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1 Introduction

In the decade 1990-2000, processor chip architectures have benefited from tremen-
dous advances in manufacturing processes, enabling cheap performance increases
from both increasing clock frequencies and decreasing gate size on silicon. These
advances in turn enabled an explosive expansion of the software industry, with
a large focus on computers based on general-purpose uni-processors. This ar-
chitecture model, that of the Von Neumann computer, had emerged at the end
of the 1980’s as the de facto target of all software developments.

Until the turn of the 21st century, system engineers using uni-processors as
building blocks could assume ever-increasing performance gains, by just substi-
tuting a processor by the next generation in new systems. Then they ran into
two obstacles. One was the memory wall [45], i.e. the increasing divergence
between the access time to memory and the execution time of single instruc-
tions. To overcome this wall, architects have designed increasingly complex
uni-processors using techniques such as branch predictors and out-of-order ex-
ecution to automatically find parallelism in single threaded programs and keep
processor pipelines busy during memory accesses. The second is the sequen-
tial performance wall [1, 34], also called “Pollack’s rule” [31], i.e. the increasing
divergence in single processors between performance gains by architectural op-
timizations and the power-area cost of these optimizations.

To “cut the Gordian knot,” in the words of [34], the industry has since (post-
2000) shifted towards multiplying the number of processors on chip, creating in-
creasingly larger Chip Multi-Processors (CMPs) by processor counts, now called
cores. The underlying motivation is to exploit explicit concurrency in software
and distribute workloads across multiple processors to increase performance.
The responsibility to find parallelism was pushed again to the software side,
where it had been forgotten for fifteen years.

During the period 2000-2010, this shift to multi-core chips has caused a com-
motion in those software communities that had gotten used to transparent fre-
quency increases and implicit Instruction-Level Parallelism (ILP) for sequential
programs without ever questioning the basic machine model targeted by pro-
gramming languages and complexity theory. “The free lunch is over” [40], and
software ecosystems then had to acknowledge and understand explicit on-chip
parallelism and energy constraints to fully utilise current and future hardware.
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This transition was disruptive for audiences used to systems where the pro-
cessor fetches instructions one after another following the control flow of one
program. Yet the commotion was essentially specific to those traditional audi-
ences of general-purpose uni-processors that had grown in the period 1990-2000.
In most application niches, application-specific knowledge about available par-
allelism had long mandated dedicated support from the hardware and software
towards increased performance: scientific and high-performance computing have
long exploited dedicated Single Instruction, Multiple Data (SIMD) units, em-
bedded applications routinely specialise components to program features to re-
duce logic feature size and power requirements, and server applications in data
centres have been optimised towards servicing independent network streams,
exploiting dedicated I/O channels and Hardware Multi-Threading (HMT) for
throughput scalability. Moreover, a host of research on parallel systems had
been performed in the previous period, up to the late 1980’s, and best practices
from this period are now surfacing in the software industry again.

In the rest of this chapter, we review the development of multi-core processor
chips during the last decade and their upcoming challenges.

2 Underlying principles

2.1 Multi-core architecture principles

Two observations from circuit design have motivated the transition to multi-core
processor chips.

As noted by [4], the scalability of multiple-instruction issue in conventional
processors is constrained by the fact that ILP is not improved linearly with the
addition of silicon. Scaling up implicit concurrency in superscalar processors
gives very large circuit structures. For example, the logic required for out-
of-order issue scales quadratically with issue width [22] and would eventually
dominate the chip area and power consumption. This situation had been sum-
marised by Pollack [31] by stating that the performance of a single core increases
with the square root of its number of transistors.

Meanwhile, the power cost of single-core ILP is disadvantageous. Not only
does Pollack’s rule suggest more power consumption due to the growing silicon
cost per core; to increase the Instructions Per Second (IPS) count, the proces-
sor’s clock frequency must also increase. As noted in [34], Maximum power
consumption (Power) is increased with the core operating voltage (V ) and fre-
quency (F ) as follows:

Power = C × V 2 × F

where C is the effective load capacitance of all units and wires on core. Within
some voltage range, F may go up with supply voltage V (F = k × V α−1,
α ≤ 1). This is a good way to gain performance, but power is also increased
(proportional to V 2+α). For a given core technology, this entails that a linear
increase in IPS via frequency scaling requires at least a quadratic increase in
power consumption.

From this circuit perspective, the advantage of explicit parallelism by invest-
ing transistor counts towards multiple, simpler cores becomes clear: assuming
available concurrency in software, two cores running at half the frequency can
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perform together the same IPS count at less than half the power usage. More-
over, by keeping the cores simple, more transistors are available to increase the
core count on chip and thus maximum IPS scalability.

This perspective also reveals the main challenge of multi-core chips: the
purported scalability is strongly dependent on the ability of software to exploit
the increasing core counts. This is the issue of programmability, covered in the
rest of this chapter.

Beyond issues of power and performance, another factor has become visible
in the last decade: fault management.

Both transient and permanent faults can be considered. Transient faults
are caused mostly by unexpected charged particles traversing the silicon fabric,
either emitted by atomic decay in the fabric itself or its surrounding packages,
or by cosmic rays, or by impact from atmospheric neutrons; as the density of
circuits increases, a single charged particle will impact more circuits. Permanent
faults are caused by physical damage to the fabric, for example via heat-induced
stress on the metal interconnect or atomic migration. While further research on
energy efficiency will limit heat-induced stress, atomic migration unavoidably
entails loss of function of some components over time. This effect increases as
the technology density increases because the feature size, i.e. the number of
atoms per transistor/gate, decreases.

To mitigate the impact of faults, various mechanisms have been used to hide
faults from software: redundancy, error correction, etc. However, a fundamental
consequence of faults remains: as fault tolerance kicks in, either the latency
changes (e.g. longer path through the duplicated circuit or error correction
logic) or the throughput changes (e.g. one circuit used instead of two).

To summarise, the increasing number of faults is a source of unavoidable
dynamic heterogeneity in larger chips. Either components will appear to enter
or leave the system dynamically, for example when a core must stop due to
temporary heat excess, or their characteristics will appear to evolve over time
beyond the control of applications. This in turn requires to evolve the abstract
model of the chip that programmers use when writing software.

Exposing the chip’s structure in abstract models as a network of loosely cou-
pled cores, i.e. a distributed system on chip, instead of a tightly-coupled “central
processing unit,” will facilitate the management of this dynamic heterogeneity
in software.

2.2 Multi-core architecture models

Any computing system today is a composition of memories, caches, processors,
I/O interfaces and data links as “basic blocks.” A given architecture is a concrete
assembly of these components. In contrast an architecture model is an abstract
description of how components are connected together, to capture the general
properties common to multiple concrete architectures. Architecture models are
in turn characterised by their typology, their topology and the concurrency man-
agement primitives they expose at the hardware/software interface.

The typology reports which different types of components are used. In multi-
core chips, we can distinguish homogeneous or “symmetric” designs, where all
repeated components have the same type, from heterogeneous designs which
may use e.g. general-purpose cores in combination with on-chip accelerators,
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Figure 1: Example memory and cache topologies.

cores with different cache sizes, or cores with different instruction sets. Histori-
cally homogeneous designs have been preferred as they were simpler to program:
most multi-cores prior to 2010 were so-called Symmetric Multi-Processor (SMP)
systems. However, some heterogeneity has since become mandatory: not only
as a way to manage faults and energy usage, as highlighted above, but also to in-
crease execution efficiency for fixed applications by specialising some functional
units to the most demanding software tasks.

The topology indicates how components are connected together. In multi-
cores, the topology determines how cores can communicate with each other and
the latency and bandwidth of communication. We can distinguish three design
spectra for topologies.

The first is the memory topology, i.e. how cores are connected to main mem-
ory. At one end of this spectrum, “UMAs” describe interconnects where a single
memory is shared symmetrically by all cores, and hence provides homogeneous
latency/bandwidth constraints. At the other end, individual or groups of cores
have their own local memory, and remote accesses become orders of magnitude
more expensive than local accesses. This is where one finds “NUMAs.” The
position of any specific architecture on this spectrum is a cost trade-off: UMAs
are simpler to program but require more silicon and energy to provide increased
bandwidth to the shared memory.

The second spectrum is the cache topology, i.e. how caches are connected
to cores, memory and other caches. At one end of this spectrum, congruent
with UMAs, the cache topology can be represented as a cache tree, where the
common memory forms the root of the tree and the cores form the leaves. This
topology fully preserves the notion of “cache hierarchy” from the perspective of
individual cores, where there is only one path to main memory and local per-
formance is determined only by the hit and miss rates at each level of requests
emitted locally. At the other end, congruent with NUMAs, more diversity ex-
ists. With distributed coherent cache architectures, a network protocol between
caches ensures that updates by one part of the system are consistently visible
from all other parts. These are also called Cache-Coherent NUMAs (ccNUMAs)
or Distributed Shared Memory (DSM) architectures. Again, the choice is a cost
trade-off: cache trees provide a shorter latency of access to main memory on
average, but cost more silicon and energy to operate than loosely coupled caches.
Example memory and cache topologies are given in Figure 1.

4



Computing Science Handbook, Vol. 1, Chap. 35
Draft — DO NOT DISTRIBUTE

The third spectrum is the inter-core topology, i.e. what direct links are avail-
able between cores for direct point-to-point communication. In most multi-
cores, regardless of the memory architecture a dedicated signalling network is
implemented to notify cores asynchronously upon unexpected events. The ex-
change of notifications across this network is commonly called Inter-Processor
Interrupt (IPI) delivery. Inter-core Networks-on-Chip (NoCs) also exist that of-
fer arbitrary data communication between cores; 2D mesh topologies are most
common as they are cheap to implement in tiled designs.

Finally, the concurrency management primitives determine how software
can exploit the hardware parallelism. There are three aspects to this interface:
control, synchronisation, and data movement.

In most designs that have emerged from the grouping of cores previously
designed for single-core execution, such as most general-purpose SMP chips
in use today, the interface for control and synchronisation is quite basic. For
control, cores execute their flow of instructions until either a “halt” instruction
is encountered, or an IPI is delivered that stops the current instruction flow
and starts another. The only primitive for inter-core control is IPI delivery and
regular load/store operations to a shared memory. In this context, the only
synchronisation mechanisms available to software are either busy loops that
access a memory location until its contents are changed by another core, or
passive waiting that stops the current core, to be awakened by a subsequent IPI
from another core. Additional mechanisms may be present but are still unusual.
For example, hardware primitives for synchronisation barriers may be available,
whereby two or more cores that execute a barrier will automatically wait for
one another.

For data movement, the near universal primitives are still memory load and
store instructions: using a shared memory, programs running across multiple
cores can emulate virtual channels by using buffer data structures at known com-
mon locations. In addition to loads and stores, dedicated messaging primitives
may exist to send a data packet to a named target core or wait upon reception
of a packet, although they are still uncommon.

In any case, whichever primitives are available are typically abstracted by
the operating systems in software to present a standardised programming inter-
face to applications, such as those described in the remainder of this chapter.
Thanks to this abstraction layer, most of the diversity in concurrency manage-
ment interfaces is hidden to application programmers. However, it is still often
necessary to obtain knowledge about which underlying primitives are provided
by an architecture to understand its cost/performance trade-offs.

2.3 Multi-cores with intra-core parallelism

Independently and prior to the introduction of multi-cores, architects had en-
hanced individual cores to offer internal parallelism. The purpose of internal
parallelism is to increase utilisation of the processor pipeline, by enabling the
overlap of computations with waiting instructions such as I/O or memory ac-
cesses. When cores with internal parallelism are combined together to form a
multi-core chip, two scales of parallelism exist and their interaction must thus
be considered.
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Out-of-order execution

In processors with Out-of-Order Execution (OoOE), instructions wait at the
start of the pipeline until their input operands are available, and ready instruc-
tions are allowed to enter the pipeline in a different order than program order.
Result order is then restored at the end of the pipeline. The key concept is
that missing data operands do not prevent the pipeline from executing unre-
lated, ready instructions, and utilisation is increased. For more details, see [12,
Chap. 2&3] and the Chapter on Performance enhancements in this volume.

OoOE introduces new challenges for multi-core synchronisation. For exam-
ple, a common idiom is to place a computation result into a known memory
cell, then write a flag “the result has been computed” into another. If memory
stores are performed in order, another core can perform a busy loop, reading
the flag until it changes, with the guarantee that the computation result is avail-
able afterwards. With OoOE, this pattern is invalidated: although the program
on the producer core specifies to write the result and only then write the flag,
instruction reordering may invert the two stores.

To address this type of situation, new primitives must be introduced to pro-
tect the order of externally visible side effects in presence of OoOE. The most
common are memory barriers, or fences. These must be used by programs ex-
plicitly between memory operations used for multi-core synchronisation. When
the processor encounters a fence, it will block further instructions until the
memory operations prior to the fence have completed. This restores the effect
order required by the program, at the expense of less ILP in the pipeline and
thus lower utilisation.

Hardware multi-threading

The key motivation for multi-threading in a single core is to exploit the waiting
time of blocked threads by running instructions from other threads [35, 33].
This is called Thread-Level Parallelism (TLP); it can tolerate longer waiting
times than ILP. To enable this benefit of TLP even for small waiting times
like individual memory loads or Floating-Point Unit (FPU) operations, multi-
threading can be implemented in hardware (HMT). With HMT, a processor core
will contain multiple Program Counters (PCs) active simultaneously, together
with independent sets of physical registers for each running hardware thread.
The fetch unit is then responsible for feeding the core pipeline with instructions
from different threads over time, switching as necessary when threads become
blocked [41, 38, 39, 42, 23].

Because each hardware thread executes an independent instruction stream
via its own PC, operating systems in software typically register the hardware
threads as independent virtual processors in the system. Subsequently, from the
perspective of software, care must be taken to distinguish virtual from hardware
processors when enumerating hardware resources prior to parallel work distribu-
tion. Indeed, when work is distributed to two or more hardware threads sharing
the same core pipeline, performance can only increase until all waiting times
in that pipeline are filled with work. Once a pipeline is fully utilised, no more
performance can be gained with hardware threads on that core even though
there may be some idle hardware threads available.
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2.4 Programming principles

As with all parallel computing systems, multi-core programming is ultimately
constrained by Amdahl’s and Gustafson’s laws.

In [2], Amdahl explains that that the performance of one program, i.e. its
time to result or latency, will stay fundamentally limited by its longest chain of
dependent computations, i.e. its critical path, regardless of how much platform
parallelism is available. The first task of the programmer is thus to shorten the
critical path and instead exposing more concurrent computations that can be
parallelised. When the critical path cannot be shortened, the latency cannot be
reduced further with parallelism. However, Gustafson’s law [11] in turn suggests
that the problem sizes of the parallel sections can be expanded instead, to in-
crease use of the available parallelism and increase throughput, i.e. computations
per second, at constant latency.

Within these boundaries, software design for multi-cores involves the follow-
ing concerns:

• programmers and software frameworks expose concurrency in applications.
This activity takes two forms. An existing program is relaxed from order-
ing constraints to add concurrency; for example, a sequential loop may be
annotated to indicate it can be carried out in parallel. Alternatively, new
code can be composed from concurrent building blocks, such as primitive
map/reduce operators. This activity typically occurs statically, during
software development.

• meanwhile, software frameworks and operating systems map and schedule
program concurrency to the available hardware parallelism. This activity
typically occurs at run-time, to carry out program execution over the
available cores.

The connection point between these two activities is the parallel programming
model. Different languages or software libraries will offer different programming
models; each offers both programming abstractions towards programmers to
specify “what to do” and operational semantics that provide an intuition of “how
the program will behave” at run-time. Parallel programming models typically
diverge from traditional programming models in that they avoid letting the
programmer specify “how” to carry out computations, so as to give maximum
flexibility to the underlying platform.

Parallel programming models can be categorised along two axes, illustrated
in Figure 2, depending on how they expose computations and communication.

In one corner, fork-join parallelism and Bulk-Synchronous Parallelism (BSP) [44]
are the most common. With fork-join, a program exposes concurrency by spec-
ifying at which points separate threads can start (fork) to compute separate
parts of a computation; sequence is then enforced by expressing synchronisa-
tion on termination (join) of previously created threads. In the higher-level vari-
ant BSP, an overall repetitive computation is expressed as a sequence of wide
parallel sections, with computations occurring during the parallel section and
communication occurring during the synchronisation step. With these models,
control is specified by the structure of the program, while typically communica-
tion is left implicit.
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Figure 2: High-level classification of parallel programming models.

At the corner of explicit control and communication, message passing de-
scribes a collection of idioms where a program specifies independent processes
that act collectively by exchanging data across explicit channels. Message pass-
ing stems from decades of research over communicating processes [13, 25, 26, 27].
It encompasses the most versatile techniques to program multi-cores, at the ex-
pense of a more explicit and error-prone model for programmers.

Diagonally opposed, functional programming models encompass the pro-
gramming style of pure functional languages, where programmers are stimu-
lated to specify only the input-output data relationships of their algorithms
using symbolic operations, without introducing or assuming knowledge about
the execution environment. These models provide the most flexibility for the
platform by removing programmer involvement from mapping and scheduling
concurrency, although it thus incurs the expense of a greater technology chal-
lenge to fully optimise execution.

Finally, data-flow programming models are related to functional models in
that the programmer does not specify how to carry out computations. However,
whereas with functional programs the data relationships may be implicitly car-
ried by using references (pointers) in data structures, data-flow programs make
data edges between computations explicit. This in turn simplifies the mapping
of communication to the platform’s topology.

A given programming language or software library may expose multiple pro-
gramming models. The choice of one over another in applications is mostly
driven by the trade-off between programmer productivity, technological ma-
turity of the platform and performance: more implicit models are easier to
program with, but more difficult to manage for the platform.

3 Impact on practice

After the High Performance Computing (HPC) and general-purpose computing
industries stumbled on the sequential performance wall in the last decade, the
move to multi-core chips has enabled the following breakthroughs:

• for HPC, the grouping of multiple cores on the same chip has enabled
an increase of interconnect bandwidths by an order of magnitude, in turn
enabling yet higher throughput scalability of supercomputers. As of 2012,
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nearly all systems from the supercomputer TOP5001 are based on multi-
core chips;

• for general-purpose computing, the investment of silicon towards multiple
cores in combination with the general trend towards mobile computing has
altered the marketing of processor products dramatically: instead of ad-
vertising on frequency alone, most manufacturers now effectively report on
a combination of multi-application benchmarks and energy consumption.

For personal computing, even without considering performance gains in in-
dividual applications, the democratisation of multi-core chips has enabled a sep-
aration of workload between user applications and system tasks such as user in-
terface management, networking or disk accesses, and thus results in a smoother
user experience overall. This effect is noticeable for desktop computers, smart
phones and tablets, which all nowadays use general-purpose cores. For selected
application domains, such as video games and image processing, significant per-
formance gains have been reached successfully; this effect is even multiplied
when combined with many-core compute accelerators and Graphical Processing
Units (GPUs).

In data centres, multi-cores have enabled a finer grain control over the re-
sources handed over to client applications. By separating client applications over
separate cores, interference between clients is reduced and resource billing is sim-
plified (resources can be billed per unit of space and time, instead of per actual
workload which is more difficult to compute). Some throughput increases have
also been possible thanks to multi-cores, most noticeably for database servers
and networked processes such as web servers. However, the preferred way to
increase throughput in data centres is still to extend the number of network
nodes instead of replacing existing nodes by new nodes with larger core counts.

Meanwhile, multi-core processors are a success story for embedded systems,
where they are commonly called Multi-Processor Systems-on-Chip (MPSoCs).
In these systems, processor chips are typically co-designed with software appli-
cations; different cores are implemented on chip to support specific application
components. For example, a mobile phone processor chip may contain separate
cores for managing wireless networks, encoding/decoding multimedia streams
and general-purpose application support. By specialising a processor design to
an application, hardware and energy costs are reduced while taking advantage
of the parallelism to improve performance. While the embedded landscape is
still much focuses on application-specific chip designs, it is expected that the
field’s expertise with mapping and managing application components over het-
erogeneous resources will propagate to all other uses of multi-cores during the
upcoming decade.

3.1 Current landscape of multi-cores chips

All major technology vendors now have multi-core product offerings and con-
tinue to invest towards increasing core counts.

After introducing its first mainstream dual-core offerings around 2005 via
its Core and Xeon product lines, Intel’s processors now nearly all feature a
minimum of 2 to 4 cores. As of this writing, the most popular Core i5 and i7

1http://top500.org/
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processors, based on the Sandy Bridge micro-architecture [46], feature 4 cores
running at about 3GHz. These chips use 32nm silicon technology and nearly
a billion transistors. They integrate an on-chip GPU accelerator with 6 to
12 additional compute cores; the general-purpose cores also optionally feature
HyperThreading [23] for a maximum of 2 hardware threads per core. The next
generation based on the Ivy Bridge micro-architecture is expected to offer similar
features at a reduced silicon and power budget.

Meanwhile, AMD has reduced its competition push on single-threaded per-
formance and pushed its multi-core road map further. Its Opteron product
line currently contains chips with up to 12 general-purpose cores based on
the Bulldozer micro-architecture [8]. Frequencies range from 1 to 3 GHz; the
chips also use the 32nm technology. The upcoming Fusion product line, which
uses general-purpose cores based on both Bulldozer and the new Bobcat micro-
architecture [7], invest more silicon real estate towards on-chip accelerator cores
(e.g. 80 in Brazos chips, 160-400 in Lynx/Sabine chips).

On the embedded/mobile computing market, ARM leads the way towards
the generalisation of multi-core platforms. The most licensed architecture to-
wards general-purpose applications is the Cortex-A design, now available with
2 to 4 cores on chip and frequencies up to 2GHz in its “MPCore” variant. The
most visible user of Cortex-A is currently Apple, which equips its smart phone
and tablet offerings with its own A4 and A5 chips based on Cortex-A. The up-
coming ARM design Cortex-A15 is planned to feature up to 8 cores on chip,
together with optional on-chip accelerators depending on vendor requirements.

On the server market, Oracle (previously Sun Microsystems) has stepped
forward with its Niagara [21] micro-architecture. Niagara processors combine
multiple cores with HMT, resulting in high core counts per chip: the most
recent product, the SPARC T4 [37], exposes 64 hardware threads to software.
Although Niagara was previously advertised for throughput due to its lower
initial single-thread performance, the latest generations running around 3GHz
with OoOE now compete across all general-purpose workloads.

As can be seen in this overview, the trends suggest a continued increase
of core counts on the main processor chip, together with the integration of
accelerators. However, separately packaged many-core accelerator chips are still
being developed. The two major vendors are nowadays NVidia and AMD, the
latter having acquired ATI in 2006. With clock frequencies below 1GHz but
core counts in the hundreds, their accelerator chips deliver orders of magnitude
higher peak floating-point performance than general-purpose cores with twice
the frequency at the same generation. The main challenge to these designs is
bandwidth to memory, where communication between the accelerator and the
main processor chip is constrained by the inter-chip system bus. This bottleneck
constitutes the main push towards integration with general-purpose cores on the
same silicon die.

3.2 Shared memory multi-programming for multi-cores

For shared memory multi-programming, the common substrate underlying pro-
gramming languages and libraries is constituted by threads, directly inherited
from the era of time sharing on uni-processors. On multi-cores, threads execute
simultaneously instead of interleaved, but these two abstractions remain other-
wise identical to their original definition: programs create or spawn threads, then
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void s c a l e ( int n , int a [ ] ) {
#pragma omp p a r a l l e l for
for ( i = 0 ; i < n ; i++)

a [ i ] = 2 ∗ i ;
}

Figure 3: Example OpenMP program fragment.

the operating system selects cores to execute the workload. The leading low-level
Application Programming Interfaces (APIs) to manage threads are the POSIX
interface [15] (“pthreads”) and the Java virtual machine interface. To enable
more fine-grained control over thread-to-core mappings, some operating systems
also offer APIs to pin threads to specific cores (e.g. pthread setaffinity).
These basic interfaces are there to stay: as of 2011, new standards for the C [18]
and C++ [17] languages has been published which integrate a native standard
threading API similar to POSIX.

Upon these basic interfaces, different programming languages and libraries
provide different parallel programming models for application developers. With
less than a decade of renewed interest in multi-programming, these software
frameworks for multi-cores have not yet stabilised and a large diversity of ap-
proach still exists across vendors, hardware platforms and operating systems.

For performance-oriented applications, the leading interfaces are currently
OpenMP [29] for C, C++ and FORTRAN, and Intel’s Threading Building
Blocks (TBB) [32, 16] for C++. OpenMP is specialised towards the paral-
lelisation of existing sequential code by the addition of annotations, or pragmas,
to indicate which portions of code can be executed concurrently. An example is
given in Figure 3: a loop is annotated to declare it can be run in parallel when
the function “scale” is called; at run-time the value of “n” is inspected and the
workload is distributed across the available cores.

In contrast to OpenMP, TBB is oriented towards the acceleration of new
code, where programmers use TBB’s control and data structures directly. Prim-
itive constructs are provided for parallel map/reduce, searches, pipelines, sort-
ing algorithm, as well as parallel implementations of container data structures
(queues, vectors, hash maps). An example is given in Figure 4: the object
“scaler” is responsible for carrying out the computation over sub-ranges of the
array, and TBB ensures that scaler’s operator is called in parallel over the
available cores.

Both OpenMP and TBB manage program concurrency in a similar fashion.
When reached during execution, the program code generated by the compiler for
concurrency constructs causes calls to the language run-time systems to define
tasks. The run-time system in turn runs a task scheduler which spreads the tasks
defined by the program over worker threads, which it has previously configured
to match the number of underlying cores. In both interfaces, primitives are
available to control the task scheduler and query the number of worker threads.

When accelerators are involved, typically the accelerator cores cannot run
regular application code because they do not support recursion or arbitrary syn-
chronisation. To program them, it is still customary to use a different set of
APIs. The current leading standards are NVidia’s CUDA interface [20], spe-
cialised towards its own chips, and OpenCL [19] which intends to provide a uni-

11



Computing Science Handbook, Vol. 1, Chap. 35
Draft — DO NOT DISTRIBUTE

struct s c a l e r {
vector<int>& a ;
s c a l e r ( vector<int>& a ) : a ( a ) {}
void operator ( ) ( const blocked range<s i z e t>& r ) const {

for ( s i z e t i = r . begin ( ) ; i != r . end ( ) ; ++i )
a [ i ] = 2 ∗ i ;

}
} ;
void s c a l e ( int n , vector<int>& a ) {

p a r a l l e l f o r ( b locked range<s i z e t >(0 , n ) , s c a l e r ( a ) ) ;
}

Figure 4: Example TBB program fragment.

// the f o l l ow i n g d e f i n e s the k e rne l .
k e r n e l void s c a l e k e r n e l ( g l o b a l int ∗a ) {
s i z e t i = g e t g l o b a l i d ( 0 ) ;
a [ i ] = 2 ∗ i ;

}
// the k e rne l i s used as f o l l o w s :
void s c a l e ( int n , int a [ ] ) {

/∗ need to copy the data to GPU memory f i r s t ∗/
void ∗gpu mem = gc l ma l l o c ( s izeof ( int )∗n , a ,

CL MEM COPY HOST PTR |CLMEMREADWRITE) ;
/∗ then de f i n e a range to opera te over the data ∗/
c l ndrange r = { 1 , {0} , {n , 0 , 0} , {0} } ;
/∗ then c a l l the k e rne l ∗/
s c a l e k e r n e l (&r , gpu mem ) ;
/∗ then copy back the data from GPU to main memory ∗/
gcl memcpy (a , gpu mem , s izeof ( int )∗n ) ;
/∗ then r e l e a s e the GPU memory ∗/
g c l f r e e (gpu mem ) ;

}

Figure 5: Example OpenCL program fragment.

fied interface to accelerators. With both interfaces, the application programmer
defines computation kernels which can execute on the accelerator cores, and uses
the interface’s API to trigger data movement and computations using kernels.

An example is given in Figure 5. As the example suggests, the main chal-
lenge of accelerator-based programming is data movement between the accel-
erator and main memory. While it is often possible to combine accelerator
computations and thus reduce the need for communication, many cases exists
where the application structure prevents keeping the data on the accelerator’s
memory. Again, the industry is moving towards tighter integration of acceler-
ators and general-purpose cores on the same chip, in an effort to alleviate this
communication overhead.
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3.3 Distributed programming on chip

It is also possible to consider a multi-core chip as a network of single-core nodes
sharing a very efficient interconnect. Using this model, a multi-core chip can be
programmed using explicitly communicating processes instead of threads com-
municating implicitly via shared memory.

Abstractions to program multiple processing units using communicating pro-
cesses had existed for decades and are now coming back with the advent of
multi-cores. The typical interface for scientific computing, coming from the
HPC community, is MPI [24]: it exposes a process management and message
passing interface to C, C++, FORTRAN and Java code. Implementations of
MPI are nowadays able to distribute workloads over multiple cores in a single
chip as well as over a network of nodes. Meanwhile, the advent of networked
applications in the last decade has caused a large diversity of other frameworks
for inter-process message queuing and brokering in business applications: Java
Message Service (JMS), Microsoft Message Queuing (MSMQ), WebSphere Mes-
sage Broker from IBM, Apache ActiveMQ are examples. These interfaces are
nowadays commonly used to drive processes running over separate cores in the
same chip.

Post-2010: the era of multi-scale concurrency

While general-purpose programmers have been struggling to identify, extract
and/or expose concurrency in programs during the last decade, a large amount
of untapped higher-level concurrency has also appeared in applications, ready
to be exploited. This is a consequence of the increasing number of features, or
services integrated into user-facing applications in the age of the Internet and
ever-increasing support of computers for human activities. For example, while
a user’s focus may be geared towards the decoding of a film, another activity in
the system may be dedicated to downloading the next stream, while yet another
may be monitoring the user’s blood nutrient levels to predict when to order food
online, while yet another may be responsible for backing up the day’s collection
of photographs on an online social platform, etc.

Even programs that are fundamentally sequential are now used in applica-
tions with high-level concurrency at scales that were unexpected. For example,
the compilation of program source code to machine code is mostly sequential as
each pass is dependent on the previous pass’ output. However, meanwhile entire
applications have become increasingly large in terms of their number of program
source files, so even though one individual compilation cannot be accelerated
via parallelism it is possible to massively parallelize an entire application build.
While this form of parallelism had been known in large enterprise projects,
the advent of multi-cores makes it accessible to any programmer working with
commodity platforms.

4 Research issues

As this book gets published, the multi-core programming challenge has taken a
new form. Explicit concurrency has appeared in software, both from increased
understanding by programmers and by new technology in compilers and soft-
ware run-time systems to discover concurrency automatically in applications.
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Meanwhile, CMPs now contain dozens of cores for general-purpose computa-
tions and accelerators offer hundreds of smaller cores for specialised computing,
and the trends suggest at least a ten-fold increase before the end of silicon
scaling. The main challenge for software engineers is thus now less to find con-
currency, but rather to express and map it efficiently to the available parallel
hardware. Meanwhile, the main challenge for architects is to balance the need
of software practitioners to manipulate simple machine models while providing
scalable systems. The architecture and software engineering communities have
thus started to work together to overcome the following new challenges:

• choose which parallel machine models to communicate to programmers to
give them an intuition of the underlying hardware resources;

• choose which programming abstractions to offer through the software stack
to describe concurrency in applications;

• determine how to schedule concurrency over parallel resources in operating
software;

• for known application or fields, determine how to co-design hardware and
software so that the hardware parallelism aligns with application concur-
rency.

4.1 The platform challenge: communication costs

As the example from Figure 5 illustrates, the cost of communication is becoming
a growing design constraint for algorithms. In upcoming multi-core chips, the
latency to access memory from cores, or even to communicate between cores,
will become large compared to the pipeline cycle time. Any non-local data
access will become a serious energy and time expenditure in computation. This
is a new conceptual development compared to the last decade, where processor
speed was still the main limiting factor and memory access latencies were kept
under control using ever growing caches.

From the software architect’s perspective, this communication challenge takes
two forms. For one, either programmers or the concurrency management logic
in operating software must become increasingly aware of the topology of the
platform, so as to match the dependencies between application components to
the actual communication links present in hardware. This requirement will
require new abstractions and investments in programming languages and op-
erating software, since the current technology landscape still mostly assumes
SMPs and UMAs. The second aspect is that the cost of computations is no
more a function only of the number of “compute steps,” correlated with CPU
time; it must also involve the “communication steps” correlated with on-chip
network latencies. This is a major conceptual shift that will require advances
in complexity theory before algorithm specifications can be correlated to actual
program behaviour in massively parallel chips.

From the hardware architect’s perspective, the communication challenge
takes three forms. One is to develop new memory architectures able to serve
the bandwidth requirements of growing core numbers. Indeed, the energy and
area costs of central caches that serve all cores symmetrically grow quadratically
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with their capacity and number of clients; caches will thus dominate silicon us-
age until more distributed cache systems are developed. However, distributed
caches in turn require weaker memory consistency semantics [28] to be cost
advantageous; a generalisation of weakly consistent memory architectures will
in turn have a dramatic impact on software ecosystems. The second aspect to
be covered by hardware architect is latency tolerance: as the time cost of non-
local data accesses grows, individual cores must provide mechanism to overlap
computation with communication. A step in this direction is HMT, which will
be increasingly complemented with hardware support for point-to-point mes-
saging between cores, such as found in the recent TILE architecture [5]. The
third aspect is dark silicon [10]: any given design will be fully utilised only by
some applications, while most of the silicon will be under-utilised by most ap-
plications. The role of architects will thus be to determine the best trade-offs
between investing silicon real estate towards cores or towards communication
links.

4.2 The software challenge: matching abstractions to re-
quirements

A lot of attention has been given on the parallelisation of existing software, and
comparatively less on the improvement of software to better program parallel
platforms. There are, in effect, three broad strategies to optimise performance
and cost on multi-core systems.

The first is provide better abstractions to programmers to compose sub-
programs so that the resulting critical path becomes shorter—i.e. decrease the
amount of synchronisation programmers use—for a given functional specifica-
tion of the input-output relationship. This is the classical effort towards increas-
ing the amount of concurrency, which must continue as the amount of on-chip
parallelism increases; beyond parallelization of individual algorithms, this effort
must now also take place at the level of entire applications.

The second strategy is to determine ways to shorten programs to describe
less computations to be performed at run-time, i.e. simplify the input-output
relationship. There are two known strategies to do this:

• let programmers use domain-specific knowledge that reduce expectations
on program outputs, for example reduce output “quality” in image pro-
cessing by introducing non-determinism when the difference is not per-
ceptible. This is the domain of approximate programming [43, 36] and
Domain-Specific Languages (DSLs);

• when compilers and software run-time systems transform programs, ex-
ploit extra application-level knowledge to remove excess code from the
individual sub-programs being combined [3].

The third strategy is for programmers to remove unnecessary constraints on
the execution of algorithms. This strategy stems from the observation that most
control and data structures in use today have been designed at a time where com-
puters were predominantly sequential, and thus may carry implicit requirements
to preserve ordering even when it is not relevant to the application. For exam-
ple, many programmers use lists and arrays as containers, which implicitly carry
a strong ordering guarantee. In contrast, languages like C++ or Haskell provide
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high-level type classes (contracts) which enable the programmers to state their
requirements, e.g. an non-iterable associative container, and let the implemen-
tation choose a suitable parallelizable implementation, e.g. a distributed heap
or hash table. Research is still ongoing in this direction [30, 6, 9].

5 Summary

The move towards increasing core counts on chip was both an answer to over-
come the sequential performance wall [1, 34] and to bring higher communication
bandwidths to parallel computing. The expected benefits of multi-cores were
both higher performance and lower energy costs, thanks to frequency scaling.

The foremost challenge with multi-cores is not new, as it was shared by early
practitioners with parallel architectures until the 1980’s. This “concurrency
challenge” requires software engineers to acknowledge platform parallelism and
spend extra effort to express concurrency in applications. In response to this,
new language and operating software technology has been developed in a short
time, resulting in a large diversity of platforms, which have not yet matured
nor stabilized. While this diversity creates opportunities in the highly dynamic
IT industry, it also means that experience gained by practitioners in the last
decade will likely need to be revisited in the coming ten years.

The move to CMPs, especially with increasing core counts and accelerators
on chip also entails new technological and conceptual issues. More active com-
ponents in the system imply faults or otherwise resource heterogeneity that must
be understood and modeled. Communication links between cores and between
cores and memory must be accounted for when mapping application compo-
nents to the chip’s resources. Real parallelism between application components
imply that programmers cannot stop an application and observe a consistent
global state. The benefits of multiple cores on performance can only be reaped
by reducing synchronization, which for some applications means decreasing re-
liance on determinism. These issue in turn require new abstractions to describe
and manipulate the computing system at a high level, and research has barely
started to characterize which general aspects of multi-core parallelism will be
relevant in the next era of growing software concurrency.

Defining terms

Concurrency vs. parallelism “Concurrency is non-determinism with regards to
the order in which events may occur. Parallelism is the degree to which
events occur simultaneously.” [14]

Operating software software composed of operating systems, compilers and lan-
guage run-time systems, in charge of mapping the concurrency expressed in
software to the available parallel resources in hardware.

Programming model conceptual model available to users of a given programming
language. Consists of programming abstractions that allow programmers to
specify “what to do” and operational semantics that give programmers an
intuition of “how the program will behave.” Parallel programming models
are special in that they discourage programmers from specifying how to
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carry out computation, so as to leave operating software maximum flexibility
to map and schedule the program’s concurrency.

Scalability ability of a system to approximate a factor N performance improve-
ment for a factor N cost investment (e.g. silicon area, number of cores,
energy, frequency).

Throughput vs. latency throughput is the number of computations achieved by
unit of time, whereas latency is the number of seconds necessary to achieve a
unit of computation. Parallelism can decrease latency down to a program’s
critical path, whereas throughput typically remains scalable as the workload
on concurrent sections can be arbitrarily increased.

Topology of architecture models the topology of an architecture consists of how
components are connected to each other. On multi-core processor chips, one
can consider separately the memory topology, ie. how cores are connected
to main memory, the cache topology, ie. how caches are connected to cores,
main memory and each other, and the inter-core topology.

Typology of architecture models the typology of an architecture consists of the
set of component types that participate in the design. For example, hetero-
geneous multi-core architectures have more than one processor type.

Acronyms

API Application Programming
Interface

BSP Bulk-Synchronous Parallelism

ccNUMA Cache-Coherent NUMA

CMP Chip Multi-Processor

DSL Domain-Specific Language

DSM Distributed Shared Memory

FPU Floating-Point Unit

GPU Graphical Processing Unit

HMT Hardware Multi-Threading

HPC High Performance Computing

ILP Instruction-Level Parallelism

IPI Inter-Processor Interrupt

IPS Instructions Per Second

MIMD Multiple Instruction, Multiple
Data

MPSoC Multi-Processor System-on-Chip

NoC Network-on-Chip

NUMA Non-Uniform Memory
Architecture

OoOE Out-of-Order Execution

PC Program Counter

SIMD Single Instruction, Multiple Data

SMP Symmetric Multi-Processor

SPMD Single Program, Multiple Data

TBB Threading Building Blocks

TLP Thread-Level Parallelism

UMA Uniform Memory Architecture
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