → Point → Void

foo is restricted to objects whose types are respectively subclasses of Image and
Point. For our GP code, things are very different. First, the image abstraction is
not explicitly defined in code; it is thus unknown by the compiler. Second, both
formal parameters of foo are anonymous. We then rename them respectively “I”
and “P” in the lines below and we get:

∀ I, ∀ P, foo : I → P → Void
Finally, if these two pieces of code seem at a first sight equivalent, they do not

correspond to the same typing behavior of the C++ language. Thus, they are
treated differently by the compiler and have different advantages and drawbacks.
The programmer then faces the duality of OOP and GP and has to determinate
which paradigm is best suited to her requirements.

During the last few years, the duality between OOP and GP has given rise
to several studies.

Different authors have worked on the translation of some design patterns [22]
into GP; let us mention Géraud et al. [23], Langer [27], Duret-Lutz et al. [20],
Alexandrescu [3], Régis-Gianas and Poss [40].

Another example concerns the virtual types construct, which belongs to the
OOP world even if very few OO languages feature it. This construct has been



proposed as an extension of the Java language by Thorup [51] and a debate
about the translation and equivalence of this construct in the GP world has
followed [10, 52, 41].

Since the notion of virtual type is of high importance in the following of
this paper, let us give a more elaborate version of our previous example. In an
augmented C++ language, we would like to express that both families of image
and point classes are related. To that aim, we could write:

struct Image {
virtual typedef Point point type = 0;
virtual void set(const point type& p, int val) = 0;

};

struct Image2D : public Image {
virtual typedef Point2D point type;
virtual void set(const point type& p, int val) { /∗ impl ∗/ }

};

point_type is declared in the Image class to be an “abstract type alias”
(virtual typedef .. point_type = 0;) with a constraint: in subclasses of Image,
this type should be a subclass of Point. In the concrete class Image2D, the alias
point_type is defined to be Point2D. Actually, the behavior of such a construct
is similar to the one of virtual member functions: using point_type on an im-
age object depends on the exact type of the object. A sample use is depicted
hereafter:

Image∗ ima = new Image2D();
// ...
Point∗ p = new (ima−>point type)();

At run-time, the particular exact type of p is Point2D since the exact type of ima
is Image2D.

An about equivalent GP code in also an augmented C++ is as follows:

struct Image2D {
typedef Point2D point type;
void set(const point type& p, int val) { /∗ impl ∗/ }

};

template <class I>
where I {

typedef point type;
void set(const point type&, int);

}
void foo(I& input, const typename I::point type& p) {

// does something like :
input.set(p , 51);

}

int main() {



Image2D ima; Point2D p;
foo(ima, p);

}

Such as in the original GP code, inheritance is not used and typing is fully
structural. On the other hand, a where clause has been inserted in foo’s signature
to precise the nature of acceptable type values for I. This construct, which has
its origin in CLU [30], can be found in Theta [29], and has also been proposed
as an extension of the Java language [36]. From the compiler point of view, foo’s
type is much more precise than in the traditional GP code. Finally, in both
C++ OOP augmented with virtual types and C++ GP augmented with where
clauses, we get stronger expressiveness.

2.3 OOP and GP Limitations in C++

Object-Oriented Programming relies principally on the inclusion polymor-
phism. Its main drawback lies in the indirections necessary to run-time resolution
of virtual methods. This run-time penalty is undesirable in highly computational
code; we measured that getting rid of virtual methods could speed up an algo-
rithm by a factor of 3 [24].

This paradigm implies a loss of typing: as soon as an object is seen as one of
its base classes, the compiler looses some information. This limits optimization
opportunities for the compiler, but also type expressiveness for the developer.
For instance, once the exact type of the object has been lost, type deduction
(T::deducted_type) is not possible. This last point can be alleviated by the use
of virtual types [52], which are not supported by C++.

The example of the previous section also expresses the need for covariance:
foo calls the method set whose expected behavior is covariant. foo precisely
calls Image2D::set(Point2D,int) in the GP version, whereas the call in the OOP
version corresponds to Image::set(Point,int).

Generic Programing on the other hand relies on parametric polymorphism
and proscribes virtual functions, hence inclusion polymorphism. The key rule is
that the exact type of each object has to be known at compile-time. This allows
the compiler to perform many optimizations. We can distinguish three kinds of
issues in this paradigm:

– the rejection of operations that cannot be typed statically,
– the closed world assumption,
– the lack of template constraints.

The first issues stem from the will to remain statically typed. Virtual func-
tions are banished, and this is akin to rejecting inclusion polymorphism. Fur-
thermore there is no way to declare an heterogeneous list and to update it at
run-time, or, more precisely to dynamically replace an attribute by an object of
a compatible subtype. These operations cannot be statically typed, there can be
no way around this.



The closed world assumption refers to the fact that C++’s templates do not
support separate compilation. Indeed, in a project that uses parametric polymor-
phism exclusively it prevents separate compilation, because the compiler must
always know all type definitions. Such monolithic compilation leads to longer
build times but gives the compiler more optimization opportunities. The C++
standard [1] supports separate compilation of templates via the export keyword,
but this feature has not been implemented in mainstream C++ compilers yet.

void foo(A1& arg)
{

arg.m1()
}

void foo(A2& arg)
{

arg.m2()
}

template<class A1>
void foo(A1& arg)
{

arg.m1()
}

template<class A2>
void foo(A2& arg) // illegal
{

arg.m2()
}

template<class A1>
void foo(A1& arg)
{

arg.m1()
}

template<>
void foo<A2>(A2& arg)
{

arg.m2()
}

Fig. 1. Overloading can be mixed with inclusion polymorphism (left), but will not
work with unconstrained parametric polymorphism (middle and right).

The remaining issues come from bad interactions between parametric poly-
morphism and other polymorphisms in C++. For instance, because template
arguments are unconstrained, one cannot easily overload function templates.
Figure 1 illustrates this problem. When using inclusion polymorphism (left), the
compiler knows how to resolve the overloading: if arg is an instance of a sub-
class of A1, resp. A2, it should be used with the first resp. second definition of
foo(). We therefore have two implementations of foo() handling two different
sets of types. These two sets are not closed (it is always possible to add new
subclasses), but they are constrained. Arbitrary types cannot be added unless
they are subtypes of A1 or A2. This constraint, which distinguishes the two sets
of types, allows the compiler to resolve the overloading.

In generic programming, such an overloading could not be achieved, because
of the lack of constraints on template parameters. The middle column on Fig-
ure 1 shows a straightforward translation of the previous example into parametric
polymorphism. Because template parameters cannot be constrained, the func-
tion’s arguments have to be generalized for any type A, and for any type B. Of
course, the resulting piece of code is not legal in C++ because both functions
have the same type. A valid possibility (on the right of Figure 1), is to write a
definition of foo for any type A1, and then specialize this definition for type A2.
However, this specialization will only work for one type (A2), and would have to
be repeated for each other type that must be handled this way.



Solving overloading is not the only reason to constrain template arguments,
it can also help catching errors. Libraries like STL, which rely on generic pro-
gramming, document the requirements that type arguments must satisfy. These
constraints are gathered into concepts such as forward iterator or associative con-
tainer [47]. However, these concepts appear only in the documentation, not in
typing. Although some techniques have been devised and implemented in SGI’s
STL to check concepts at compile-time, the typing of the library still allows
a function expecting a forward iterator to be instantiated with an associative
container. Even if the compilation will fail, this technique will not prevent the
compiler from instantiating the function, leading to cryptic error messages, be-
cause some function part of the forward iterator requirements will not be found
in the passed associative container. Could the forward iterator have been ex-
pressed as a constraint on the argument type, the error would have been caught
at the right time i.e. during the attempt to instantiate the function template,
not after the instantiation.

2.4 Existing Clues

As just mentioned, some people have already devised ways to check constraints.
Siek and Lumsdaine [43] and McNamara and Smaragdakis [32] present a tech-
nique to check template arguments. This technique relies on a short checking
code inserted at the top of a function template. This code fails to compile if an
argument does not satisfy its requirements and is turned into a no-op otherwise.
This technique is an effective means of performing structural checks on template
arguments to catch errors earlier. However, constraints are just checked, they
are not expressed as part of function types. In particular, overloading issues dis-
cussed in the previous section are not solved. Overloading has to be solved by
the compiler before template instantiation, so any technique that works after
template instantiation does not help.

Ways to express constraints by subtyping exist in Eiffel [34] and has been
proposed as a Java extension by Bracha et al. [8]. Figure 2 shows how a similar
C++ extension could be applied to the example from Section 2.2.

We have introduced an explicit construct through the keyword concept to
express the definition of image, the structural type of images. This construct is
also similar to the notion of signatures proposed by Baumgartner and Russo
[6] as a C++ extension. Having explicitly a definition of image constraints the
formal parameter I in foo’s type.

Some interesting constructions used to constrain parametric polymorphism
or to emulate dynamic dispatch statically rely on a idiom known as the Bar-
ton and Nackman trick [5] also known as the Curiously Recurring Template
Pattern [16]. The idea is that a super class is parameterized by its immediate
subclass (Figure 3), so that it can define methods for this subclass.

For instance the Barton and Nackman trick has been used by Furnish [21]
to constrain parametric polymorphism and simplify the Expression Template
technique of Veldhuizen [54].



concept image {
typedef point type;
void set(const point type& p, int val);

};

struct Image2D models image {
typedef Point2D point type;
void set(const point type& p, int val) { /∗ impl ∗/ }

};

template <class I models image>
void foo(I& input, const typename I::point type& p) {

// does something with:
input.set(p , 51);

}

int main() {
Image2D ima; Point2D p;
foo(ima, p);

}

Fig. 2. Extending C++ to support concept constraints

template <class T>
struct super
{

void foo(const T& arg)
{

// ...
}

};

struct infer : public super<infer>
{

// ...
};

Fig. 3. The Barton and Nackman trick



2.5 Objectives of SCOOP

Our objective in this paper is to show how inclusion polymorphism can be almost
completely emulated using parametric polymorphism in C++ while preserving
most OOP features. Let us define our requirements.

Class Hierarchies. Developers should express (static) class hierarchies just like
in the traditional (dynamic) C++ OOP paradigm. They can draw UML static
diagrams to depict inheritance relationships between classes of their programs.
When they have a class in OO, say Bar, its translation in SCOOP is a single
class template: Bar5.

Named Typing. When a scientific practitioner designs a software library, it is
convenient to reproduce in programs the names of the different abstractions
of the application domain. Following this idea, there is an effective benefit to
make explicit the relationships between concrete classes and their corresponding
abstractions to get a more readable class taxonomy. We thus prefer named typing
over structural typing for SCOOP.

Multiple Inheritance. In the object model of C++, a class can inherits of several
classes at the same time. There is no reason to give up this feature in SCOOP.

Overriding. With C++ inheritance come the notions of pure virtual functions, of
virtual functions, and of overriding functions in subclasses. We want to reproduce
their behavior in SCOOP but without their associated overhead.

Virtual Types. This convenient tool (see sections 2.2 and 2.3) allows to express
that a class encloses polymorphic typedefs. Furthermore, it allows to get covari-
ance for member functions. Even if virtual types does not exist in primary C++,
we want to express them in SCOOP.

Method Covariance. It seems reasonable to support method covariance in SCOOP,
and particularly binary methods. Since our context is static typing with para-
metric polymorphism, the C++ compiler may ensure that we do not get typing
problems eventually.

Overloading. In the context of scientific computing, having overloading is crucial.
For instance, we expect from the operator “+” to be an over-overloaded function
in an algebraic library. Moreover, overloading helps to handle a situation that
often arises in scientific libraries: some algorithms have a general implementation
but also have different more efficient implementation for particular families of
objects. We want to ensure in SCOOP that overloading is as simply manageable
as in OOP.
5 We are aware of a solution to encode static class hierarchies that is different to

the one presented later on in this paper. However, one drawback of this alternate
solution is to duplicate every class: having a class Bar in OOP gives rise to a couple
of classes in the static hierarchy. To our opinion, this is both counter-intuitive and
tedious.



Multimethods. Algorithms are often functions with several input or arguments.
Since the source code of an algorithm can also vary with the nature and number
of its input, we need multimethods.

Parameter Bounds. Routines of scientific libraries have to be mapped into
strongly typed functions. First, this requirement results in a comfort for the
users since it prevents them from writing error-prone programs. Second, this
requirement is helpful to disambiguate both overloading and multimethod dis-
patch.

3 Description of SCOOP

3.1 Static Hierarchies

Static hierarchies are meta-hierarchies that result in real hierarchies after various
static computations like parameter valuations. With them, we are able to know
all types statically hence avoiding the overhead of virtual method resolution.
Basically, the core of our static hierarchy system is a generalization of the Barton
& Nackman trick [5]. Veldhuizen [55] had already discussed some extensions of
this technique and assumed the possibility to apply it to hierarchies with several
levels. We effectively managed to generalize these techniques to entire, multiple-
level hierarchies.

Our hierarchy system is illustrated in Figure 4. This figure gives an example
of a meta-hierarchy, as designed by the developer, and describes the different
final hierarchies obtained, according to the instantiated class. The corresponding
C++ code is given in Figure 5. This kind of hierarchy gives us the possibility to
define abstract classes (class A), concrete extensible classes (class B), and final
classes (class C). Non final classes6 are parameterized by EXACT that basically
represents the type of the object effectively instantiated. Additionally, any class
hierarchy must inherit from a special base class called Any. This class factorizes
some general mechanisms whose role are detailed later.

Instantiations of abstract classes are prevented by protecting their construc-
tors. The interfaces and the dispatch mechanisms they provide are detailed in
Section 3.2.

Extensible concrete classes can be instantiated and extended by subclassing.
Since the type of the object effectively instantiated must be propagated through
the hierarchy, this kind of class has a double behavior. When such a class B

is extended and is not the instantiated class, it must propagate its EXACT type
parameter to its base classes. When it is effectively instantiated, further sub-
classing is prevented by using the Itself terminator as EXACT parameter. Then,
B cannot propagate its EXACT parameter directly and should propagate its own
type, B<Itself>. To determine the effective EXACT parameter to propagate, we

6 Non final classes are abstract classes or concrete classes that can be extended. Non
parameterized classes are necessarily final in our paradigm.



Any

EXACT

A

EXACT

Meta-hierarchy

Instantiation of B Instantiation of C

C

B

EXACT

Any< B<Itself> >

A< B<Itself> >

B<Itself>

Any<C>

A<C>

C

B<C>

Fig. 4. Static hierarchy unfolding sample
A single meta-hierarchy generates one class hierarchy per instantiable class. Our

model can instantiate both leaf classes and intermediate ones. In this example, only B

and C are instantiable, so only the above two hierarchies can be instantiated.
Non final classes are parameterized by EXACT which represents the type of the object
effectively instantiated. The type Itself is used as a terminator when instantiating

extensible concrete classes.



// Hierarchy apparel

struct Itself
{ };

// find exact utility macro
#define find exact(Type) // ...

template <class EXACT>
class Any
{

// ...
};

// Hierarchy

// purely abstract class
template <class EXACT>
class A: public Any<EXACT>
{

// ...
};

// extensible concrete class
template <class EXACT = Itself>
class B: public A<find exact(B)>
{

// ...
};

// final class
class C: public B<C>
{

// ...
};

Fig. 5. Static hierarchy sample: C++ code
find_exact(Type) mechanism is detailed in Appendix A.1.



use a meta-program called find_exact(Type) whose principle and C++ imple-
mentation are detailed in Appendix A.1. One should also notice that Itself is
the default value for the EXACT parameter of extensible concrete classes. Thus, B
sample class can be instantiated using the B<> syntax.

Itself classes cannot be extended by subclassing. Consequently, they do not
need any EXACT parameterization since they are inevitably the instantiated type
when they are part of the effective hierarchy. Then, they only have to propagate
their own types to their parents.

Within our system, any static hierarchy involving n concrete classes can be
unfolded into n distinct hierarchies, with n distinct base classes. Effectively, con-
crete classes instantiated from the same meta-hierarchy will have different base
classes, so that some dynamic mechanisms are made impossible (see Section 2.3).

3.2 Abstract Classes and Interfaces

In OOP, abstraction comes from the ability to express class interfaces with-
out implementation. Our model keeps the idea that C++ interfaces are rep-
resented by abstract classes. Abstract classes declare all the services their sub-
classes should provide. The compliance to a particular interface is then naturally
ensured by the inheritance from the corresponding abstract class.

Instead of declaring pure virtual member functions, abstract classes define
abstract member functions as dispatches to their actual implementation. This
manual dispatch is made possible by the exact() accessor provided by the Any

class. Basically, exact() downcasts the object to its EXACT type made available
by the static hierarchy system presented in Section 3.1. In practice, exact() can
be implemented with a simple static_cast construct, but this basic mechanism
forbids virtual inheritance7. Within our paradigm, an indirect consequence is
that multiple inheritance implies inevitably virtual inheritance since Any is a
utility base class common to all classes. Advanced techniques, making virtual
and thus multiple inheritance possible, are detailed in Appendix A.2.

An example of an abstract class with a dispatched method is given in Fig-
ure 6. The corresponding C++ code can be deduced naturally from this UML
diagram. In the abstract class A, the method m(...) calls its implementation
m_impl(...). Method’s interface and implementation are explicitly distinguished
by using different names. This prevents recursive calls of the interface if the
implementation is not defined. Of course, overriding the implementation is per-
mitted. Thanks to the exact() downcast, m_impl(...) is called on the type of
the object effectively instantiated, which is necessarily a subclass of A. Thus,
overriding rules are respected. Since the EXACT type is known statically, this kind
of dispatch is entirely performed at compile-time and does not require the use
of virtual symbol tables. Method dispatches can be inlined so that they finally
come with no run-time overhead.

7 Virtual inheritance occurs in diamond-shape hierarchies.



A

EXACT

+ m(...): void

Any

EXACT

+ exact(): EXACT

+ m_impl(...): void

B

return static_cast<EXACT>(*this);

return this->exact().m_impl(...);

Fig. 6. Abstract class and dispatched abstract method sample

3.3 Constraints on Parameters

Using SCOOP, it becomes possible to express constraints on types. Since we
have inheritance between classes, we can specify that we only want a subclass
of a particular type, thereby constraining the input type. Thus, OOP’s ability
to handle two different sets of types has been kept in SCOOP, as demonstrated
in Figure 7.

Actually, two kinds of constraints are made possible: accept a type and all its
subclasses or accept only this type. Both kinds of constraints are illustrated in
Figure 8. We have the choice between letting the EXACT parameter free to accept
all its subclasses, or freezing it (generally to Itself) to accept only this exact
type.

3.4 Associations

In SCOOP, the implementation of object composition or aggregation is very
close to its equivalent in C++ OOP. Figure 9 illustrates the way an aggregation
relation is implemented in our paradigm, in comparison with classical OOP. We
want a class B to aggregate an object of type C, which is an abstract class. The
natural way to implement this in classical OOP is to maintain a pointer on an
object of type C as a member of class B. In SCOOP, the corresponding meta-class
B is parameterized by EXACT, as explained in Section 3.1. Since all types have to
be known statically, B must know the effective type of the object it aggregates.
A second parameter, EXACT_C, is necessary to carry this type. Then, B only has to
keep a pointer on an object of type C<EXACT_C>. As explained in Section 3.3, this
syntax ensures that the aggregated object type is a subclass of C. This provides



void foo(A1& arg)
{

// ...
}

void foo(A2& arg)
{

// ...
}

template <class EXACT>
void foo(A1<EXACT>& arg)
{

// ...
}

template <class EXACT>
void foo(A2<EXACT>& arg)
{

// ...
}

Fig. 7. Constraints on arguments and overloading
Left (classical OOP) and right (SCOOP) codes have the same behavior. Classical

overloading rules are applied in both cases. Subclasses of A1 and A2 are accepted in
SCOOP too; the limitation of GP has been overcome.

template <class EXACT>
void foo(A<EXACT>& a)
{

// ...
}

void foo(A<Itself>& a)
{

// ...
}

Fig. 8. Kinds of constraints
On the left, A and all its subclasses are accepted. On the right, only exact A

arguments are accepted. As mentioned in section 2.1, contrary to other languages like
Ada, C++ cannot make this distinction; this is therefore another restriction

overcome by SCOOP.



stronger typing than the generic programming idioms for aggregation proposed
in [20].

As for hierarchy unfolding (Section 3.1), this aggregation pattern generates
as many versions of B as there are distinct parameters EXACT_C. Each effective
version of B is dedicated to a particular subclass of C. Thus, it is impossible
to change dynamically the aggregated object for an object of another concrete
type. This limitation is directly related to the rejection of dynamic operations,
as mentioned in Section 2.3.

B

+ c:C* c C

...

aggregation in classical OOP

B

EXACT_C
EXACT

+ c:C<EXACT_C> * c C

EXACT_C

...

aggregation in SCOOP

Fig. 9. Comparison of aggregation in OOP and SCOOP

3.5 Covariant Arguments

Covariant parameters may be simulated in C++ in several ways. It can be
done by using a dynamic_cast to check and convert at run-time the type of
the argument. This method leads to unsafe and slower programs. Statically
checked covariance has already been studied using templates in Surazhsky and
Gil [50]. Their approach was rather complex though, since their typing system
was weaker.

Using SCOOP, it is almost straightforward to get statically checked covariant
parameters. We consider an example with images and points in 2 and 3 dimen-
sions to illustrates argument covariance. Figure 10 depicts a UML diagram of
our example. Since an Image2d can be seen as an Image, it is possible to give
a Point3d (seen as a Point) to an Image2d. This is why classical OO languages
either forbid it or perform dynamic type checking when argument covariance is
involved.

Figure 11 details how this design would be implemented in SCOOP. This
code works in three steps:

– Take a Point<P> argument in Image::set and downcast it into its exact type
P. Taking a Point<P> argument ensures that P is a subclass of Point at this
particular level of the hierarchy.



Point

Point2d Point3dImage2d

+set(p:Point2d, val:int): void

Image

+set(p:Point, val:int):void

Image3d

+set(p:Point3d, val:int): void

Fig. 10. Argument covariance example in UML

– Lookup set_impl in the exact image type. Since the point argument has
been downcasted towards P, methods accepting P (and not just Point<P>)
are candidate.

– In SCOOP, since method dispatch is performed at compile-time, argument
covariance will be checked statically. The compilation fails if no method
accepting the given exact point type is available.

Finally, we have effectively expressed argument covariance. Points have to
conform to Point at the level of Image, and to Point2d at the level of Image2d.

3.6 Polymorphic typedefs

In this section we show how we can write virtual typedefs (we also call them
polymorphic typedefs) in C++. From a base class we want to access typedefs de-
fined in its subclasses. Within our paradigm, although base classes hold the type
of their most derived subclass, it is not possible to access fields of an incomplete
type. When a base class is instantiated, its EXACT parameter is not completely
constructed yet because base classes have to be instantiated before subclasses.
A good solution to cope with this issue is to use traits [37, 55]. Traits can be
defined on incomplete types, thereby avoiding the infinite recursion.

The overall mechanism is described in Figure 12. To allow the base class to
access typedefs in the exact class, traits have been defined for the exact type
(image_traits). To ensure correct typedef inheritance, we create a hierarchy of
traits which reproduces the class hierarchy. Thus, typedefs are inherited as if
they were actually defined in the class hierarchy. As for argument covariance,
virtual typedefs are checked statically since method dispatch is performed at
compile-time. The compilation fails if a wrong point type is given to an Image2d.

There is an important difference between classical virtual types and our vir-
tual typedefs. First, the virtual typedefs we have described are not constrained.
The point_type virtual typedef does not have to be a subclass of Point. It can be
any type. It is possible to express a subclassing constraint though, by checking
it explicitly using a meta-programming technique detailed in Appendix A.3.

One should note that in our paradigm, when using typedefs, the resulting
type is a single type, not a class of types (with the meaning of Section 3.3).



template <class EXACT>
struct Point : public Any<EXACT> {};

template <class EXACT = Itself>
struct Point2d : public Point<find exact(Point2d)>
{

// ...
};

template <class EXACT = Itself>
struct Point3d : public Point<find exact(Point3d)>
{

// ...
};

template <class EXACT>
struct Image : Any<EXACT>
{

template <class P>
void set(const Point<P>& p, int val) {

// static dispatch
// p is downcasted to its exact type
return this−>exact().set impl(p.exact(), val);

}
};

template <class EXACT = Itself>
struct Image2d : public Image<find exact(Image2d)>
{

template <class P>
void set impl(const Point2d<P>& p, int val) {

// ...
}

};

int main() {
Image2d<> ima;
ima.set(Point2d<>(), 42); // ok
ima.set(Point3d<>(), 51); // fails at compile−time

}

Fig. 11. Argument covariance using SCOOP
Compilation fails if the compiler cannot find an implementation of set_impl for the

exact type of the given point in Image2d.



// Point, Point2d and Point3d

// A forward declaration is enough to define image traits
template <class EXACT> struct Image;

template <class EXACT> struct image traits;

template <class EXACT>
struct image traits< Image<EXACT> >
{

// default typedefs for Image
};

template <class EXACT>
struct Image : Any<EXACT>
{

typedef typename image traits<EXACT>::point type point type;

void set(const point type& p, int val) {
this−>exact().set impl(p, val);

}
};

// Forward declaration
template <class EXACT> struct Image2d;

// image traits for Image2d inherits from image traits for Image
template <class EXACT>
struct image traits< Image2d<EXACT> >

: public image traits<Image <find exact(Image2d)> >
{

// We have to specify a concrete type , we cannot write:
// typedef template Point2d point type;

typedef Point2d<Itself> point type;
// ... other default typedefs for Image2d

};

template <class EXACT = Itself>
struct Image2d : public Image<find exact(Image2d)>
{

// ...
};

int main() {
Image2d<> ima;
ima.set(Point2d<>(), 42); // ok
ima.set(Point3d<>(), 51); // fails at compile−time

}

Fig. 12. Mechanisms of virtual typedefs with SCOOP



A procedure taking this type as argument does not accept its subclasses. For
instance, a subclass SpecialPoint2d of Point2d is not accepted by the set method.
This problem is due to the impossibility in C++ to make template typedefs, thus
we have to bound the exact type of the class when making a typedef on it. It
is actually possible to overcome this problem by encapsulating open types in
boxes. This is not detailed in this paper though.

3.7 Multimethods

Several approaches have been studied to provide multimethods in C++, for
instance Smith [46], which relies on preprocessing.

In SCOOP, a multimethod is written as a set of functions sharing the same
name. The dispatching is then naturally performed by the overloading resolution,
as depicted by Figure 13.

template <class I1, class I2>
void algo2(Image<I1>& i1, Image<I2>& i2);

template <class I1, class I2>
void algo2(Image2d<I1>& i1, Image3d<I2>& i2);

template <class I1, class I2>
void algo2(Image2d<I1>& i1, Image2d<I2>& i2);

// ... other versions of algo2

template <class I1, class I2>
void algo1(Image<I1>& i1, Image<I2>& i2)
{

// dispatch will be performed on the exact image types
algo2(i1 .exact (), i2 .exact ());

}

Fig. 13. Static dispatch for multi-methods
algo1 downcasts i1 and i2 into their exact types when calling algo2. Thus, usual

overloading rules will simulate multimethod dispatch.

4 Conclusion and Perspectives

In this paper, we described a proposal for a Static C++ Object-Oriented Pro-
gramming (SCOOP) paradigm. This model combines the expressiveness of tra-
ditional OOP and the performance gain of static binding resolution thanks to



generic programming mechanisms. SCOOP allows developers to design OO-like
hierarchies and to handle abstractions without run-time overhead. SCOOP also
features constrained parametric polymorphism, argument covariance, polymor-
phic typedefs, and multimethods for free.

Yet, we have not proved that resulting programs are type safe. The type
properties of SCOOP have to be studied from a more theoretical point of view.
Since SCOOP is static-oriented, object types appear with great precision. We
expect from the C++ compiler to diagnose most programming errors. Actually,
we have the intuition that this kind of programming is closely related to the
matching type system of Bruce et al. [11]. In addition, functions in SCOOP
seem to be f-bounded [12].

The main limitations of our paradigm are common drawbacks of the intensive
use of templates:

– closed world assumption;
– heavy compilation time;
– code bloat (but we trade disk space for run-time efficiency);
– cryptic error messages;
– unusual code, unreadable by the casual reader.

The first limitation prevents the usage of separated compilation and dynamic
libraries. The second one is unavoidable since SCOOP run-time efficiency relies
on the C++ capability of letting the compiler perform some computations. The
remaining drawbacks are related to the convenience of the core developer, i.e.
the programmer who designs the hierarchies and should take care about core
mechanisms. Cryptyc error messages can be helped by the use of structural
checks mentionned in Section 2.4, which are not incompatible with SCOOP.

This paradigm has been implemented and successfully deployed in a large
scale project: Olena, a free software library dedicated to image processing [38].
This library mixes different complex hierarchies (images, points, neighborhoods)
with highly generic algorithms.

Although repelling at first glance, SCOOP can be assimilated relatively
quickly since its principles remain very close to OOP. We believe that SCOOP
and its collection of constructs are suitable for most scientific numerical com-
puting projects.
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[23] T. Géraud, A. Duret-Lutz, and A. Adjaoute. Design patterns for generic
programming. In M. Devos and A. Rüping, editors, In the Proceedings
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A Technical Details

A.1 Implementation of find_exact

The find_exact mechanism, introduced in Section 3.1, is used to enable classes
that are both concrete and extensible within our static hierarchy system. This
kind of class is parameterized by EXACT: the type of the object effectively instan-
tiated. Contrary to abstract classes, concrete extensible classes cannot propagate
directly their EXACT parameter to their parents, as explained in Section 3.1. A
simple utility macro called find_exact is necessary to determine the EXACT type
to propagate. This macro relies on a meta-program, FindExact, whose principle
is described in Figure 14. and the corresponding C++ code is given in Figure 15.

FindExact(Type, EXACT )
{

if EXACT 6= ‘‘Itself ’’
return EXACT ;

else
return Type < Itself >;

}

Fig. 14. FindExact mechanism: algorithmic description

// default version
template <class T, class EXACT>
struct FindExact
{

typedef EXACT ret;
};

// version specialized for EXACT=Itself
template <class T>
struct FindExact<T, Itself>
{

typedef T ret;
};

// find exact utility macro
#define find exact(Type) typename FindExact<Type<Exact>, Exact>::ret

Fig. 15. FindExact mechanism: C++ implementation



A.2 Static Dispatch with Virtual Inheritance

Using a static_cast to downcast a type does not work when virtual inheritance
is involved. Let us consider an instance of EXACT. It is possible to create an
Any<EXACT> pointer on this instance. In the following, the address pointed to by
the Any<EXACT> pointer is called “the Any address” and the address of the EXACT

instance is called the “exact address”.
The problem with virtual inheritance is that the Any address is not necessarily

the same as the exact address. Thus, even reinterpret_cast or void* casts will
not help. We actually found three solutions to cope with this issue. Each solution
has its own drawbacks and benefits, but only one is detailed in this paper.

The main idea is that the offset between the Any address and the exact address
will remain the same for all the instances of a particular class (we assume that
C++ compilers will not generate several memory model for one given class).
The simplest way to calculate this offset is to compute the difference between
an object address and the address of an Any<EXACT> reference to it. This has to
be done only once per exact class. The principle is exposed in Figure 16.

This method has two drawbacks. First, it requires a generic way to instantiate
the EXACT classes, for instance a default constructor. Second, one object per class
(not per instance!) is kept in memory. If an object cannot be empty (for example
storing directly an array), this can be problematic. However, this method allows
the compiler to perform good optimizations. In addition, only a modification of
Any is necessary, a property which is not verified with other solutions we found.

A.3 Checking Subclassing Relation

Checking if a subclass of another is possible in C++ using templates. The
is_base_and_derived<T,U> tool from the Boost [7] type traits library performs
such a check. Thus, it becomes possible to prevent a class from being instantiated
if the virtual types does not satisfy the required subclassing constraints.

B Conditional Inheritance

Static hierarchies presented in Section 3.1 come with simple mechanisms. These
parameterized hierarchies can be considered as meta-hierarchies simply waiting
for the exact object type to generate real hierarchies. It is generally sufficient
for the performance level they were designed for. In order to gain modeling flex-
ibility and genericity, one can imagine some refinements in the way of designing
such hierarchies. The idea of the conditional inheritance technique is to adapt
automatically the hierarchy according to statically known factors. This is made
possible by the C++ two-layer evaluation model (evaluation at compile-time and
evaluation at run-time) [31]. In practice, this implies that the meta-hierarchy
comes with static mechanisms to discriminate on these factors and to determine
the inheritance relations. Thus, the meta-hierarchy can generate different final
hierarchies through these variable inheritance links.



template <class EXACT>
struct Any
{

// exact offset has been computed statically
// A good compiler can optimize this code and avoid any run−time overhead
EXACT& exact() {

return ∗(EXACT∗)((char∗)this − exact offset);
}

private:
static const int exact offset ;
static const EXACT exact obj;
static const Any<EXACT>& ref exact obj;

};

// Initialize an empty object
// Require a default constructor in EXACT
template <class EXACT>
const EXACT Any<EXACT>::exact obj = EXACT();

// Upcast EXACT into Any<EXACT>
template <class EXACT>
const Any<EXACT>& Any<EXACT>::ref exact obj = Any<EXACT>::exact obj;

// Compute the offset
template <class EXACT>
const int Any<EXACT>::exact offset =

(char∗)(&Any<EXACT>::ref exact obj)
− (char∗)(&Any<EXACT>::exact obj);

Fig. 16. One method to handle virtual inheritance
The offset between the Any address and the address of the EXACT class is computed
once by using a static object. Since everything is static and const, the compiler can

optimize and remove the cost of the subtraction.



// ...

template <bool b>
struct type assert
{};

template <>
struct type assert<true>
{

typedef void ret;
};

#define ensure inheritance(Type, Base) \
typedef typename \

type assert< \
is base and derived<Base, Type>::value \

>::ret ensure ##Type

template <class EXACT>
struct Image : Any<EXACT>
{

typedef typename image traits<EXACT>::point type point type;

// Will not compile if point type is not a Point since ret
// is not defined if the assertion fails .
ensure inheritance(point type , Point<point type>);

};

// ...

Fig. 17. Specifying constraints on virtual types



To illustrate the conditional inheritance mechanism, we introduced a UML-
like symbol that we called an inheritance switch. Figure 18 gives a simple use
case. This example introduces an image hierarchy with a concrete class whose
inheritance is conditional: SpecialImage. SpecialImage is parameterized by an
unsigned value Dim. We want this class to inherit from Image2d or Image3d de-
pending on the value of Dim. SpecialImage’s inheritance is thus represented by
an inheritance switch. Figure 19 presents the corresponding C++ code. The
inheritance switch is implemented by the ISwitch trait parameterized by the di-
mension value. Its specialization on 2 (resp. 3) defines Image2d (resp. Image3d) as
result type. Finally, SpecialImage<Dim> only has to inherit from ISwitch<Dim>’s
result type.

The factors on which inheritance choices are made are necessarily static val-
ues. This includes types, provided by typedefs or parameterization, as constant
integer values. The effective factors are not necessarily directly available data
but can be deduced from static pieces of information. Trait structures can then
be used to perform more or less complex information deductions. One should
also note that the discriminative factors must be accessible while defining the
hierarchy. This implies that these factors must be independent from the hierar-
chy or externally defined. In practice, class-related factors can be made available
outside the hierarchy thanks to trait structures and polymorphic typedefs (see
Section 3.6).

SpecialImage

DIM:unsigned

Image

Image2d Image3d

If DIM = 2 Then
   Image2d
Else If DIM = 3 Then
      Image3d

Fig. 18. Simple conditional inheritance sample: UML-like description.

Conditional inheritance mechanisms become particularly interesting when
objects are defined by several orthogonal properties. A natural way to handle
such a modeling problem is to design a simple sub-hierarchy per property. Un-
fortunately, when defining the final object, the combinatorial explosion of cases



class Image
{

// ...
};

class Image2d: public Image
{

// ...
};

class Image3d: public Image
{

// ...
};

template <unsigned Dim>
struct ISwitch;

template <>
struct ISwitch<2>
{

typedef Image2d ret;
};

template <>
struct ISwitch<3>
{

typedef Image3d ret;
};

template <unsigned Dim>
class SpecialImage

: public ISwitch<Dim>::ret
{

// ...
};

Fig. 19. Simple conditional inheritance sample: C++ code

SpecialImage

DIM:unsigned
DATA:type

Image

Image2d Image3d

If DIM = 2 Then
   Image2d
Else If DIM = 3 Then
      Image3d

ColorImage GrayScaleImage

If DIM = Color Then
   ColorImage
Else If DATA = GrayScale Then
      GrayScaleImage

Fig. 20. Conditional inheritance: multiple orthogonal factors.



usually implies a multiplication of the number of concrete classes. Figure 20
illustrates an extension of the previous image hierarchy, with more advanced
conditional inheritance mechanisms. We extended the image hierarchy with two
classes gathering data-related properties, ColorImage and GrayScaleImage. The
hierarchy is now split into two parallel sub-hierarchies. The first one focuses on
the dimension property while the second one focuses on the image data type.
The problem is then to define images that gather dimension- and data-related
properties without multiplying concrete classes. The idea is just to implement
a class template SpecialImage parameterized by the dimension value and the
data type. Combining conditional and multiple inheritance, SpecialImage inher-
its automatically from the relevant classes. This example introduces the idea
of a programming style based on object properties. A SpecialImage instance is
only defined by its properties and the relevant inheritance relations are deduced
automatically.

Finally, mixing conditional inheritance mechanism with other classical and
static programming techniques results in powerful adaptive solutions. This work
in progress has not been published yet.


