
Project no. 248828

ADVANCE
Strategic Research Partnership (STREP)

ASYNCHRONOUS AND DYNAMIC VIRTUALISATION THROUGH PERFORMANCE
ANALYSIS TO SUPPORT CONCURRENCY ENGINEERING

Implementation of SVP on at least one target (Software)
D16

Due date of deliverable: Nov. 30, 2011
Actual submission date: Mar 20th, 2012

Start date of project: February 1st, 2010

Type: Deliverable
WP number: WP3

Task number: WP3b

Responsible institution: UvA
Editor & and editor’s address: Raphael Poss, Clemens Grelck

University of Amsterdam
Computer Systems Architecture group

Science Park 904, 1098XH Amsterdam, The Netherlands

Version 1.2 / Last edited by Clemens Grelck / March 20th, 2012

Project co-funded by the European Commission within the Seventh Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)



Revision history:
Version Date Authors Institution Section affected, comments

1.0 09/03/2012 Raphael Poss UvA First draft
1.1 16/03/2012 Raphael Poss, Clemens Grelck,

Merijn Verstraaten
UvA Complete document

1.2 20/03/2012 Clemens Grelck UvA Final version

Reviewers:
Clemens Grelck

Tasks related to this deliverable:
Task No. Task description Partners involved◦

WP3b Efficient implementation of SVP on different platforms UvA*, HERTS, TWENTE

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader



Executive Summary

This document describes the SVP implementation efforts during the second re-
porting period and outlines the work planned for the third period. Figures 1 and 2
position this work within the context of the ADVANCE project from a high level
and from a more technical perspective.

! !

Figure 1: Positioning of SVP in the context of ADVANCE (high level)

The primary aim of the work reported here was to implement the hardware vir-
tualization layer SVP on at least one architectural platform. The platform chosen
is multi-core commodity hardware, more precisely multi-processor (multi-socket)
systems with multi-core processors, potentially internally hardware-multithreaded.
The upcoming reporting period will see this work extended to networks of such
computers (both on-chip and off-chip, homogeneous and heterogeneous) and multi-
cores with accelerators (e.g. GPUs). We also describe our preliminary work in
these directions.

As shown in Figures 1 and 2 a key feature of the hardware virtualization layer
is to report system behavior back to higher layers of the ADVANCE technology
stack. A monitoring system to this effect has been devised and implemented, and
is described in this document.
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Chapter 1

Introduction

1.1 Overview

The main goal of WP3b was to provide a software implementation of the SVP
instruction set, defined as an API to a set of concurrency control instructions that
create, manage synchronize and schedule SVP tasks.

This has been completed for hardware platforms made of commodity multi-
cores, with partial support for GPU accelerators. The work has been performed in
collaboration with partner HERTS.

During the reporting period it was found that monitoring of the application’s
activity is a crucial feature of the SVP layer in ADVANCE, more crucial than
the diversity of supported platforms or refined SVP management primitives. Con-
sequently, we have allocated resources to analyze the shortcomings of the initial
monitoring support and devise a solution for the next reporting period.

Meanwhile, work is ongoing on two fronts. One direction is the integration of
SVP with S-NET. Here work is ongoing to identify the communication activities in
the S-NET run-time system. Simultaneously, effort is invested towards extending
support to other platforms, namely heterogeneous clusters of multi-cores.

1.2 SVP and the S-NET operating software stack

During the last reporting period the “nature” of SVP has been further refined. The
SVP run-time operating software of S-NET applications in ADVANCE is formed
by the following layers:

1. the low-level hardware abstraction layer, in charge of providing virtualiza-
tion of hardware processors and memories;

2. the system access layer, in charge of providing access to the low-level re-
sources, including managing process identities for monitoring;
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3. the concurrency management layer, in charge of organizing the distribution
of work units within a process over multiple resources, and organizing the
synchronization and communication between them;

4. the application network execution layer, in charge of defining new work units
based on the abstract application description and flowing record data be-
tween them.

Prior to ADVANCE, the fourth aspect was under the responsibility of the “S-
NET run-time system”, whereas aspects #1 to #3 were offloaded to a traditional
multithreaded“operating system” such as GNU/Linux. In fact, two complemen-
tary run-time systems existed: one targeting shared memory multi-core multi-
processors through the POSIX multi-threading API, the other targeting clusters
of such systems via MPI.

In the context of ADVANCE, more control was desired and standard interfaces
for portability across platforms. Introspection of platform characteristics and run-
time behaviors mandated to customize these layers, and the System Virtualization
Platform (SVP) is now extending this vision to coordinate all layers of the run-time
stack and provide the desired portability.

The second reporting period was thus a coming of age with the joint realization
of partners HERTS and UVA that there should not be a clear separation of concerns
between a S-NET run-time system and the abstraction interfaces below. To guaran-
tee the success of ADVANCE, knowledge must be provided to statistical analysis
across all the layers, in a coordinated fashion. Because of this, the S-NET oper-
ating software, constituted by all the infrastructure around the application-specific
components (“boxes” in S-NET), has become a joint endeavor and a strong part-
nership between partners HERTS and UVA. This partnership is now also extended
to TWENTE, as the entity in charge of providing control of placement of work will
be provided by TWENTE.

From a project management perspective, this has involved merging the team
efforts around the same software code base, and build a synergy of personal in-
volvements. Team members across consortium partners are interacting on a daily
basis, both at design and at and at implementation level.
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Chapter 2

SVP and S-NET on Multi-cores

The cornerstone of an implementation of SVP for shared memory multi-cores has
been the implementation of the Light-Weight Parallel Execution Layer (LPEL) in
the first reporting period, described in [8]. LPEL realizes the goal of SVP to ab-
stract the concurrency management layer of the operating software stack. It was
also designed to reduce jitter by binding cooperatively scheduled tasks to long-
lived “worker” threads, which in turn are bound to hardware cores. This is in
contrast to the pre-ADVANCE situation when an underlying operating system au-
tonomously controlled the placement of “fat” threads without knowledge of their
interaction on the S-Net level. The LPEL layer provides first-class primitives to
create streams of record field data between tasks, whose activity participate in
scheduling decisions.

In the second reporting period, work has continued on LPEL jointly between
partners UVA and HERTS. A particular focus has been its integration with the
S-NET run-time environment. This constitutes the first SVP platform, and has
already successfully been exploited by project partners [1].

This implementation includes support for application components (“boxes”)
implemented in a sequential language, either C, C++ or SAC, connected in parallel
applications using the S-NET language, and executed concurrently over multiple
processors, cores and hardware threads in a shared memory system.

2.1 Achievements for this reporting period

The following developments have been carried out since the first reporting period:

• The system has been extended to trace scheduling activities and save moni-
toring data to files for off-line analysis.

• The tasking layer has been optimized to “reuse” task contexts and reduce
jitter caused by allocation and deallocation activities.

• Portability of the system has been extended to a diversity of underlying plat-
forms, namely GNU/Linux, Solaris, OS X, BSD;
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• The network execution layer has been extended to perform “garbage collec-
tion” of sub-networks that have been active once but are known not to be
used any more [2].

• Implementation support for the “feedback combinator” feature of S-NET, as
described in WP2c (D11), has been added to the platform.

• The code base has been re-hauled to remove the distinction between “multi-
core S-NET” and “distributed S-NET” so as to provide common interfaces
independently of the targeted computing platform. This prepares for the up-
coming period where support for clusters will be integrated into the system.

• The system has been modified to identify explicitly “resource usage” besides
processors: heap memory allocations and system calls for I/O, in particular,
were identified in preparation for the upcoming period where optimized im-
plementations will be provided for both.

• The system was analyzed and profiled for inefficiencies. These are identified
below.

2.2 Areas for improvement

The following aspects have been identified as shortcomings in the current imple-
mentation, and possibly detrimental to the work of the next reporting period unless
addressed:

• The system does not yet track memory usage per application component,
only globally. Accounting per application component, and also per system
component involved in the application’s execution, is necessary to profile
activity at run-time and provide feedback to compilation (WP5).

• The system does not yet track bandwidth usage over data streams between
application components. On a shared memory system, streaming activities
are translated to cache misses per processor, which should be measured and
reported. This information is needed to fully characterize behavior in statis-
tical models (currently it is a “hidden” statistical variable that hinders corre-
lations).

• The system does not yet provide a unified access to I/O devices and more
generally communication of an application with “the outside world”: file
system, I/O channels, network, etc. Originally, the S-NET language specifi-
cation required application components to be fully state-free and perform no
I/O operations directly. In accordance to this, the current support assumes
that application components do not perform calls to the underlying operating
system, or perform them in a way fully invisible to the ADVANCE operating
software stack. However, close interaction with industrial project partners
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has shown that support for I/O by application components is both practical
and desirable. Because of this, the monitoring infrastructure must be modi-
fied to properly account for external I/O activity separately from scheduling
and communication within the application.

• There is yet little support for inspecting and troubleshooting the overall state
of the application network at run-time. The current S-NET facilities do allow
to inspect data in streams, and place debugger breakpoints within application
components (boxes). Unfortunately the second reporting period has revealed
that some higher-level behaviors between application components, for exam-
ple unexpected placement of tasks to workers, cannot be observed with the
existing facilities alone.

2.3 Plans for the third period

The remaining effort will be dedicated in priority to addressing the shortcomings
identified in the second period, namely by:

• enhancing the monitoring infrastructure to track memory allocations and
cache activity;

• providing hooks to integrate the mapping technology from TWENTE, which
will use heuristics to optimize task to worker placement;

• extending the SVP implementation as an integrated framework where com-
ponents for observation, statistical analysis and placement decision can run
within one system process, to reduce overheads;

• providing additional tools and interfaces to visualize the behavior of running
programs;

• co-designing the run-time network description language with partner HERTS,
which will implement introspection over VR-nets (WP2, D11). With this
abstraction in place, it will be possible to track back both stream communi-
cation events and memory allocation events to application components for
monitoring.

Simultaneously with these efforts, the following work will continue as back-
ground, continuous activities:

• infrastructure support for any new S-NET features that will simplify testing
and adoption by partners and prospective users;

• support, maintenance and documentation as required by project partners.
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2.4 Preliminary support for accelerators

Boxes that wish to exploit GPUs are partially supported, as follows. A box ex-
pressed in SAC can be compiled automatically to use GPU primitives, or a box in
C in C++ can use a GPU API explicitly. If this box is connected with S-NET into
the application, and is the only one to request GPU access, the application will run
as desired.

Currently, GPU usage is invisible from the S-NET operating software perspec-
tive, as it is entirely encapsulated within the box abstraction. Effort will be assigned
to integrating accelerators in the machine model used by the placement sub-system.

2.5 Dissemination

The first version of software covered by this deliverable has been made available in
Q3 2011 to all project partners via the ADVANCE document repository. Installable
versions are disseminated regularly, and the source code of the operating software
and corresponding utilities has been made available online under an open source
license at https://github.com/organizations/snetdev.
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Chapter 3

The S-Net Monitoring System

3.1 Current Implementation

The goal of the S-NET monitoring system is to provide information that can be
used to allocate resources based on a statistical model of a program’s runtime be-
havior.

3.1.1 How and What to Monitor?

The S-NET monitoring system tracks two separate categories of monitoring events.
The first category is produced in the runtime implementation of S-NET entities.
The (optional) second category is produced by the threading implementation. Cur-
rently each worker (LPEL) or entity (pthread) opens a monitoring file during ini-
tialization. All events generated within this worker or entity are written to this
monitoring file.

Boxes, syncrocells and filters are the entities that produce monitoring events in
the first category. There are two such events; one for incoming records and one for
outgoing records. Incoming record events are generated when a box, syncrocell
or filter reads a record from its input stream or when a record enters the network.
Outgoing record events are generated whenever a box, syncrocell or filter writes a
record to its output stream. Both types of events have a time stamp and a record
id associated with them. When these events are generated they are queued in the
threading layer until box execution finishes, upon which they are written out to the
monitoring file.

Unlike the original directly pthread-based S-Net runtime system implementa-
tion, the LPEL threading implementation, provides several extra monitoring events
in addition to the runtime events described above. These events include:

Wrapper creation: wrappers are dedicated pthreads that run only one task (i.e.
input or output managers). This event has a time stamp and start message
associated with it.
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Worker creation: workers are pthreads that run multiple tasks. This event has a
monitoring version, time stamp and start message associated with it.

Worker destruction: this event has a time stamp and end message associated with
it.

Worker unblocking: runs whenever a worker unsuspends. This event has a time
stamp, wait cause and idle time associated with it.

Task finishing: runs whenever a task is suspended. This event has a time stamp,
task state/blocked on information, task identifier and execution time associ-
ated with it.

3.1.2 Monitoring Problems

Our goal, in the context of ADVANCE, is to provide runtime adaptivity based
on feedback from statistical models. This means that the tools implementing the
statistical models need access to S-NET’s monitoring information. At this time the
monitoring information is simply written to files. This is not suitable for our goals
because of the following reasons:

1. File IO introduces jitter,

2. output format needs to be parsed, adding to latencies,

3. feeding information back to the runtime is cumbersome, as a new external
interface must be defined.

The first two aspects are large overhead in the feedback loop which is not neg-
ligible compared to the activity of application components. Meanwhile, both a
parser for the output format and the external interfaces for controlling the S-NET
run-time system introduces an overhead in development and maintenance to the
project’s effort budget, not counting an extra opportunity for software bugs.

Meanwhile, the statistical modelling tools need a way to provide runtime adap-
tation information to the runtime. Currently there is no method to do this, so one
has to be implemented.

3.2 Future work

Two important questions for future adaptation of the monitoring system are: What
monitoring information shall we expose and how shall we expose it?

3.2.1 How to Monitor?

The current method of exposing monitoring information to the outside world is
undesirable because it’s slow, costs a lot of effort to maintain and requires us to
implement a new interface to feed adaptation decisions back to the runtime.
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Providing hooks for callbacks is a better approach to exposing the monitoring
information. These callbacks can then send the relevant information to the statis-
tical analysis tool(s) or even run (parts of) the analysis code directly. This avoids
slow file accesses, removes the need to (de)serialize information (avoiding the ad-
ditional work of maintaining a parser) and provides a direct way to change runtime
behavior, since the hooks can directly access any data structures/interfaces used for
runtime adaptation.

Effort to implement these hooks has been invested in a close collaboration be-
tween partners UvA, HERTS and TWENTE.

3.2.2 What to Monitor?

The question of what to monitor can be answered by taking a look at the intersec-
tion of what monitoring information we want and what monitoring information is
available. At the very minimum we can keep the currently provided information,
which is specified by partner USTA.

The following additional metrics will be sampled as well:

• maximum amount of memory allocated by a box,

• total memory allocated by a box,

• record and field transfer times (Distributed S-NET).

Other events that can be tracked, but aren’t currently are:

Event name Event description
WorkerWaitStart Worker execution suspended.
TaskDestroy Task execution has finished.
TaskAssign Task assigned to worker.
TaskStart Task execution started.
StreamOpen Stream opened.
StreamClose Stream closed.
StreamReplace Stream replaced with another stream.
StreamReadPrepare Started read from stream.
StreamReadFinish Finished reading from stream.
StreamWritePrepare Started write to stream.
StreamWriteFinish Finished write to stream.
StreamBlockon Blocked on full/empty stream.
StreamWakeup Woken up by read from/write to stream.

Further interactions with the project partners will help identify which metrics
are the most relevant for statistical analysis and behavior aggregation.
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Chapter 4

SVP on Distributed Systems

While work is ongoing to provide an execution environment on single multi-core
systems (chapter 2), effort is also invested towards providing support for S-NET
on networks of multi-cores.

Early support for S-NET over homogeneous clusters had been implemented
prior to ADVANCE using MPI, reported on in [3,4]. This implementation is based
on explicit placement by the concurrency engineer of application components to
named nodes in a network.

Since this early investment, partners UVA and HERTS have teamed up to ex-
tend this work in two directions. One is a general improvement of the interfaces to
extend the system to other platforms than MPI, for added portability and efficiency.
Another is to create a framework where the application components can be dy-
namically re-assigned during the execution, with placement information computed
automatically at run-time. This is intended to enable plugging in the technology
from partners TWENTE and USTA. We report on both these directions below.

4.1 Improvements to Distributed S-Net

Under the management of UVA the distributed S-NET operating software was
ported to Intel’s Single-Chip Cloud computer, a platform which exposes 48 cores
over a fast on-chip network. On this platform, the most efficient form of communi-
cation must exploit dedicated hardware structures to map memory regions directly
across cores, instead of using message passing.

Because of the distinct communication machinery, the effort at UVA has ex-
tended the S-NET code base with a more generic distribution layer specializable
to both MPI and other forms of inter-node communication like the one used for
Intel’s Single Chip Cloud Computer (SCC) [5, 7]. Thanks to this investment, the
mechanisms for data communication between components have been streamlined,
removing unnecessary data copies, excess synchronization and excess serialization.
This work was reported on in [9, 10]. The resulting framework, once distributed
separately from the main S-NET operating software, is now integrated into the
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main code base and available to project partners and the wider public.

4.2 Work migration and automatic placement

In the work described above placement of components is under the responsibility
of the application. S-Net boxes and subnetworks may statically be placed onto
named computing resources, or a mapping can be computed at runtime by some
S-Net box. The (Distributed) S-Net runtime system automatically detects streams
that pass the boundaries of memory domains and automatically takes care of the
necessary explicit communication and the associated serialization/deserialisation
requirements.

The dynamic unfolding of S-Net networks involves dynamic network creation
and network garbage collection across multiple nodes, any box or subnetwork once
placed at some node cannot be migrated. In the next reporting period, UVA and
HERTS will work jointly to remove this restriction, make placement fully flexi-
ble, and create opportunities for fully automatic placement of components. The
following technical directions have been identified:

• The S-NET tasks that wrap around application components will be decom-
posed using continuation passing style, so that their state and stream end-
points can be captured and migrated to different nodes between activation
events.

• Memory management, once delegated to the underlying operating system,
will be taken under the responsibility of the S-NET operating software, so
that the distribution layer can choose between data migration and data caching
when activities on multiple network nodes operate on the same record data.

• S-NET’s automatic garbage collection mechanisms, responsible for reclaim-
ing system resources left over after task termination, will be extended to
reclaim task resources and stream state after tasks are migrated across the
network.

• The distributed monitoring system already implemented using standard TCP/IP
network sockets will be extended and adapted to feed observed metrics from
a distributed execution into the aggregation and placement technologies from
partners TWENTE and USTAN.

Again, as above the work will occur in the main S-NET source code repository
and will be made available to partners as it is implemented.
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Chapter 5

Conclusion

This report gives an overview of the SVP platforms made available to project part-
ners during the second reporting period. It highlights the close collaboration of
partners HERTS and UVA to realize execution environments and monitoring capa-
bilities for S-NET applications on a diversity of platforms.

5.1 Summary of future work

The last reporting period will strengthen the multi-core platform used for designing
statistical model, provide additional facilities for monitoring and extend the imple-
mentation to support networks of multi-cores. This extension will simultaneously
focus on portability of the framework’s services and the integration of the partners’
technologies for seamless use over all SVP platforms.
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