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Abstract—The vulnerability of multi-core processors is increas-
ing due to tighter design margins and greater susceptibility to
interference. Moreover, concurrent programming environments
are the norm in the exploitation of multi-core systems. In this
paper, we present an on-demand thread-level fault detection
mechanism for multi-cores. The main contribution is on-demand
redundancy, which allows users to set the redundancy scope in
the concurrent code. To achieve this we introduce intelligent
redundant thread creation and synchronization, which manages
concurrency and synchronization between the redundant threads
via the master. This framework was implemented in an emulation
of a multi-threaded, many-core processor with single, in-order
issue cores. It was evaluated by a range of programs in image and
signal processing, and encryption. The performance overhead of
redundancy is less than 11% for single core execution and is
always less than 100% for all scenarios. This efficiency derives
from the platform’s hardware concurrency management and
latency tolerance.

I. INTRODUCTION

Nowadays, multi-core systems are mainstream and the num-
ber of cores integrated in a processor will increase due to
the inevitable technological progress. However, these trends
also make the future of multi-core processors increasingly
susceptible to both hard and soft errors. The shrinking of
feature size leads to more manufacturing defects, process
variations, and early lifetime failures [1]. Also, the reduction
of design margins and the transistor’s threshold voltage can
increase the soft error rate of certain noise environments
dramatically [2].

Redundancy is a classic solution for tolerating faults [3].
The key practical issue is how and at what level to apply
redundancy in multi-core processors. Spatial redundancy is not
the most efficient approach, due to its large area and energy
overhead [4]–[7]. Also, it lacks flexibility when redundancy
is not necessary. In contrast, temporal redundancy has its
advantages in area overhead and flexibility but is limited by
the duration of error, which means that it cannot detect hard
or soft errors lasting longer than the interval of two thread
copies [8]–[11].

Although multi-core processors have a higher vulnerability,
they also provide natural extra hardware for fault tolerance.
So multi-core processors based thread-level redundancy (TLR)
techniques, which force two copies of a semantic thread to run
on different cores, combine the fault coverage of spatial redun-

dancy with the efficiency of temporal redundancy [12]–[14].
They can detect both hard and soft errors without adding extra
hardware. However, these TLR techniques focus on single-
threaded environments. Much less attention has been paid to
the design issues in concurrent programming environments.
It is not a trivial extension to migrate TLR from a single-
threaded environment to concurrent programming environ-
ments. In particular, already concurrent software natively uses
multiple cores simultaneously, and TLR must thus manage
simultaneous occupation of cores by concurrent software and
its replicates.

Meanwhile, many emerging applications allow the dis-
carding of individual sub-computations with small qualitative
impact [15]. This is a form of “intrinsic” fault tolerance
which does not require extra architectural support. Also, many
commodity systems do not need high reliability and some
can tolerant faults to some extent, e.g. the odd pixel in video
decompression can not be noticed. Even for mission critical
systems, fault tolerance is not needed all the time, especially
when performance and energy are key considerations. In other
words, most applications do not require investment in the cost
of full redundancy. And the most elegant solution is that fault
tolerance is provided only when necessary, i.e. redundancy on
demand.

To address these two problems, this paper presents an on-
demand, thread-level, fault detection framework in a con-
current programming environment. This vertical framework
includes support from the programming model, compiler, ISA
and micro-architecture, but none of the changes are on the
critical path of the system. In other words, the fault tolerance
mechanism is independent of the existing system. As with the
other TLR mechanisms in multi-core processors, we propose
two thread copies of a semantic thread, which are called master
thread and redundant thread respectively. They are forced to
run on fixed paired, adjacent cores in order to detect both
hard and soft errors. The sphere of replication [9] includes
the entire pipeline, register file and L1 cache of each core,
under the assumption that the memory system is fault-free.
Also, we adopt a relaxed input replication technique, so as
to avoid significant changes to the existing cache hierarchies
for redundant execution. The divergences of any load value,
induced by relaxed input replication, can be corrected or
recovered by the same mechanism employed for fault detection



[14]. Finally, the output of two thread copies is compared to
check whether it is correct. Here we focus on the output to
memory (i.e. store) only, I/O operations are not considered
yet.

In summary then, the main contribution of this paper is
on-demand redundancy in the context of a concurrent pro-
gramming environment. When and where a program should
be duplicated to give high reliability can be specified by users
or the run-time environment. This makes the system more
efficient and flexible as the granularity of redundancy is a
thread, which can be specified anywhere in the hierarchical,
multi-threaded programming environment.

In order to achieve this we have introduced intelligent
redundant thread creation and synchronization. Usually, we
want to exploit concurrency as much as possible in concurrent
programming environments. So hierarchical concurrency and
thread independence are two features of concurrent program-
ming environments that affect the design of thread duplication.
We only allow the master thread to create both master and
redundant threads’ child threads in order to avoid a thread
explosion in a hierarchical, concurrent programming model.
Additionally the master thread maintains synchronization be-
tween redundant parent and child. This requires some changes
to the existing system.

The rest of this paper is organized as follows. Section II in-
troduces some general conceptions of concurrent programming
environment. Section III presents the on-demand redundancy
framework. Section IV describes the strategy for redundant
thread creation and its synchronization with its redundant
parent. The output comparison is described in section V.
Section VI shows the results analysis and related experimental
setup. We discuss related work in section VII, and finally,
section VIII provides our conclusions.

II. CONCURRENT PROGRAMMING ENVIRONMENT

The key idea in concurrent programming environment is
concurrency, which is a property of systems in which sev-
eral workloads are executing simultaneously, and potentially
interacting with each other. Conceptually, such systems can
be modeled as a fork-join queue within a closed queueing
network. Each incoming workload is split into N tasks at the
fork point, and each of these tasks queues for service at a
concurrent service node before joining a queue for the join
point. It is possible to have a nested fork-join queue in order to
exploit concurrency as much as possible. So a concurrency tree
is a very appropriate structure that to show the concurrency
organization in a concurrent programming environment. The
concurrency tree is akin to process tree in unix. It is inevitable
that there are communications (or synchronizations) between
sibling nodes or parent and child nodes.

Considering the concurrency tree in a concurrent program-
ming environment, we present an on-demand redundancy strat-
egy based on the granularity of a given node in the concurrency
tree and the sub-tree it defines. In this strategy, we duplicate
any sub-tree defined by the user over which it is required to
implement fault detection. In order to avoid a node explosion

in this hierarchical concurrency tree, we only allow the master
node to create child nodes of both master and redundant nodes.
However, the synchronization between redundant parent and
child is broken as the redundant child is created by master
parent node, which means the redundant parent node can not
be terminated. To address it, we pair master and redundant
nodes at the fork point, and the synchronization between
redundant parent and child can be achieved via the master
parent node.

Besides the concurrency expression, another important con-
ception in concurrent programming environment is space
scheduling, which is spreading concurrent software workloads
to hardware parallel execution resources. Space scheduling
can be done either in software or in hardware. Here, we fix
the hardware parallel execution resources in pairs to execute
master and redundant workloads in order to detect both hard
and soft errors. For example, if HW1 and HW2 are a fixed
pair, then all the master workloads in HW1 have their copies
executed in HW2 and vice versa.

The System Virtualization Platform (SVP) [16] is a con-
current programming environment designed by the Computer
Systems Architecture group in University of Amsterdam. It
is a set of system services and language interfaces for the
exploitation of concurrency on many-core processor chips. In
this concurrency model, each concurrent node in a concurrency
tree is called a thread, and all the same level concurrent
nodes that are created by a parent node are called a family of
threads. Every thread can create families of its own, making
the model hierarchical. The hardware execution resource is
called a place, which is allocated at run-time prior to the
family being created. Any communication and synchronization
between threads does not happen via memory, but through spe-
cial hardware-supported channels called globals and shareds.
Global channels are written once by the parent thread and are
available for being read to each thread in the family. Shared
channels are defined between every consecutive pair of threads
in the family. The SVP memory model is conceptually a single,
flat address space with a restricted consistency model, allowing
greater freedom for the implementation.

In this paper we have implemented our fault detection
framework in the Microgrid execution platform [17]–[19].
It is a multi-core system that provides dedicated logic able
to coordinate single-issue, in-order hardware multi-threaded
RISC cores into computation clusters on chip. It has a highly
scalable and configurable many-core architecture. Its machine
language provides new instructions to manage concurrency,
which are described by the SVP model. SVP combines data-
flow synchronization with imperative programming, aiming for
the efficient use of parallelism in general-purpose workloads.
The platform is provided with the SL programming language
[20], which is a interface language to program this platform.
SL is designed as an extension to the standard C language
(ISO C99/C11). It includes primitive constructs to bulk create
threads, bulk synchronize on termination of threads, and
communicate using word-sized data-flow channels between
threads. It is intended for use as the target language for higher-



level parallelizing compilers. Although our fault detection
framework should be general for all concurrent programming
environments, we will use some dedicated syntax or concepts
in the description of fault detection mechanism that come from
the Microgrid, SL language, and the assembly language of
their cores, since the Microgrid is the experimental platform
in this paper.

III. ON-DEMAND REDUNDANCY

We sketch a simple SL [20] function to explain how to
implement on-demand redundancy and its related support from
the programming model, compiler and ISA. Listing 1 shows
a simple SL function and how it is augmented with on-
demand redundancy support and compiled to a sequence of
instructions. This is only part of a complete program. The
programming model uses the notation sl create to dynamically
define a family of threads on an index range. The on-demand
redundancy additions to SL and assembly languages when
creating the redundant function are highlighted.

Listing 1 (a) shows the simple summation function where
sl create is augmented to use the parameter ‘ftmode’ (i.e. fault
tolerance mode). There are two functions: sum is responsible
for the summation and t main is for creating a family of sum
threads to expose the concurrency explicitly in software. The
parameter ‘ftmode’ is the only attribute that is added to the
programming model. It is used to determine the redundancy
state of the family that will be created. There are three states:

NORMAL – Redundancy is not necessary, so its child family
will not be duplicated;

START – Current thread is not duplicated, but its child
family will be duplicated. It is the beginning of the redundancy
scope in the program;

REDUNDANCY – Current thread is duplicated, and its child
family will also be duplicated.

Compiler support is relatively straightforward. It compiles
the SL code in listing 1 (a) to assembly showed in listing 1 (b,
c, d) according to the fault tolerance mode. For readability, we
use symbolic register names rather than numbered registers in
the assembly. Listing 1 (b) shows the code generated in normal
situation (i.e. without fault tolerance support). The instruction
allocate attempts to allocate the computing resources (i.e.
place, which is a set of cores in the implementation of
Microgrid.) on which to create the family of threads according
to its parameters: place identifier and some other flags in
Rplace and Rflag . If successful, the family identifier (fid) of
the allocated family entry on the first core will be written into
Rfid. Then the properties of this family will be set through
set instructions, such as the total number of threads, and the
number of hardware threads per core. Finally, this family of
threads will be created using the instruction create [21].

Listing 1 (c) presents the assembly generated at the re-
dundancy scope’s beginning. Generally, the compiler will
duplicate all the instructions relating to family creation and
initialization, such as allocate, set, create, put etc. How-
ever, there are some issues that need to be considered. The
instruction allocate for redundant family should generate a

different place identifier compared to the master family, as we
dispatch each to a different core for hard error detection. The
master and redundant families need to be connected through
the instruction pair. The most important point is that the
current thread, which is executing the assembly of listing 1
(c), only synchronizes with its master child family. Also the
data returned from the child family of threads read by the
instruction gets will not be verified against its redundant child
family therefore the thread reads from its master child family
only. This is because the redundancy scope began from the
current thread’s child and hence the current thread is out of
redundancy sphere and is not be protected.

Listing 1 (d) gives the assembly created within the redun-
dancy scope. Because it is within the scope, it means that both
redundant and master threads will execute it. So we do not
extend the assembly as for the redundancy start point, which
is executed by one thread only. Three instructions, which are
italic and bold in the code, are extended to ISA for an elegant
thread duplication solution in our concurrent programming
environment. More details about thread duplication strategy
within redundancy scope and these extended instructions will
be discussed in section IV.

The fault tolerance mode only can transit from NORMAL
to START, to REDUNDANCY. And START is a temporary
state that occurs once in the transition from NORMAL to
REDUNDANCY. The transition is irreversible, as it is not
worth supporting a reversal mode transition in hardware. Note
that the reverse transition occurs naturally on termination of
the family created in fault tolerant mode. In effect, what
this scheme does is to label a node in the concurrency tree
and every thread below this label is within the sphere of
redundancy. This can be done at any number of nodes to
create redundancy for those critical regions. Thus the correct
redundancy scope can be easily achieved with much lower
design complexity at the software level by arranging thread
structure properly.

IV. INTELLIGENT REDUNDANT THREAD CREATION AND
SYNCHRONIZATION

As described in section III, the thread duplication strategy
cannot be migrated without change from start point to the
body of redundancy because only one thread executes the
thread duplication code at the start point, but in the body of
redundancy, both master and redundant threads execute the
thread duplication. Obviously, we cannot allow both master
and redundant threads to duplicate its child family, as this
will lead to redundant child family explosion.

As a result, allocations in redundant threads are not allowed.
The master thread will allocate double resources as before but
the redundant thread will do nothing (i.e. allocate in figure 1).
However, usually a redundant parent thread has to wait for the
synchronization of its children to continue or end its execution
(i.e. sync in figure 1). We use the master parent thread to
bridge this gap. There are two family identifiers returned for
every allocation in the master parent thread. One will be sent
to the redundant parent thread so the redundant parent thread



int array[len]; <main>:
sl_def(sum, void, sl_shparm(int, s)) allocate Rplace,Rflag,Rfid

{ allocate Rrplace,Rflag,Rrfid

sl_index(i); pair Rfid,Rrfid

sl_setp(s, sl_getp(s)+array[i]); setlimit Rfid,limit
} setlimit Rrfid,limit
sl_enddef setblock Rfid,block

setblock Rrfid,block
sl_def(t_main, void) create Rfid

{ create Rrfid

sl_create(,,start,limit,step, puts 0,Rfid,0
block,,ftmode,sum, puts 0,Rrfid,0
sl_sharg(int, s)); sync Rfid,$1

sl_seta(s, 0); mov $1,$31
sl_sync(); gets Rfid,0,$1
int result = sl_geta(s); release Rfid

} release Rrfid

sl_enddef (c)
(a)

<main>:
allocate/r Rplace,Rflag,Rfid,Rrfid

<main>: pair Rfid,Rrfid

allocate Rplace,Rflag,Rfid rmtwr Rrfid

setlimit Rfid,limit setlimit Rfid,limit
setblock Rfid,block setblock Rfid,block
create Rfid create Rfid

puts 0,Rfid,0 puts 0,Rfid,0
sync Rfid,$1 sync Rfid,$1
mov $1,$31 mov $1,$31
gets Rfid,0,$1 gets Rfid,0,$1
release Rfid release Rfid

(b) (d)

Listing 1. A simple summation function with fault tolerance related parameter ‘ftmode’ (a), its original assembly without fault tolerance attributes (b), the
assembly at the redundancy’s start point (c), and the regular assembly within the redundancy’s scope (d).
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Fig. 1. Intelligent redundant thread creation and synchronization

eventually gets its resource from the corresponding master
parent thread without doing any allocation. This is achieved
through the communication protocol shown in figure 1. The
synchronization link is built between redundant parent and
child family. This is the main idea behind the intelligent
redundant thread creation and synchronization. Because of
this, all the other instructions related to thread creation can
run without any modification.

This strategy is supported in the ISA and at the micro-
architecture level. Three new instructions are added for thread
duplication and its communication. However, these new in-
structions have a different operation in master and redundant
threads, as shown in table I. The instruction allocate/r in
master thread is responsible for allocating cores for both
master and redundant child families. The redundant thread
only waits on its register for the redundant child family’s iden-
tifier, which is sent by the master thread. Then the instruction

pair in the master thread makes the master and redundant
child family known to each other, which is necessary for the
communication between master and redundant threads shown
in figure 1. Finally, the redundant child family’s identifier
is returned to the master parent thread and will be sent
to redundant parent by the instruction rmtwr. There is no
operation for pair and rmtwr in the redundant thread. Up to
now, two places for the master and redundant child families are
allocated, and the master and redundant parents receive master
and redundant child family identifier, respectively. Considering
the assembly in listing 1 (d), all the subsequent thread creation
related instructions are depend on its family identifier (Rfid).
So all these instructions do not need to be modified to fit thread
duplication, as we have already connected parent thread and
child family in both the master and redundant group, although
both master and redundant child family are allocated by the
master parent thread.

V. OUTPUT COMPARISON

Like the other thread-level redundancy techniques, we must
compare the results of master and redundant threads to detect
faults. To achieve this, a comparison buffer is added between
the L1 D cache and secondary memory. This buffer is shared
by a core pair. As stated above, the core and private L1
cache are contained in the sphere of replication in our fault
detection framework. This means that the other components
by definition are out of the sphere, such as L2 cache and off-
chip memory. These are assumed to be fault free. Each output
(i.e. store) should be stored to both L1 and comparison buffer
first, then compared in comparison buffer before committed



TABLE I
NEW INSTRUCTIONS AND THEIR OPERATIONS

Instruction Master thread Redundant thread

allocate/r

Send an allocation message to
the place with flag. The mas-
ter family identifier will be re-
turned to Rfid, the redundant
family identifier to Rrfid.

Set the output register Rfid

to pending; Send Rfid’s in-
dex to master thread.

pair
Send a message to the desti-
nation place, which will pair
master and redundant families.

No-op

rmtwr

Write the redundant family
identifier to the redundant
thread’s Rfid, which was
pended by instruction allo-
cate/r in redundant thread.

No-op

to secondary memory. The operation of data input (i.e. load)
is the same as before: the data come from secondary memory
to L1 D cache. In this paper, we do not address the issue of
supporting output comparison in I/O.

As the redundant thread knows its master thread’s identifier,
which is explained in section IV, the comparison buffer is
organized as a number of sets that are indexed by both its
core and master thread identifier. Furthermore, the master
thread writes data to the set specified by its identifier in the
comparison buffer, which is owned by the core it runs on. A
store in the redundant thread writes data to the set specified
by its master thread. For example, if the master thread (thread
identifier is ti) runs on core i, and redundant thread (thread
identifier is tj) runs on core j, then the stores of these two
threads will be sent to set ti in the comparison buffer specified
by core i.

Each set is a FIFO queue, as thread instructions are executed
in order in the Microgrid platform. This means that all the
stores in one thread will be appended to its dedicated set and
compared in order. Each entry in a set has three fields: address,
value and flag.

When a set of comparison buffer receives data, the data will
be written to the set directly if the set is empty. Otherwise, it
will check whether the data and the head of the set come from
the same thread. If they are, the data will be appended to the
end of the set. If they come from different threads, which mean
master and redundant thread, then they will be compared. A
fault is detected when they do not match. If they do match,
which shows the results are correct, the data will be popped
from the set and written to secondary memory.

Any read requests coming from L1 cache, will first search
the set indexed by the current thread. Data will be returned
if it is available, otherwise the read request will be sent to
secondary memory as usual. The comparison buffer does not
change the memory protocol, which means it can be used with
the Microgrid’s various memory interconnects.

VI. EXPERIMENTAL RESULTS

A. Experimental paltform

The thread-level fault detection framework is implemented
in the Microgrid. Figure 2 illustrates a Microgrid chip with a

external
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DDR Channel
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Fig. 2. The Microgrid chip with 128 cores

TABLE II
THE SPECIFICATION OF MICROGRID

Components Specification
Core

• Alpha ISA with SVP extensions
• In-order pipeline of 6 stages
• 1024 integer registers and 512 float registers
• 1.0 GHz frequency

L1 D Cache
• 16 sets with 4-way set associative
• 4KB capacity
• Write through

L2 Cache
• 512 sets with 4-way set associative
• 128KB capacity
• Write update
• Shared by 4 cores via a snooping bus

Distributed Cache
Structure • Each sub ring has a directory and 8 L2 caches

• 4 root directories each connects to a DDR3-1600
channel mapped to a DRAM bank

• Ring directories and evenly distributed root direc-
tories from the top ring

configuration of 128 cores, which is the base platform we use
for all experiments. All cores on chip are organized in a linear
partitionable network for resource allocation and concurrency
management within an allocated cluster. It is worth mentioning
that there is a custom distributed cache protocol derived from
[22], [23]: memory stores are effected at local L2 cache and
updates are propagated and merged with other copies. Upon an
explicit barriers or bulk creation or synchronization of threads,
the update acknowledges must be counted by thread or family
to ensure memory consistency for the programming model.
The hardware parameters most relevant to this paper are shown
in table II, more details can be found in [17]–[19].

The simulator currently executes benchmarks in which the
redundancy scope is the complete benchmark, however, we
only execute small kernels not large applications. Selective
redundancy and fault coverage are left to future work. The
six benchmarks include image processing kernels, FFT and
encryption are used to evaluate the thread-level fault detection
technique shown in table III.

B. Results

We use the performance of non-redundant benchmarks run
in Microgrid as the baseline and we call the non-redundant
benchmark the base benchmark, and benchmark with complete
redundancy scope the redundant benchmark. We try to evaluate
the performance overhead when redundancy is introduced. The



TABLE III
DESCRIPTION OF BENCHMARKS

Category Benchmarks Instructions
count Description

Image
processing

convolution 28 million
The size of original image is
800*400. It is zoomed in to
6400*3200, and reduces each
pixel from 24 bits to 8 bits in
grey conversion.

zoom in 29 million

grey
conversion 11 million

Signal
processing FFT 19 million Use a 64K phase lookup table

and butterfly reduction.

Encryption rc4 0.05 million per
stream per core

The problem size is scaled
with number of cores and
hardware threads per core, i.e.
1Kbyte stream per hardware
thread.

seal 0.5 million per
stream per core

performance overhead of a redundant benchmark is also called
performance penalty in this paper, which is defined as follows:

performance penalty = (
tredundant

tbase
− 1) ∗ 100%

And tredundant is the execution time of redundant bench-
mark, tbase is the execution time of base benchmark.

The master and redundant threads are always distributed
to different cores that are fix paired. We should distinguish
the experimental results of the base benchmark run on single
core from many cores. For the single core base benchmarks,
another core is used for the redundant execution, which
means a redundant hardware resource is added. However,
there is no redundant hardware resource added for many-core
base benchmarks. For example, if the base benchmark has 2
independent threads in total, and thread 0 and 1 run on core
0 and 1, respectively. Then its redundant benchmark still runs
on core 0 and 1 with master thread 0 and redundant thread
1 run on core 0, and master thread 1 and redundant thread 0
run on core 1. It shows that more resource contention occurs
in many-core redundant benchmarks.

Single core. In figure 3, the bars from left to right for each
benchmark correspond to block size or number of streams (i.e.
the number of threads per core). This ranges from 1, 2, 4, 8
to 16, all later figures are organized like this. Figure 3 shows
that the performance penalty is less than 11% for all scenarios,
which is mainly caused by output comparison. As the number
of threads per core increases, the performance penalty reduces
because the latency of the output comparison can be tolerated
by the hardware multithreading mechanism. It can be seen that
in some cases the performance of the redundant benchmark
is better than that of the base benchmark. We believe this
is because the comparison buffer moderates peak traffic rates
onto the memory network. We have observed a degradation of
performance at large numbers of threads on these benchmarks
due to correlated stores in many threads saturating the memory
network and causing a higher latency on synchronization.

Many cores. The performance penalty varies in the many-
core benchmarks (figure 4). Compared to the base benchmark,
the performance penalty of the redundant benchmark is less
than 100% even though it executes double the number of in-
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Fig. 3. Performance penalty of single core base benchmarks

structions using the same single-issue, in-order core resource.
This is mainly attributable to the hardware multithreading and
its ability to tolerate latency.

The block size in figure 4 is based on the base benchmark.
For example, a scenario of N cores with a block size of M
indicates that the base benchmark is executed on M threads
in each of N cores. However, the redundant benchmark is
executed in N cores with 2*M threads. The additional M
threads are used by the redundant copy. The performance
penalty of 1 thread per core is always smaller than other
situations. It is less than 44% even in the computationally
intensive convolution program. It also relatively stable for
different numbers of cores. Going from 1 to 2 threads per
core gives a significant speedup and it seems that a speedup
of between 1.5 to 2 can be achieved for all the benchmarks
here.

The general trend we can find in figure 4 is: the more
cores are used, the less the performance penalty. Because for
a given base benchmark, the efficiency becomes lower when
more resources are used. The relation between block size and
performance penalty is not so clear, as the distributed cache
system is involved. Usually, the larger the block size, the
greater the performance penalty, because of that, the efficiency
of the base benchmark is quite high when a bigger block
size is set. We also see some unexplained results with a
block size of 16 in zoom and rc4. We believe the reason
is again as described above in the case of the single core
benchmark. The more cores used the greater impact of the
correlated stores on synchronization costs. So it appears that
the comparison buffer mitigates this problem. Note that in any
case the redundant benchmark has twice the computational
complexity (operations per byte stored) as the base benchmark,
as only one store to the L2 cache occurs for two writes from
each core.

We take rc4 using 64 cores as an example and runs some
diagnostics to try to explain this anomaly in more detail.
We found that the messages in the cache ring decreased by
55% (read-related by 75% and write-related by 44%) in the
redundant benchmark compared to the baseline, even though
the total number of read requests has doubled in the redundant
benchmark (the number of write requests is same). We believe
that because the comparison buffer delays each write it will
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Fig. 4. Performance penalty of many cores base benchmarks

relieve the congestion of cache ring. Remember that the cache
policy on L1 is non-allocating write through with a write
update policy at L2. So the comparison buffer acts like a write
combining buffer delaying and aggregating writes. In effect
it allows more writes to be achieved without generating an
update message in the ring. Similarly as the combining buffer
delays the eviction of the cache line it can also increase the
hit rate to existing lines. Note that the encryption benchmarks
have little locality between threads, as each is an independent
stream. Thus the redundant benchmark is able to improve both
the write and read hit rate and this is why the performance
penalty goes lower with the increasing of block/stream size
in 64 cores of zoom and rc4. Moreover, the rc4 redundant
benchmark can have better performance than baseline even
though it has double number of threads and twice the work
to do. It is in effect highlighting the inefficiency of the
distributed cache system, which is sensitive to the quantity
and distribution of messages at high load.

The three image processing redundant benchmarks have
a higher performance penalty compared to the other bench-
marks, as they are highly parallel benchmarks with exceptional
locality and hence have high efficiency. Although FFT is also
high parallel, its communication is non-local, which means
that its efficiency is constrained by contention in the cache
ring. So again, its redundant benchmark has much smaller
penalty than image processing ones. The encryption bench-
marks have sufficient parallelism (one stream per hardware
thread) but lack locality as each stream is independent. Thus
frequent evictions of data cause the efficiency of the base
benchmark to be low and the overhead of the redundant
benchmark to be correspondingly low.

VII. RELATED WORK

The research on thread-level redundancy (TLR) became
popular following the introduction of SMT [24], as it can
benefit from the higher resource utilization when master and

redundant threads can co-exist within the processor. AR-
SMT [8] proposed executing two copies of the same program
in an SMT environment first. Then, SRT [9] improved on
the performance of AR-SMT using slack fetch and branch
outcome queue based on speculation and cache locality. SRTR
[10] extends SRT to implement fault recovery.

Due to heavy overhead of full fault coverage, some exten-
sions of redundant multithreading (RMT) have explored the
ability to only partially replicate the master thread, such as
Slipstream [25], SlicK [26], and the opportunistic transient
fault detection in [27]. Meanwhile, with the emergence of
multi-core technology, DCC [1], CRT [12], CRTR [13], and
Reunion [14] apply RMT to CMPs. They found that it is fewer
overheads than performing RMT in single SMT core, as CMPs
mitigate the resource contention in single core. Also most
RMTs in CMPs provide both hard and soft fault detection.

However, all of above techniques are aimed on single-thread
applications, or single thread/core for the CMPs, which is
inefficiency in multi-core environment. In order to make full
use of multi-core systems, especially with multi-threading to
achieve latency tolerance, the program model must be shifted
to a concurrent programming methodology. We propose on-
demand thread-level fault detection framework within con-
current programming environment, which gives us the ability
to define the redundancy scope required by users or algo-
rithm designers. It is a flexible and efficiency fault detection
mechanism, as it is configurable on the basis of demand.
[28] also targets parallel programs but only focuses on micro-
architecture support for output comparison under the condition
that a large number of threads existed at same time. It is not
concerned with thread duplication in a hierarchical concurrent
environment, which is the main contribution of this paper.

VIII. CONCLUSION

Fault tolerance will be inevitable as multi-core systems be-
come mainstream. There is no doubt that concurrent program-



ming is also an important opportunity to improve the efficiency
of multi-core processors. In this context, this paper presents
and implements an on-demand fault detection framework that
has been added to an existing multi-threaded, many-core chip
emulation.

By necessity the framework has been co-designed across
multiple layers, including programming model, compiler, ISA
and micro-architecture. This cross-layer cooperation makes the
fault detection mechanism much more flexible and efficient.
It also makes on-demand redundancy possible. In addition,
in order to target a hierarchical concurrency model, this
paper proposes an intelligent redundant thread creation and
synchronization technique. This technique allows the master
thread to create both master and redundant child families,
and connects the redundant parent and child family. It not
only avoids redundant threads explosion, but also keeps the
synchronization channel between redundant parent and child.

Finally the paper presents some results on the overhead
of executing the redundant thread across a range of kernel
benchmarks with a range of concurrency resources (threads
per core and numbers of cores). The results show that for a
single core benchmark, where additional resources are brought
into play, the performance penalty for redundancy is less than
11%. For the the many-core situation, the penalty is never
larger than 100% even though the the redundant benchmark
has twice the dynamic instruction count. This is attributed to
the latency tolerance of hardware multithreading, especially
in situations where the efficiency is poor on the baseline.
In some cases we even show that the redundant benchmark
has a better performance than the baseline and confirm that it
places a smaller load on the shared resources due to a modified
scheduling of writes to L2 cache.
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