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Abstract

How can one recognize coordination languages and technologies? As
this report shows, the common approach that contrasts coordination with
computation is intellectually unsound: depending on the selected under-
standing of the word “computation”, it either captures too many or too few
programming languages. Instead, we argue for objective criteria that can
be used to evaluate how well programming technologies offer coordination
services. Of the various criteria commonly used in this community, we are
able to isolate three that are strongly characterizing: black-box compo-
nentization, which we had identified previously, but also interface exten-
sibility and customizability of run-time optimization goals. These criteria
are well matched by Intel’s Concurrent Collections and AstraKahn, and
also by OpenCL, POSIX and VMWare ESX.

Contents
1 Introduction 2

2 Qualifying criteria 3

3 Criteria evaluation 4

4 Problems of “coordination vs. computation” 6

5 Conclusion 9

Acknowledgements 9

References 9

1

ar
X

iv
:1

30
7.

48
27

v1
  [

cs
.P

L
] 

 1
8 

Ju
l 2

01
3



1 Introduction
The author of this report studies a research community whose specialization is
the management of software components in multi-component applications. The
members of this community have agreed on a common linguistic referent for
their activities in this field: the word “coordination”.

The main output from this community is a combination of programming
languages and operating software aimed at optimizing the run-time execution
of applications built by hierarchical composition of components. Example tech-
nologies whose authors self-identify as “working on coordination” include S-
NET [16, 4], AstraKahn [17] and Intel’s Concurrent Collections (CnC) [10, 2].

A recurring theme in the discussions within this community and with exter-
nal observers is whether and how much coordination differs from other forms
of programming. This topic is usually introduced with either of two questions:
“what is coordination exactly?” and “what distinguishes research on coordina-
tion from other research on programming language design and implementation?”

As it happens, different answers are used in these conversations depending
on who is asking, who is answering and the topic at hand. This author has
observed a consensus in the community that these answers are all accepted by
the researchers as valid descriptions of their line of work.

Of these explanations, we can recognize four groups:
• self-referential explanations: a research activity is considered related to

“coordination” if it self-identifies as such. For example, “this language
is a coordination language because its designers call it a coordination
language”;

• negative space explanations: an existing field of study is selected ad hoc,
then a research activity is considered related to “coordination” if it self-
identifies as “not related to” the selected research. For example, “this
language is a coordination language because its designers do not focus on
software modeling” (or functional programming, or model checking, etc.);

• void explanations: a word is selected ad hoc with no well-defined mean-
ing, then a research activity is considered related to “coordination” if it
self-identifies as “not related to” the selected word. For example, “this
language is a coordination language because its designers do not intend
it to be a computation language” without a clear definition for the word
“computation” (cf. section 4);

• explanations by qualification: some well-defined, objective, observer-inde-
pendent criteria on programming languages and operating software are
identified, then “coordination” is defined based on the criteria. For exam-
ple, “this language is a coordination language because it offers facilities to
assemble applications from black-box components”, together with a careful
definition of “black-box component”, constitutes a qualified explanation.

The self-referential, negative space and void explanations are, by construc-
tion, factually vacuous: a newcomer audience exposed to them will not learn
anything about what the researcher using the explanation actually does in their
work. At best, the audience may understand that the researcher needs a key-
word to motivate specialized attention and funding, but not more. These forms
of explanations are thus not further considered here.

Instead, this report reviews the criteria where consensus exists in the com-
munity that they can be used to recognize coordination objectively.
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The discussion is presented in two parts. In section 2, we identify and detail
the objective criteria that have been previously named and used by members
of the research community. We then examine in section 3 how well this com-
munity’s technology matches their self-selected criteria, and also how well other
technologies match the same criteria. We then use this analysis to isolate which
criteria most strongly characterize the work of these researchers. Separately, in
section 4 we examine the arguments that oppose “coordination” to “computa-
tion”, and we analyze how much objective understanding can be extracted from
them. We then conclude in section 5.

2 Qualifying criteria
We reuse below the definition of “component” and component-based design from
[1, 15]: components are defined by their interface, which specifies how they can
be used in applications, and one or more implementations which define their
actual behavior. The two general principles of component-based design are then
phrased as follows. The first is interface-based integration: when a designer uses
a component for an application, he agrees to only assume what is guaranteed
from the interface, so that another implementation can be substituted if needed
without changing the rest of the application. The second is reusability: once
a component is implemented, a designer can reuse the component in multiple
applications without changing the component itself.

Based on this definition, the word “coordination” is only used in the context
of languages and infrastructures that enable component-based design1.

Separable provisioning (Sp): the language and its infrastructure enable
the reuse of components provided by physically separate programmers, and
where the considered technology is the only communication means between
these providers. For example, a technology that offers the ability to build a
specification from different files matches this criterion.

Interface extensibility (Ie): the infrastructure enables an application de-
signer to redefine and extend component interfaces independently from compo-
nent providers, and extended interfaces can influence execution. For example, a
technology that offers the ability to annotate a component to indicate post hoc
that it is functionally pure (without state and deterministic), e.g. via a pragma
or metadata, and which can exploit this annotation to increase execution par-
allelism, matches this criterion.

Separable scheduling (Ss): the programmer can delegate to the technol-
ogy the responsibility of choosing when (time) and where (space/resources) to
execute concurrent component activities. A different but equivalent phrasing
for the same criterion is the ability given to a programmer to define a partial
scheduling order between component activities, and ability given to the technol-
ogy to decide arbitrary actual schedules as long as the partial order is respected.

1arguably, most contemporary programming technologies already enable component-based
design; however we explicitly state the requirement to clearly scope the discussion.
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For example, a language where programmers can declare a data-parallel opera-
tion and where the infrastructure decides how to schedule the operation matches
this criterion.

Adaptable optimization (Ao): the technology provides run-time optimiza-
tion mechanisms that can adapt to different execution environments without
changing the application specification. For example, a technology which can
decide different placements when faced with different amounts of parallelism in
hardware matches this criterion, and so does a technology able to decide differ-
ent schedules over time when faced with different constraints on data locality
(e.g. cache sizes).

Customizable optimization goals (Cog): the application designer can
specify different optimization goals at run-time (or no earlier than when the
specification work has completed) and the technology chooses different execu-
tion strategies based on them. For example, a technology which enables to
select between “run fast” and “use less memory” during execution matches this
criterion.

Black-box componentization (Bb): the application designer can specify
an application using components only known to the technology by name and
interface, and the technology provides a run-time interfacing mechanism previ-
ously agreed upon with component providers to integrate the components. For
example, a technology which can link component codes compiled from different
programming languages without requiring link-time cross-optimization matches
this criterion. This is the main criterion proposed in [15].

Exploitable Turing-incompleteness (Eti): the specification language is
not Turing complete but can still be used to define interesting / useful appli-
cations. For example, a technology whose advertised specification language can
only define static acyclic data flow graphs of components matches this criterion.

3 Criteria evaluation
We evaluate in table 1 how much different technologies match the criteria de-
fined above: the criterion are listed in columns, the technologies in rows, each
intersection states whether the technology matches the criterion, and a score
column at the right side sums the number of criterion matched. Arrows in the
score columns indicate the rows with highest scores.

We review both technologies that self-identify as “coordination”, including S-
NET and CnC named previously, and other technologies that do not identify as
such: various C and C++ implementations, Glasgow Haskell, Single-Assignment
C (SAC), the standard Unix shell in a POSIX environment and VMWare ESX.

While constructing table 1, we highlighted the following:
• granularity : each technology may offer multiple levels of component granu-

larities, and may not match the same criteria depending on the granularity
considered. For example, the C language offers black-box componentiza-
tion for entire functions but not for individual statements. To reflect this,
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Technology Criteria Scores
Variant Granularity Sp Ie Ss Ao Cog Bb Eti Total I only

S-NET [16, 4]
boxes I I I I 4 4
networks I I 2 2

no filters / star boxes I I I I E 5 4

S+NET [14, 13]
boxes I I I I I 5 5
networks I I I I 4 4

no trans. / star boxes I I I I I E 6 ← 5

AstraKahn [17] boxes I I I I I I 6 ← 6 ←
networks I I I 3 3

CnC [10, 2] steps I I I I I I 6 ← 6 ←

C [6, 8, 12, 9, 5]

freestanding functions I I E 3 2
freestanding statements I E E E 4 1
freestanding expressions I I E E E 5 2
OpenMP statements I I I I E 5 4
OpenCL kernels I I I E E I 6 ← 4
ISO11, hosted threads I I E I 4 3
ISO99, POSIX threads I E I E E I 6 ← 3
ISO99, POSIX processes I I I I I I 6 ← 6 ←

C++ [7] ISO11, POSIX classes I I E E E 5 2

Haskell [11] GHC functions I I I I I 5 5
GHC packages I I I I 4 4

SAC [3] functions I I I I I 5 5
modules I I I 3 3

Unix shell [5] POSIX processes I I I I I I 6 ← 6 ←
VMWare ESX virtual machines I I I I I I 6 ← 6 ←

Table 1: How various technologies match the proposed criteria.

multiple rows with different granularities are used for each technology in
the table.

• intent : a technology may happen to match a criterion although this match
was not primarily intended by its designers. For example, a freestanding
implementation of the C language (without library) happens to be Turing
incomplete and still quite useful, although this was arguably not intended
by its designer (nor commonly known of its users). To reflect this, we
use the letters “I” (by intent) and “E” (emergent) at each intersection and
provide two score columns in the right side.

From this first evaluation table we observe the following.
First, separable provisioning (Sp) is generally prevalent. Although it is a

prerequisite to component-based design and thus coordination, its availability
in a particular technology does not predict its score in our table. Therefore, it
is a poor criterion to characterize coordination.

Similarly, separable scheduling (Ss) and adaptable optimization (Ao) are also
relatively prevalent. Although the benefits of separate scheduling and adapt-
able optimization wrt. performance speedups on parallel hardware is often used
to highlight the benefits of coordination, other technologies which do not self-
identify as “coordination” (e.g. Haskell, OpenCL, SAC) also exhibit these fea-
tures and can reap their associated benefits. These criteria may thus be phrased
as “prerequisites” to recognize coordination but they are not characterizing.

Also, the “exploitable Turing-incompleteness” (Eti) criterion is, perhaps sur-
prisingly, difficult to match. The main reason, which we outline in section 4, is
that it is actually quite difficult to design a programming language which is not
Turing-equivalent.

Finally, the table reveals that none of the proposed criteria clearly separates
technology that self-identify as “coordinating” from those that don’t. The eval-
uation of whether a technology can be considered as coordination cannot yield a
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Technology Criteria Scores
Variant Granularity Ie Cog Bb Total I only

S-NET boxes I 1 1
networks 0 0

S+NET boxes I I 2 2
networks I 1 1

AstraKahn boxes I I I 3 ← 3 ←
networks I 1 1

CnC steps I I I 3 ← 3 ←

C

freestanding functions I 1 1
freestanding statements 0 0
freestanding expressions I 1 1
OpenMP statements I 1 1
OpenCL kernels I E I 3 ← 2
ISO11, hosted threads I 1 1
ISO99, POSIX threads E E I 3 ← 1
ISO99, POSIX processes I I I 3 ← 3 ←

C++ ISO11, POSIX classes I E 2 1

Haskell GHC functions I I 2 2
GHC packages I 1 1

SAC functions I I 2 2
modules 0 0

Unix shell POSIX processes I I I 3 ← 3 ←
VMWare ESX virtual machines I I I 3 ← 3 ←

Table 2: How various technologies match the proposed criteria (simplified).

boolean value and instead lies on a spectrum of “more or less able to coordinate”.
From these observations, we can select the criteria most strongly matched

by these technologies that the researchers would like to objectively describe as
“strongly coordinating.” This suggests the criteria Ie, Cog and Bb and the sum-
mary in table 2. As the table shows, AstraKahn, CnC, OpenCL, POSIX and
VMWare ESX can be considered strongly coordinating, each at their preferred
component granularity: boxes, steps, kernels, threads/processes and virtual ma-
chines, respectively.

4 Problems of “coordination vs. computation”
During the discussions around coordination, this author has observed a prevalent
use of the following arguments by the members of the community:
1. “coordination technologies can be distinguished from computa-

tion technologies”;
2. “what differentiates coordination and computation technologies

is the intent of the designer: the designers of coordination lan-
guages do not focus on computation”;

3. “there exist ‘pure’ coordination languages that cannot be used
to specify computations.”

All three arguments are motivated by a subjective, human desire of the
involved individuals, that to create a “us-versus-them” vision of the research.
The ulterior motive is to generate specialized attention and attract dedicated
funding. In fairness to this community, we highlight here that this ulterior
motive is shared by most academic researchers regardless of their field of study.

However, despite and regardless of the motive and its subjectivity, the in-
dividuals involved claim (both implicitly and explicitly) that these three argu-
ments can be recognized as objective by an external observer, i.e. they can stand
and be defended at face value.
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What interests us here is that all three arguments require some shared un-
derstanding of what is meant by “computation.” If no shared understanding can
be found, then all three arguments are void and thus intellectually irrelevant.

Moreover, if a shared understanding can be found, then only argument #3
is objectively qualified. Even with a shared understanding of computation,
arguments #1 and #2 remain at best “negative space” arguments (cf. section 1)
and still do not inform about what coordination actually entails.

To see how much of argument #3 can be “saved” for the purpose of objective
discussions, we need to investigate two points. The first is how much shared
understanding can be gathered around the term “computation”. The second is
whether, assuming some shared understanding of what “computation” entails,
argument #3 actually holds: that languages that cannot express computation
actually exist, and can be called coordination languages.

4.1 About the notion of computation
As of this writing, there exists no formal definition of what constitutes a com-
putation in general. What is known empirically is that for any function of
mathematics it is often possible to build a machine which can calculate the
value of this function for some input. What is known formally, is that for any
given number function of mathematics it is always possible (in theory) to build
a machine that can calculate the value of this function. What is not known
however, is the set of all mathematical functions a given concrete (real-world)
machine can reproduce; and whether it is possible to build a machine for all
possible mathematical functions, not only number functions. Meanwhile, peo-
ple can be observed to also build machines to perform work that is not described
formally but is still considered useful.

In this context, two approaches can be taken to define “computation”. One
can seek formalism at all costs, and restrict the shared understanding to Church
and Turing’s thesis: that the set of computations is exactly the set of all possi-
ble input-output transformations by any theoretical Turing machine. However,
this Manichean approach excludes a range of machine activities that are com-
monly considered to be “computations” in practice, too: transformation and
communication of real (physical) variables, non-deterministic operations over
parallel hardware with loosely synchronized time, ongoing processes without a
start event, etc.

The other way to define “computation” is to identify some useful real-world
artefacts and behaviors, call them “computation” axiomatically, then reverse-
engineer which languages and formal systems can be used to specify them.
There are multiple ways to do so; here are the two such definitions that seem
to gather most consensus:

• “terminating value computations”: any operation which consumes a finite
supply of static data as input, runs for a finite amount of time and pro-
duces a finite supply of static data as output. This includes but is not
limited to the observable behavior of halting Turing machines;

• “process computations”: any operation which is running within a well-
formed space boundary (e.g. a specific component of a machine), running
at a measurable cost and that is controllable: where an external agent
(e.g. a person or another system) can start, stop, observe, accelerate, slow
(etc.) the operation.
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Chosen definition for “computation” Computation-less languages Incomplete computation languages
Behavior of Turing machines (none known) few languages, but includes C
Terminating value computations (none known) most languages
Process computations some declarative languages, including

Prolog, pure λ-calculus, HTML
most languages

Table 3: Languages that cannot specify computations.

The choice of approach also defines the objective substance of any discus-
sion that capitalizes on the notion of computation. Different choices result in
different, possibly conflicting understandings. Therefore, any situation where
the word “computation” is used casually to support negative space arguments
should be reviewed with critical care; in particular, one should feel challenged
to isolate and clarify explicitly what assumptions are being made.

4.2 Languages that “cannot specify computations”
There are two interpretations for the phrase “cannot specify computations”:
either “cannot specify any computation” or “cannot specify all computations”.
The argument “There exists pure coordination languages that cannot specify
computation” thus defines two classes of languages: computation-less languages
which cannot be used to define any computation whatsoever; and incomplete
languages which can only be used to specify a limited subset of computations.

Both can only be discussed in the context of a specific, a priori chosen
understanding of the word “computation” as described in the previous section.
We collate in table 3 a condensed inventory of existing programming languages
that are either computation-less or incomplete for the various definitions of
“computation” isolated previously.

Table 3 enables three observations.
The first is that it is difficult to find concrete computation-less languages,

for any definition of “computation”. In general, it is actually difficult to design
a computation-less language: any language that is able to define a dynamic
evaluation that can react to state, regardless of how dynamic its input is, can
be tricked at a higher-level to define some computations. For example, with
S-NET one can define operations using Peano arithmetic on the depth of the
run-time expansion of a “star” combinator over a synchrocell, using only record
types to perform choices. A computation-less language should either prevent its
user from defining a dynamic evaluation, or restrict the evaluation to be state-
insensitive (or both). It is debatable whether languages with such restrictions
can be called “programming” languages at all.

The second is that if we consider process computations in general and we
understand that “pure coordination languages are those languages that are
computation-less”, we would need to accept languages like Prolog, λ-calculus
or HTML as coordination languages. This does not appear compatible with the
vision of the coordination community being studied.

The third is that there are “too many” languages that are incomplete with
regards to each definition of “computation” to hold a strong us-versus-them ar-
gument. For the two informal definitions, i.e. terminating value computations
and process computations, if we understand that “pure coordination languages
are those languages that are incomplete with regard to specifying computa-
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tion”, then virtually any programming language in use today is a coordina-
tion language. If we take the formal definition instead (Turing-incompleteness),
then C would also qualify as a coordination language because C is also Turing-
incomplete2. Again, this does not appear compatible with the vision of this
community.

To summarize, it may not be possible to use argument #3 successfully to
motivate specialized attention to the work of this community.

5 Conclusion
We have reviewed in this report the commonly used, subjective argument that
“coordination can be contrasted to computation”. We have revealed that this
argument and all currently used related phrasings are largely intellectually un-
sound and we conclude they cannot be used to support specialized scientific
attention towards “coordination” as a research activity.

Instead, we have highlighted that research on “coordination” can be sup-
ported objectively using motivating arguments based on objective criteria. Of
the various candidate criteria that have been proposed so far, we have shown
that only three characterize the work of the researchers involved:

• interface extensibility : the ability to extend or replace component inter-
faces arbitrarily after components are provided, and define valid composite
behavior using the modified interfaces even if they conflict with the inter-
nal structure of the components;

• customizable optimization goals: the ability to specify different optimiza-
tion goals after the application has been specified, e.g. during execution,
and the ability of the technology to use different execution strategies to
match the custom goals;

• black-box componentization: the ability to specify composite applications
from components only known by name and interface, and the existence
of run-time interfacing mechanisms that do not require the coordination
technology to know anything about the internal structure of components.

Of these three criteria, we had previously [15] identified the last as a clear
objective criterion to recognize coordination, and we had recognized that pro-
gramming technologies are “more or less coordinating” depending on how well
they match the criterion. In the present report, we have extended this argument
to the other two criteria, and recognized several concrete coordination technolo-
gies: AstraKahn and Intel’s CnC, but also OpenCL, POSIX and VMWare ESX.
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