
Lazy Reference Counting for the Microgrid

Raphael Poss, Clemens Grelck

University of Amsterdam

Amsterdam, NL

{r.c.poss,c.grelk}@uva.nl

Stephan Herhut

Intel Corporation

Santa Clara, CA, USA

stephan.a.herhut@intel.com

Sven-Bodo Scholz

Heriot-Watt University

Edinburgh, UK

s.scholz@hw.ac.uk

Abstract

This papers revisits non-deferred reference counting, a

common technique to ensure that potentially shared large

heap objects can be reused safely when they are both input

and output to computations. Traditionally, thread-safe ref-

erence counting exploit implicit memory-based communica-

tion of counter data and require means to achieve a globally

consistent memory state, either using barriers or locks. Ac-

knowledgeing the distributed nature of upcoming many-core

chips, we have developed a novel approach that keeps ref-

erence counters at single physical locations and ships the

counting operations asynchronously to these locations us-

ing hardware primitives, rather than implicitely moving the

counter data between threads. Compared to previous meth-

ods, our approach does not require full cache coherency.

1. Introduction

All modern programming languages are in one way or

another based on the concept of automatic heap manage-

ment, i.e. the implicit reclamation of heap memory that is

no longer needed by a running program. The lesson learnt

from C/C++ style programming with explicit memory man-

agement was that the programmer almost inevitably does

it wrong: either memory is reclaimed too early leading to

inconsistent program states or too late resulting in space

leaks that continuously decrease the effectively available

heap memory during the runtime of a program. Functional

languages led this development and have always been us-

ing automatic heap management, but since the advent of

Java in the 90s the concept has quickly gained popularity

among imperative and object-oriented programmers alike.

And the same story continued with the scripting languages

of the previous decade and today.

The prevailing deferred garbage collection techniques

have been very much refined since the early days (for a

survey see [16]). Nevertheless, common properties have

hardly changed. The interface between the application and

the heap management is typically concise. In one way or

another memory of a certain size can be requested from the

underlying heap manager. Allocation is often implemented

by simply advancing a high water mark pointer. Only if

there is no sufficient memory left, the memory reclamation

machinery becomes active. It identifies live data structures

(ojects) and releases dead objects for further allocations.

One disadvantage of deferred garbage collectors is that

a program cannot determine whether an object is still refer-

enced elsewhere by just looking at it. This rules out reuse

of input objects for output in languages with single assign-

ment semantics, a common case in the functional commu-

nity. Cases where non-sharing can be proven statically are

rather rare in practice; typically, the question is undecidable

in all but the most simple codes. As a consequence, when-

ever some object is derived from an existing one, leaving

potentially large parts untouched, a fresh object must always

be allocated in memory and the unchanged parts copied.

Although this issue has limited impact in languages with

small allocation units (e.g. LISP cells), it becomes more sig-

nificant in languages that manipulate a smaller number of

large objects. With arrays for example, any functionally

sound update operation that defines a new array as being

identical to an existing one with the exception of few re-

computed elements, becomes intolerably expensive. What

would be a constant time operation in an imperative envi-

ronment, becomes linear in the size of the array.

This well-known aggregate update problem [10] is one

instance where non-deferred garbage collection using ref-

erence counting (RC) is necessary. We use the functional

array language Single Assignment C (SAC [7]) as an ex-

ample. SAC uses non-deferred RC to determine reusability

of arrays (section 2). In this scenario, arrays are equipped

with a reference counter updated throughout the array’s life-

time. Althout the allocator must then also deal with heap

fragmentation, under the assumption of reasonably sized ar-

rays and few allocations cycles the additional runtime over-

head in space and time is negligible. The key advantage,

however, is that the space of argument values can directly

be reused to accommodate result values since the runtime

system can always query the reference counter and decide

whether the data is currently referenced elsewhere. This

feature is intensively used by the SAC memory management

subsystem [8] and has proven to be essential to competitive

performance in functional array programming.

Today’s prevalence of many-core processors raises new

issues. Requests to modify a reference counter may come

from concurrent threads. The same applies to queries for

a counter’s value at any memory reuse opportunity at run-

time. In a traditional shared memory system this require

cache coherency, fences and mutual exclusion or atom-

ics. The corresponding hardware support is unlikely to

scale with increasing core counts on chip. Instead, larger

core counts will cause the advent of on-chip memory ar-

chitectures that are either fully distributed or show differ-

ent degrees of consistency from the perspectives of individ-

ual cores. Our target Microgrid architecture, introduced in

section 3, illustrates this view.

To target these upcoming systems, we propose lazy ref-

erence counting, a scalable implementation technique for

non-deferred RC on many-core architectures using weaker

consistency semantics. Traditional RC in a cache coherent

system requires to move counter data spatially to the loca-

tion where the need to update or query the counter arises.

We propose instead to keep the reference counter in the

same chip location during its lifetime. Then rather than up-

dating the counter itself, a task located spatially elsewhere

sends asynchronously a request to the home location of the

counter. This location in turn sequentialises incoming re-

quests appropriately and performs object reclamation ac-

cordingly. A key aspect for scalability is that tasks can exe-

cute asynchronously with the RC operations and do not wait

for the remote RC operations to complete.

As we explain in section 4, the price that we are willing

to pay for this is that the reference counter state only approx-

imates the number of actual references. There is a time de-

lay between the conceptual update of the reference counter

from the perspective of the running program and the effec-

tive update of the counter in its home location. We think

this is acceptable because we are not interested in tracking

the exact number of conceptual copies of some object dur-

ing runtime, but merely in the question whether or not the

object can be updated destructively. For example, we care

whether the reference counter is 1 or 2, but whether it is 2 or

42 is entirely irrelevant for memory reclamation and reuse.

We have specifically developed the proposed technique

for compiling SAC to the Microgrid many-core architec-

ture [6]. As we discuss in section 5, the proposed approach

imposes extra requirements on the network routing proto-

col, highlights issues of over-synchronization in the current

implementation of the Microgrid and guided the design of

architectural solutions. This makes our approach also a rare

example of crosslayer design integration.

2. SAC as a use case for reference counting

SAC is a functional, side-effect free variant of C: assign-

ment sequences are interpreted as nested let-expressions,

branches as conditional expressions and loops as syntac-

tic sugar for tail-end recursive functions; details can be

found in [7]. Despite the radically different underlying

execution model (context-free substitution of expressions

vs. step-wise manipulation of global state), language con-

structs adopted from C show exactly the same operational

behaviour as expected by imperative programmers. This al-

lows programmers to choose their favourite interpretation

of SAC code while the compiler exploits side-effect free se-

mantics to better optimize and parallelize evaluation.

2.1. Truly multidimensional arrays

SAC provides native support for truly multidimensional

and stateless/functional arrays using a shape-generic style

of programming (Figure 1). Any SAC expression evaluates

to an array. Arrays may be passed between functions with-

out restrictions. Array primitives can access either array

metadata, e.g. an array’s rank (dim(array)), or individual

elements or entire subarrays using the usual square bracket

notation: array[idxvec].

j

k

i

11 1210

7 8 9

5

2

4

1 3

6

dim: 3

shape: [2,2,3]

data: [1,2,3,4,5,6,7,8,9,10,11,12]

42

dim: 0

shape: []

data: [42]

Figure 1. Multidimensional arrays in SAC.

with {(lower_bound1 ≤ idxvec < upper_bound1) : exp1;

...

(lower_boundn ≤ idxvec < upper_boundn) : expn;

} : genarray(shape, default)

Figure 2. Array comprehensions in SAC.

2.2. WITH­loops

All aggregate array operations are specified using WITH-

loop expressions, a SAC-specific array comprehension

shown in Figure 2. Here, lower_bound and upper_bound

denote expressions that must evaluate to integer vectors of

equal length. They define a rectangular (generally multidi-

mensional) index set. The identifier idxvec represents el-

ements of this set, similar to loop variables in FOR-loops.

However, no order is defined on these index sets. An index

set specification is called a generator and it is associated

with an arbitrary SAC expression. It creates a mapping be-

tween index vectors and values, in other words an array.

Figure 3 shows the example of a WITH-loop that defines

a 5× 6 matrix B using two generators and the default el-

ement. Each element of the lower left 3× 4 submatrix is

defined as the sum of the two elements of the index vec-

tor. The right 5× 2 submatrix is “copied” from the existing

matrix A. The remaining elements, i.e. the upper left 2× 4

submatrix, are implicitly defined by the default element.

B = with { ([3,0] <= iv < [5,4]) : iv [0] + iv [1];

([0,4] <= iv < [5,6]) : A[iv]; }: genarray([5,6], 0)

B ←











0 0 0 0 A[0, 4] A[0, 5]
0 0 0 0 A[1, 4] A[1, 5]
0 0 0 0 A[2, 4] A[2, 5]
3 4 5 6 A[3, 4] A[3, 5]
4 5 6 7 A[4, 4] A[4, 5]











Figure 3. Example WITH-loop and result.

2.3. Memory management

We focus here on memory management when compiling

WITH-loops to executable code. Assuming that the existing

array A in Figure 3 is of the same shape as B, i.e. 6× 7

elements, A is a reuse candidate for B. Whether or not this

candiate may actually be reused is only decidable at runtime

from its associated reference counter.

If its reference counter is 1, the reference to it is the last

one, and the memory can be safely updated destructively.

This saves one loop nesting, the one derived from the second

generator. In case the candidate cannot be reused, the de-

fault code allocates fresh memory to accommodate the new

array B and uses three loop nests to initialise all elements

from scratch. Finally, A’s counter is decremented. Regard-

less of reuse, B’s counter is set to the number of statically

inferred references in the rest of the current code block.

The example makes the benefits of memory reuse ob-

vious. Not only does this save a costly invocation of the

memory allocator, but it also allows to skip all code that is

merely concerned with copying data from an existing to the

new array. The interested reader is referred to [8] for a more

thorough treatment of the subject.

3. Our target: SVP and the Microgrid

The System Virtualization Platform (SVP) is a machine

model and low-level programming interface for the ex-

ploitation of general-purpose many-core chips with combi-

nations of shared and distributed memories [12].

The basic construct for exposing concurrency is bulk cre-

ation of multiple logical threads at once. This declares a

concurrent unit of work, called a family, which the platform

can either execute in parallel, sequentially, or a combina-

tion of both. A creating thread can then bulk synchronize

on termination of a family. This fork-join pattern captures

concurrency hierarchically, from software component com-

position down to inner loops. Although an implementation

may offer more flexibility, SVP encourages forward-only

dataflow compositions so that programs stay deadlock-free

and serialization is always possible.

SVP further separates the declaration of concurrency

from its scheduling. When code expresses more concur-

rency than is available, processors automatically switch

from space scheduling to time scheduling at the point when

all concurrent resources become full. Excess concurrency

is automatically removed to prevent overheads. This avoids

granularity mismatches on heterogeneous resources.

Space scheduling is further achieved by binding a collec-

tion of processors, called a place, to a family upon its cre-

ation. This can happen at any level, dynamically. Creations

can either propagate the current mapping to the child fami-

lies (“default” place), or restrict to a smaller entity (“local”

place). This provides an efficient way to control locality

at fine granularities. Creation can also use explicit places

provided at a coarse level by a place allocator which leases

entire clusters to requesting program components [13].

3.1. An SVP implementation: the Microgrid

The Microgrid is a many-core chip architecture which

implements the SVP interfaces in hardware [11, 3]. Dedi-

cated circuits next to a RISC pipeline provide bulk creation,

synchronization and inter-thread communication. This is in

turn controlled by dedicated instructions in the ISA.

For work distribution, programs designate either single

cores or clusters of multiple cores as a place, using a uni-

form addressing scheme which preserves cache locality at

any cluster size (Figure 4). Within a cluster, bulk creation

and synchronization use a fast local distribution network,

whereas across clusters a narrow mesh delegation network

is used for remote family control. This is physically sepa-

rated from the memory network to avoid interference. The

memory network makes caches coherent at family creation

and synchronization points only, resulting in weak consis-

tency between sibling threads in a family.

Figure 4. Example 32-core Microgrid tile.

3.2. Exclusive places for shared state

The memory system of the Microgrid chip only provides

bulk concistency at family creation and termination. This

is efficiently implemented in hardware by flushing pending

memory stores at family events. However, this comes at the

cost of disallowing implicit memory-based communication

between sibling threads that are unrelated via parent-child

synchronization, including all manners of reference count-

ing and mutual exclusion via memory-based structures.

For cases where bounded non-determinism is desirable

in programs, SVP also provides exclusive places. These

provide the following semantics: all families created at the

same exclusive place are scheduled in some sequential or-

der with regards to each other, i.e. they are guaranteed to run

mutually exclusively. To implement this, an exclusive allo-

cate request defines the requirement for sequential schedul-

ing. When an allocation requests arrives at a core with the

exclusive flag, the hardware create process waits until pre-

vious exclusive work has terminated before satisfying the

request. The memory system guarantees that writes per-

formed at an exclusive place are visible by subsequent fam-

ilies running at the same place. This way, atomic accesses

to shared state can be sent to the same exclusive place. This

corresponds to the “secretary” concept of [4]; compared to

criticial sections and monitors found in other programming

models, exclusive places have an explicit location on chip.

3.3. Compiling SAC to the Microgrid

We have implemented a compiler from SAC to the Mi-

crogrid as previous work [6], which we summarize here.

There are two forms of concurrency in SAC: functional con-

currency in independent expressions and data-parallelism in

WITH-loops. Function calls can be translated to SVP fam-

ilies of one thread. This way execution of functions can

be parallel if there are resources available, otherwise they

are sequentialized automatically. This can be applied re-

cursively. Sharing of arrays happens when the same array

is provided to two or more concurrent function calls. Data

parallelism in WITH-loops is mapped onto wide SVP fam-

ilies. Any multi-level WITH-loop is compiled into multiple

thread programs. When the WITH-loop is reached during

execution, this triggers the creation of a tree of families,

one level per generator dimension. Hints for SVP “default”

and “local” placement are also used to optimize locality of

accesses. When possible, code to reuse or allocate memory

for the result is placed before a top-level family creation.

4. Our solution: distributed lazy RC

Reference counting in SAC is straightforward and relies

on the usual operations: setrc upon initial allocation, in-

crc, decrc (hereafter considered to be incrc with a negative

value) to update the value of a reference counter, and getrc

to enquire its current value. In traditional shared memory

systems, all these operations but the first run potentially

concurrently and must be implemented using atomic prim-

itives or locks. The low-level requirement are then a cache

protocol and memory locking semantics that ensure that the

data for the reference counter is globally consistent across

the entire memory network. This implies non-trivial syn-

chronization latencies and interference with computation-

related memory network traffic.

4.1 Distributed reference counting

The key idea in our approach is to ship the individual

reference counting operations to a computing resource that

holds the counter data, using low-latency fine-grained hard-

ware primitives, instead of shipping the counter to the com-

puting resource where the RC occurs. The immediate ad-

vantage in a setting with distributed memory is the reduced

bandwidth requirement. Furthermore, by keeping the refer-

ence counters in a single location, our approach works with

weaker consistency systems such as the Microgrid.

In a first approach, incrc and getrc are mapped to SVP

thread programs. incrc takes the address of a reference

counter, or a heap object containing a reference counter at

a predefined offset, and an increment as arguments, and up-

dates the value of the counter. getrc takes the address of a

reference counter as argument and returns its current value.

From a compiler’s perspective these are the same prim-

itives as used in a non-concurrent setting. The running

program, however, now sends requests to a shared pro-

cessing resource instead of performing the RC opera-

tions directly. In SVP this resource is an exclusive place

(cf. subsection 3.2). It sequentialises all incoming RC re-

quests and performs only one RC operation per object at

a time. This further requires preservation of creation or-

der across the network: RC operations issued by one thread

need to be performed in their issue order; also, if one thread

spawns other threads, all RC operations of the parent thread

up to the spawn operation need complete before the RC op-

erations of any child thread are performed. This is to ensure

that the caller increments are performed before any callee

decrements of the children are enacted.

We further do not require a single exclusive place for all

RC operations; we merely require that a single counter is

managed by the same exclusive place throughout its life-

time. This means that each reference counter can be man-

aged by a different place. The scheme is thus scalable with

the number of exclusive places used for RC, up to one per

core on our Microgrid implementation. Furthermore, on the

Microgrid this mapping is efficient: using a primitive hash

function, the address of any reference counter can be trans-

formed into a valid exclusive place identifier in a way that

balances load across the entire grid.

4.2 Lazy reference counting

A further key observation is that for most RC operations,

the requesting thread is not interested in the result of the op-

eration. The incrc requests are issued by a thread to create

a conceptual new reference or to release a conceptual ref-

erence. As long as either operation is performed eventually

and thus freeing of the memory prevented or facilitated, it

does not matter when the operation is actually performed.

Given that SVP separates initiation of a concurrent ac-

tivity (through the issuing of a create operation) and the ac-

tual execution of the corresponding instructions (when the

scheduling of threads eventually happens), we can also is-

sue incrc asynchronously and let them execute concurrently

with the computation until the synchronization required by

the observation operations. This overlap provides extra la-

tency hiding. Only at the point of observation, the thread re-

questing getrc requires synchronization as it needs to decide

a potential memory reuse. In short, pending asynchronous

requests must complete only before getrc.

This is what we name lazy reference counting: we can

postpone RC operations, from the issuing threads’ perspec-

tive, until a point of potential reuse is reached. This leads to

a heap management that is partially deferred, yet provides

low-overhead liveness information. Furthermore, with suf-

ficient hardware resources, we can perform RC concurrently

with the program’s execution.

4.3 Partially ordered communication

Our solution as presented so far requires a global or-

der for all creation requests. However, this architectural

requirement has similar costs as requiring a global mem-

ory consistency. In constrat, local ordering of messages,

i.e. preservation of order between pairs of processing re-

sources, is significantly cheaper to implement. As only the

messages sent from one resource need to have a consistent

order, no global state needs to be maintained.

To support architectures that only provide ordered point-

to-point communication, such as the Microgrid, we have

to extend our approach slightly. In this case, ordering is-

sues arise when sub-computations sharing a RC place are

delegated concurrently to different places. We assume that

threads, once created, do not migrate across places.

In this context, a caller increments the reference counts

of all arguments of a spawned thread before the spawn.

These RC operations must complete before the spawned

thread potentially performs decrc. If both threads run on the

same place, this is ensured by the local ordering between the

threads’ place and the exclusive place used for RC. If, how-

ever, the spawned thread is delegated to another place, this

ordering is no longer guaranteed. In particular, the RC oper-

ations issued by the child thread’s place may be performed

before those issued by from the parent thread’s place. To

prevent this, we introduce another RC operation, flush. It

is implemented by a synchronous request that performs no

action. Due to the local order, completion of flush implies

that all previous RC operations have completed. In partic-

ular, if a flush is issued after incrc, it is safe to delegate a

thread after flush completes.

The absence of a global order affects getrc as well. Its

result is no longer an accurate representation of the system’s

state. Although getrc is synchronous, there may still be sub-

sequently issued RC operations pending from other places.

This may lead to false negatives, i.e. to situations where

a reuse opportunity is missed due to an inaccurate counter

value. However, false positives, i.e. a reuse of an object that

is still referenced otherwise, cannot occur. Indeed, if the

counter has been decreased to 1 at any stage of a computa-

tion, this means that only one thread may hold a reference to

the corresponding object. Thus, all pending RC operations

must belong to that thread as otherwise a thread would emit

an RC operation on an object it no longer references, which

is impossible. As getrc is performed synchronously by the

thread that holds the last reference to the object, all other RC

operations for that object will complete before getrc com-

pletes. Thus, if the result is 1 then the enquiring thread at the

point of enquiry is holding the single last reference. Conse-

quently, memory reuse is safe.

This extended scheme requires only a minor adaptation

in compilers. Before delegating a spawned thread to a dif-

ferent execution resource, we now additionally insert flush

operations on all array arguments of the thread.

5. Feedback on the Microgrid design

We report on the implementation and evaluation of our

proposed scheme separately in [9]. Retrospectively, our re-

sults have provided feedback to the Microgrid implemen-

tation. This happened on two levels: a reflection on the

on-chip network protocol due to the ordering requirements

from the scheme and optimization strategies to the on-chip

thread spawning processes to remove unnecessary synchro-

nization.

5.1. Partial ordering of network requests

As explained in subsection 4.3, the minimal requirement

for our RC scheme is that requests issued from the same

thread are processed in order, although not necessarily in

order with requests from different threads. As this was not

guaranteed by the abstract SVP model, we had to look at

the processes involved on chip. When a thread requests the

remote creation of a family at another place, the following

happens: on the originating core, a request is issued onto

the delegation network, then routed to the target place, then

at the target core, it is queued for later processing. Local

ordering must thus be ensured at these three levels.

Both issuing and queueing requests use a single queue so

the ordering is trivial. All individual cores are connected to

the delegation network, which has a mesh topology. Here

the Microgrid implements dimension order routing, which

also preserves order and satisfies our requirement. In other

chips, the work delegation protocol should respect this or-

dering between execution places. The SVP semantics have

since been refined to provision our ordering requirement.

5.2. Hardware concurrency optimizations

While experimenting with our first implementation, we

discovered that the Microgrid was preventing the expected

latency hiding benefit of asynchronous delegations, by re-

quiring excess synchronization not expressed in the code.

The issue arises from the phase separation of family cre-

ation on chip. Any expressed creation implies the following:

1. The creating thread performs the allocate operation,

provided with a place identifier, which triggers the al-

location process. This reserves a family context and at

least one thread context on the target place and returns

a family identifier as result (comprising the address of

the target). With remote places this causes a network

roundtrip to allocate.

2. Using the family identifier, the creating thread can then

configure the family context to define the logical thread

count. Configuration does not entail synchronization

and is optional: by default only one thread is created.

3. Once the family is configured, the thread performs

create on a family identifier and an initial program

counter, and completes when the creation process at

the target place has started. With remote places, this

also causes a network roundtrip.

4. After creation has synchronized, the creating thread

can optionally send thread function arguments to the

running child family asynchronously.

Once these steps are completed, the child family is run-

ning asynchronously with the parent thread, which may

choose not to synchronize on termination of its child and

instead detach from it for truly asynchronous completion1.

In the case where this targets an exclusive place, the ex-

pected asynchrony is unfortunately prevented. Indeed, ex-

clusivity is implemented by reserving a single family con-

text for exclusive delegations on each core. This causes

any allocation to unnecessarily synchronize on the comple-

tion of all previous exclusive requests. We illustrate this

in Figure 5: 2000 threads are created over 64 cores; each

thread performs a incrc as its first operation. Due to over-

synchronization on allocation, the threads are unnecessarily

sequentialized (low pipeline efficiency) up to t≈150kcycles

where all RC operations have been queued. After that point

the threads can run in parallel (high pipeline efficiency) and

the RC operations become truly asynchronous. This behav-

ior runs counter to the desired laziness of our scheme.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300 350 400

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

ef
fi

ci
en

cy
 (

[0
..

1
])

#
th

re
ad

s

time (clock cycles / 1000)

pipeline efficiency at the worker place

number of queued threads at the exclusive place

Figure 5. Effect of excess synchronization.

A first approach to overcome this limitation was to adapt

the architecture by combining the allocate, create and de-

tach steps into a single operation which only synchronizes

on the queueing, not on the execution. This is conceptu-

ally possible if the exclusive families do not need configu-

ration, i.e. are single-threaded, because then the family con-

text can be pre-allocated. Then a special detached create

request could be sent, using the family identifier and pro-

gram counter as input, that simply queues exclusive cre-

ation at that family entry and synchronizes on queueing, fol-

lowed by an asynchronous request to provide the function

arguments to the created family. Because partial ordering

is guaranteed, the arguments would always arrive after the

create that they pertain to. However, this approach requires

1detach is also an asynchronous request.

a more complex buffering arrangement that provides non-

FIFO access to arguments. This is because arguments from

different creates may be interleaved in the queue. Hence, an

associative FIFO lookup is required based on a per-create

tag to avoid deadlocks (any thread on any core can issue cre-

ates and arguments out of order). A proper tagging scheme

would be also complex to design. Finally, a finite argument

buffer could cause deadlock if it became full with arguments

unrelated to the first entry in the create buffer. Thus some

form of software-directed deadlock prevention would also

be required, adding more to the complexity of this solution.

At this point we observed that the fundamental require-

ment for the desired level of asynchrony was the ability to

queue work remotely, at the exclusive place, using a single

network message containing all the information required.

To achieve this, a seemingly unrelated feature exists on the

Microgrid: system call gates, originally designed for imple-

menting privileged operating system services like resource

allocation and I/O access. Looking at this mechanism, we

see that this consists of a combination of two features: an

indcreate operation, which takes a service identifier and an

argument value as input and queues requests remotely, and

an indexed create process at each core, which takes as input

requests from its local queue and processes allocation and

creation. This is illustrated in Figure 6: a table in memory

maps service identifiers (SID) to code. The remote identi-

fier given to indcreate contains both the network address

of the remote core, the SID, and bits to indicate whether to

detach and/or create exclusively. Each core is configured

with a base table address in memory, which is then offset by

each SID to find a program counter and possible other fam-

ily configuration data. The extra argument value provided

to indcreate becomes the index value of the first thread in

the created family. This way clients can provide function ar-

guments to the service. By assigning reference counter op-

erations to entries in the service table of the exclusive place,

we obtain the desired asynchrony using the input queue of

the indirect create process.

... other core components ...

request queue:
arg bits

PC

Create Allocate

memory
interface

table lookup

delegation network

creations
e

t
in

d
e

x

SID

Figure 6. Indirect create process on chip.

While this mechanism was designed independently, our

RC scheme helped refine the design. Firstly, the mecha-

nism was originally designed so that both indcreate and

the indexed create process would execute at the issuing core

with the resulting allocation/create being delegated if neces-

sary. Instead, the inverse solution where indcreate queues

remotely is what we need. Also, the use case requires that

client threads must be able to synchronize on the queueing,

so as to receive a guarantee that the RC operation will even-

tually be performed before any subsequently queued request

is serviced. This means that an indcreate operation must

only synchronize when the remote queueing is acknowl-

edged. While we clarified this requirement in the light of

reference counting, it is actually a quite general prerequisite

to many software locking schemes.

6. Related Work

Although we are aware of recent work on using non-

deferred reference counting in the context of mainstream

object oriented languages [14], we did not come across

any work of non-deferred reference counting in the con-

text of distributed memory or weakly coherent shared mem-

ory multi-cores. However, the underlying principles of our

approach, i.e. shipping computation to data and exploiting

asynchronous communication for latency hiding, have been

applied to related problems in distributed systems before.

One example in this setting is the multi kernel paradigm

adopted by the Barrelfish operating system [1] for many-

cores. In Barrelfish, instead of using a single global kernel

and shared state, the operating system is built around com-

municating network of kernels. Each computing resource

is managed by its own kernel and state is replicated using

message passing. Similar to our approach, system services

are delegated to responsible cores that hold the correspond-

ing state instead of communicating the state. The driving

force here, like in our approach, is scalability.

Similar, but on a significantly larger scale, distributed file

system have to contend with typically large objects (files)

duplicated in storage across several applications (clients).

Usually, metadata and directories are maintained separately

from the data, with tables that keep track of which clients

currently hold a copy of each file. Storage reclamation af-

ter path deletion can only occur when the last client has

dropped its replica of the corresponding file.

The Hadoop distributed file system [2, 15] and the

Google File System [5] are particular examples of dis-

tributed file systems that employ a scheme closely related

to our approach. In both, objects are file data blocks and

are distributed across a set of data nodes. Separately to

these, name nodes hold the metadata and reference infor-

mation. When data nodes duplicate data or create new data

they must inform the name node of the existence of new

copies through heartbeat messages. Client applications can

enquire through a name node to know how many copies of a

data block exist. On each name node, heartbeats are handled

in order but asynchronously, except when an application re-

quests a flush-and-sync of pending heartbeats. This is simi-

lar to the lazy updates, synchronous reads in our scheme.

7. Conclusion

The primary contribution of this paper is a novel lazy,

non-deferred reference counting scheme targeting a many-

core architecture with shared memory. To reduce communi-

cation requirements our scheme ships the reference count-

ing operations to a shared processing resource instead of mi-

grating the counter data to the thread that needs to perform a

reference counting operation. As a welcome side effect this

allows our scheme to run on systems with weak or no cache

coherency, by ensuring that all updates to the same counter

are performed by the same processor. To reduce contention

on the shared resource and to enable latency tolerance we

queue counter updates asynchronously without synchroniz-

ing on their completion: synchronization is only required

at the point of potential reuse. Finally, we only require only

partial network routing order between requests issued by the

same thread, instead of a global order between all clients of

a reference counter.

We have implemented this scheme successfully in the

array programming language SAC. Our implementation

targets the SVP programming interface and its many-core

hardware implementation, the Microgrid. Our work has

helped refine the Microgrid design and suggested optimiza-

tions for additional hardware concurrency. This positive

feedback on the design of a many-core chip architecture

constitutes our secondary contribution.

8. Acknowledgements

The research was performed at the School of Computer

Science, University of Hertfordshire, UK, and the Institute

for Informatics, University of Amsterdam, NL, under EU

research grant FP7/2007/215216 Apple-CORE.

References

[1] A. Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs,

S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The

multikernel: a new OS architecture for scalable multicore

systems. In Proc. 22nd symposium on Operating systems

principles (SOSP’09), pages 29–44. ACM, 2009.
[2] D. Borthakur. The Hadoop distributed file system: Architec-

ture and design. 2007.
[3] K. Bousias, L. Guang, C. Jesshope, and M. Lankamp. Im-

plementation and Evaluation of a Microthread Architecture.

Journal of Systems Architecture, 55(3):149–161, 2009.

[4] E. W. Dijkstra. Hierarchical ordering of sequential pro-

cesses. Acta Informatica, 1(2):115–138, June 1971.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file

system. SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[6] C. Grelck, S. Herhut, C. Jesshope, C. Joslin, M. Lankamp,

S.-B. Scholz, and A. Shafarenko. Compiling the Func-

tional Data-Parallel Language SAC for Microgrids of Self-

Adaptive Virtual Processors. In Proc. 14th Workshop on

Compilers for Parallel Computing (CPC’09), IBM Research

Center, Zürich, Switzerland, 2009.

[7] C. Grelck and S.-B. Scholz. SAC: A functional array lan-

guage for efficient multithreaded execution. International

Journal of Parallel Programming, 34(4):383–427, 2006.

[8] C. Grelck and K. Trojahner. Implicit Memory Management

for SaC. In C. Grelck and F. Huch, editors, Implementa-

tion and Application of Functional Languages, 16th Inter-

national Workshop, IFL’04, pages 335–348. University of

Kiel, Institute of Computer Science and Applied Mathemat-

ics, 2004. Technical Report 0408.

[9] S. Herhut, C. Joslin, S.-B. Scholz, R. Poss, and C. Grelck.

Concurrent non-deferred reference counting on the micro-

grid: first experiences. In Proc. 22nd international confer-

ence on Implementation and application of functional lan-

guages (IFL’10), pages 185–202. Springer-Verlag, 2011.

[10] P. Hudak and A. Bloss. The aggregate update problem in

functional programming systems. In Proc. 12th ACM Sym-

posium on Principles of Programming Languages, pages

300–314. ACM, January 1985.

[11] C. Jesshope. Operating systems in silicon and the dynamic

management of resources in many-core chips. Parallel Pro-

cessing Letters, 18(2):257–274, 2008.

[12] C. Jesshope, M. Hicks, M. Lankamp, R. Poss, and L. Zhang.

Making multi-cores mainstream – from security to scalabil-

ity. In Advances in Parallel Computing, volume 18. IOS

Press, 2010.

[13] C. Jesshope, J.-M. Philippe, and M. van Tol. An architecture

and protocol for the management of resources in ubiquitous

and heterogeneous systems based on the SVP model of con-

currency. In Embedded Computer Systems: Architectures,

Modeling, and Simulation, pages 218–228, 2008.

[14] P. G. Joisha. A principled approach to nondeferred

reference-counting garbage collection. In Proc. 4th In-

ternational Conference on Virtual Execution Environments

(VEE’08), pages 131–140. ACM, 2008.

[15] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The

Hadoop distributed file system. In Proc. 26th Symposium

on Massive Storage Systems and Technologies (MSST’10).

IEEE Press, May 2010.

[16] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dy-

namic Storage Allocation: A Survey and Critical Review. In

H. Baker, editor, Proc. International Workshop on Memory

Management (IWMM’95), volume 986 of Lecture Notes in

Computer Science, pages 1–116. Springer-Verlag, 1995.

	. Introduction
	. SaC as a use case for reference counting
	. Truly multidimensional arrays
	. with-loops
	. Memory management

	. Our target: SVP and the Microgrid
	. An SVP implementation: the Microgrid
	. Exclusive places for shared state
	. Compiling SaC to the Microgrid

	. Our solution: distributed lazy RC
	Distributed reference counting
	Lazy reference counting
	Partially ordered communication

	. Feedback on the Microgrid design
	. Partial ordering of network requests
	. Hardware concurrency optimizations

	. Related Work
	. Conclusion
	. Acknowledgements

