
MGSim—A Simulation Environment
for Multi-Core Research and Education

Raphael Poss, Mike Lankamp, Qiang Yang, Jian Fu, Irfan Uddin, Chris R. Jesshope
University of Amsterdam

Computer Systems Architecture group
Science Park 904, 1098XH Amsterdam

The Netherlands

Abstract—This article presents MGSim1, an open source dis-
crete event simulator for on-chip hardware components developed
at the University of Amsterdam. MGSim is used as research
and teaching vehicle to study the fine-grained hardware/software
interactions on many-core chips with and without hardware
multithreading. MGSim’s component library includes support for
core models with different instruction sets, a configurable multi-
core interconnect, multiple configurable cache and memory mod-
els, a dedicated I/O subsystem, and comprehensive monitoring
and interaction facilities. The default model configuration shipped
with MGSim implements Microgrids, a multi-core architecture
with hardware concurrency management. MGSim is furthermore
written mostly in C++ and uses object classes to represent chip
components. It is optimized for architecture models that can be
described as process networks.

I. INTRODUCTION

MGSim is a discrete event simulator for on-chip hardware
components, developed at the University of Amsterdam2 since
2007. MGSim is a research and teaching vehicle to study the
fine-grained hardware/software interactions on many-core and
hardware multithreaded processors. It includes support for core
models with different Instruction Set Architectures (ISAs),
a configurable multi-core interconnect, multiple configurable
cache and memory models, a dedicated I/O subsystem, and
comprehensive monitoring and interaction facilities.

The motivation to develop a new framework instead of
reusing existing simulators was twofold.

The first motivation was to focus on research in design of
new processor architectures, instead of modeling the behavior
of existing processors. MGSim was thus, from the start,
optimized for the design space exploration of new components
for multi-processor systems-on-chip, i.e. testing different com-
binations of features and architecture parameters to optimize
platforms towards specific applications; it was also optimized
towards the design of new techniques in processor micro-
architecture, i.e. adding or changing features in individual
processor cores and their multi-core interconnect.

The other motivation was to support undergraduate and
graduate education activities in computer architecture, parallel
programming, compiler construction and operating system de-
sign. In particular, MGSim was tailored to three extra usability

1MGSim was supported by the Dutch government via the project NWO
Microgrids, the European Union under grant numbers FP7-215216 (Apple-
CORE) and FP7-248828 (ADVANCE), the University of Amsterdam, and
grants by the China Scholarship Council.

2http://csa.science.uva.nl/

requirements: provide a human-scale software infrastructure
that can be comprehended by standalone students in these
fields, integrate the emulation and guest operating software in
a software package that can be seamlessly deployed and get
ready to run on student computers with minimal effort. MGSim
also provides features usually expected from simulation pack-
ages, including comprehensive and automatable interfaces to
observe and illustrate the internal workings of a system while
it is running.

The development of MGSim was originally aimed at ex-
ploring the behavior of D-RISC cores [1], [2] when grouped
together in a multi-core chip. Because of this historical back-
ground, the default model configuration shipped with MGSim
simulates the Microgrid platform, so that programmers can use
MGSim as a full-system emulation of a device or chip contain-
ing clusters of D-RISC cores, also known as Microgrids [3].
Since then, MGSim has matured into a versatile framework to
simulate many-core architectures.

As a software infrastructure, MGSim’s component models
and simulation kernel are written in C++; they use object
classes to represent chip components. Ancillary tools are
written in Python. A characteristic feature of the MGSim
framework is that it promotes the definition of architecture
models where components across clock domains only synchro-
nize via FIFO buffers, i.e. where models can be described as
process networks. MGSim is further available3 free of charge
under an open source license.

This article introduces the MGSim tool box, as of version
3.3. We start in section II by positioning MGSim relative to
other simulators. We then present its applications in sections III
to V. We review its simulation framework and component
model library in section VI. Finally, we outline future devel-
opments in section VII and conclude in section VIII.

II. CONTEXT AND RELATED WORK

A. Emulation vs. simulation

MGSim is both a simulation framework and a full-system
emulator. As a simulator it can be used to predict component
behavior, in particular during the architecture design phase.
In this role it is useful to the architecture researcher. As an
emulator it can be used to reproduce the hardware/software
interface of a device. In this role it is useful to operating system
and compiler developers.

3currently hosted at http://svp-dev.github.com/.

http://csa.science.uva.nl/
http://svp-dev.github.com/

Figure 1. Emulators and simulators: a Venn diagram with examples.

To position MGSim next to related work, we can divide
emulators further, between partial and full system emulation.
Note that virtualization technologies can be considered as
emulations. With partial emulation, only application code
runs within the emulation environment, and operating system
functions are serviced through a host/guest interface. With a
full emulation, the entire software stack runs on the emulated
hardware. MGSim can serve both as a hardware simulator and
full-system emulator. We illustrate these distinctions in fig. 1.

B. Related work

In the group of software frameworks that are both simula-
tors and emulators, as illustrated above, MGSim most closely
relates to SimpleScalar4 and Gem55 [4] (previously called
simply “M5”). In contrast to MGSim, SimpleScalar only pro-
vide partial emulation: operating system functions are served
on the host platform via the syscall pseudo-instruction.
MGSim was designed as a full-system emulation so as to also
study the behavior of operating software when running over
the emulated platform. Moreover, SimpleScalar was primarily
designed to emulate single-core platforms, where MGSim’s
focus lies towards multi-core platforms. Its purpose and even
its software architecture make MGSim much closer to the
Gem5 framework. Gem5, like MGSim, consists of a library
of C++ components that can be grouped in configurable
topologies to define multi-core platforms. Both frameworks are
discrete event, component-based simulations able to emulate
full systems. At the time of this writing, Gem5 even offers
more monitoring and visualization facilities than MGSim. The
differences between Gem5 and MGSim can be found at two
levels.

Firstly, Gem5 was designed and motivated to emulate
existing platforms. In particular, one of its design requirements
was to be able to run entire existing software stacks unchanged,
for example GNU/Linux, FreeBSD, L4K or Solaris. MGSim
does not share this requirement, and its implementation is
thus much simpler than Gem5’s. This makes MGSim more
accessible for education activities than Gem5. Secondly, Gem5
started as a single-core system emulator, focusing on the
accurate simulation of large, state-of-the-art sequential pro-
cessors. Multi-core support was only added later, and Gem5
is still optimized for use with few cores sharing a high-level
functional emulation of a cache coherency network and inter-
processor interrupt network. In contrast, MGSim was designed
from the ground-up as a many-core network featuring different
detailed memory interconnects and a dedicated point-to-point
messaging network between cores. This makes MGSim a

4http://simplescalar.com/
5http://m5sim.org

Table I. LOCS COMPARISON WITH GEM5 AND SIMPLESCALAR

Simulator C/C++ LOCs Python LOCs LOCs others
Gem5 9073 (27-06-2012) 298k 77k 800 SWIG, 64k config
MGSim 3.3 (01-01-2013) 42k 800 400 config
SimpleScalar 3.0e 27k N/A N/A

Table II. COMPONENT LIBRARY COMPARISON WITH GEM5 AND
SIMPLESCALAR

Simulator Cores (ISAs) Memories I/O devices
Gem5 9073 (27-06-2012) 3 (6) 5 10+
MGSim 3.3 (01-01-2013) 1 (3) 7 6
SimpleScalar 3.0e 1 (2) 1 N/A

potentially more productive tool for research in the design of
new operating software for parallel applications.

We summarize the size and scope of MGSim and its closest
relatives in tables I and II. In short, MGSim can be considered
as the “little brother” of Gem5, oriented towards research in
new core architectures and more diverse memory systems.

III. ORIGINAL RESEARCH TARGET: MICROGRIDS

The Microgrid many-core architecture is a research project
at the University of Amsterdam, which investigates whether
concurrency management (thread scheduling, synchronization,
and inter-thread communication) traditionally under control of
software operating systems can be accelerated in hardware
to obtain higher efficiency and performance. Microgrids are
clusters of a simple RISC core design called D-RISC [1]; each
D-RISC core is equipped with a hardware Thread Management
Unit (TMU) which can coordinate with neighbouring TMUs
for automatic thread and data distribution.

Prior to the use of MGSim, research on D-RISC and the
Microgrid was focused on programmability issues and carried
out with high-level simulators: both using traditional software
multithreading and an API to emulate the TMU services [5],
and using a custom functional ISA emulator [6]. As the
initial phases of the D-RISC design had built confidence that
the design was sound, the EU-funded project Apple-CORE
(2008-2011) was started to study its implementability in a
system, including a full vertical tooling stack from an FPGA
implementation up to benchmarks in higher-level programming
languages. To avoid placing the FPGA specification on the
critical path of the project, the need arose to develop simulta-
neously, at lower cost, a cycle-accurate simulator of Microgrids
which would support early results with the rest of the tooling.

MEMORY

MEMORY I/O

ACTIVE
MESSAGES

DECODE & REGADDR

IRF

ALU

LSU

FETCH & SWITCH

L1D & MCU

FRF

ALU
(async)

GPIO

L1I

WB

TMU &
SCHEDULER

READ & ISSUE

FPU
(async)

TT & FT NCU

Figure 2. D-RISC core micro-architecture, as simulated in MGSim.

http://simplescalar.com/
http://m5sim.org

The motivation to implement a new core simulation model
from scratch instead of extending an existing RISC model
in another simulator was twofold. First, the D-RISC design
extends a traditional single issue, 6-stage in-order pipeline
with a larger register file equipped with full/empty state bits,
and implements thread scheduling based on the availability
of input operands to instructions (fig. 2). This causes the
pipeline design to diverge significantly from existing models,
both structurally and in its timing behavior. The other reason is
that the Microgrid architecture uses multiple logical Networks-
on-Chip (NoCs) to negotiate coordination and synchronization
between cores, and no existing simulator was known at that
time with both support for multiple NoCs and customizable
core-network interfaces.

The outcome of the Apple-CORE project is summarized
in [3], [7]: the D-RISC core was implemented on FPGA
as UTLEON3 [8], a model of Microgrids was implemented
in MGSim, software tooling was delivered to program Mi-
crogrids [9], [10], [11], and D-RISC and Microgrids were
confirmed using both UTLEON3 and MGSim to deliver higher
performance and efficiency for a class of applications.

Two example results from Apple-CORE obtained with
MGSim are given in figs. 3 and 4. In the first example, a
discrete Mandelbrot set approximation of 200×200 points was
implemented using one “microthread” (the Microgrid’s logical
unit of work) per point. The workload is both fine-grained
and heterogeneous: each thread executes between 60 and 1000
instructions, but the control flow and number of instructions
is different for each point. Two implementations of the bench-
mark were used. The first was the “even” implementation,
where the logical range is divided into P equal segments
where P is the number of cores in the cluster, i.e. core p
runs microthread indices {startp, startp + 1, startp + 2 . . .}.
This is the straightforward use of the bulk creation process in
D-RISC’s TMU. With this implementation, the benchmark’s
performance had been previously observed to scale from 1
to 32 cores and to benefit from hardware multithreading [3,
fig. 4]. However, MGSim’s tracing abilities enabled us to plot
the diagrams in figs. 3a and 3b, which revealed a shortcoming:
because the TMU bulk-synchronizes threads, maximum perfor-
mance is limited by the longest execution time in a batch of
threads. Thanks to this additional insight provided by MGSim,
we could design an alternate “round-robin” implementation,
where the logical range is distributed in a round-robin fashion
over the P cores in the cluster, i.e. core p runs indices
{p, p + P, p + 2P . . .}. This implementation invokes the D-
RISC TMU separately with different logical index ranges on
every core of the cluster, which effectively compensates the
shortcoming identified above by randomizing the workload
across different batches.

In the second example, MGSim’s models were used in
a configuration as close as possible as one of the Intel IXP
chips, so as to compare the Microgrid’s performance with the
IXP in the NPCryptBench suite [12], [13]. This configuration
places the multithreaded cores in a crossbar with two DDR
channels, and we also ensured that the core, interconnect and
DDR timing parameters were as aligned with the IXP as
possible. Full alignment was not possible, because the IXP is
clocked at 1.4GHz and the D-RISC’s register file access time
in this configuration constrain its clock to 1Ghz. However,

as the results in fig. 4 show, the Microgrid model provides a
throughput advantage for the more complex AES, SEAL and
Blowfish ciphers.

From the MGSim perspective, the net outcome of Apple-
CORE is a library of components where the more mature mod-
els are the D-RISC core and the various memory interconnects
relevant to study shared memory performance in a many-core
chip. A list of these components with detailed descriptions is
provided separately in [14]. Due to Apple-CORE’s strategy to
explore the spectrum of architecture parameters for Microgrids,
all MGSim components and the simulated chip topology are
highly parameterizable.

Finally, although the D-RISC model was originally de-
signed for Microgrids, it uses standard ISAs (Alpha, SPARC,
MIPS) and its associated software tool chain can be used with
standard C code to run common sequential benchmarks. In
other words, it is possible for a user of MGSim to ignore the
Microgrid ancestry and exploit MGSim to study both computer
organization and the behavior of memory systems under multi-
core workloads.

IV. ONGOING RESEARCH PROJECTS USING MGSIM

As of this writing, MGSim continues to support research
on the design of Microgrid components, towards a future
implementation in silicon. Simultaneously, it also still support
undergraduate and graduate education projects.

On the research side, an industry-backed project focuses
on hardware fault detection and recovery in Microgrids, as
well as real-time semantics in D-RISC’s thread scheduler. This
project uses MGSim to prototype the features and predict their
behavior. Graduate and doctoral research projects also include
research in three areas. One is the optimization of distributed
cache coherency protocols, where MGSim helps validating
consistency semantics and deadlock freedom (cf. e.g. [15],
[14]). Another is the design and implementation of operating
system components in software that account for thread man-
agement in hardware, where MGSim provides a full-system
emulation platform that enables testing and benchmarking (cf.
e.g. [16], [7], [17]). The last is research of high-level models of
parallel software behavior when both concurrency granularity
and hardware parallelism are model parameters, where MGSim
is used to calibrate the high-level models (cf. e.g. [18], [19]).

V. APPLICATION TO EDUCATION

MGSim was used to support lab assignments next to
courses in microprocessor architecture, system organization
and parallel programming.

A. ISA design and organization

A common activity in architecture education is the im-
plementation of an ISA in a processor simulator. MGSim
supports this activity in two ways. Like most other hybrid low-
level simulators (incl. Gem5 discussed previously), MGSim
separates the component-level simulation, detailed for timing
accuracy, from the functional simulation of instruction effects.
In particular, a single C++ interface enables plugging multiple
ISAs onto the common D-RISC micro-architecture model.
Students can thus replace or add an ISA to the simulation

 0 200 400 600 800 1000 1200 1400 1600 1800

time (microseconds)

 0

 5

 10

 15

 20

 25

 30

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) Even distribution, 1 thread/core.

 0 50 100 150 200 250 300 350 400 450

time (microseconds)

 0

 5

 10

 15

 20

 25

 30

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) Even distribution, 16 threads/core.

 0 50 100 150 200 250 300 350 400 450 500

time (microseconds)

 0

 5

 10

 15

 20

 25

 30

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(c) Round-robin distribution, 1 thread/core.

 0 20 40 60 80 100 120 140 160

time (microseconds)

 0

 5

 10

 15

 20

 25

 30

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(d) Round-robin distribution, 16 threads/core.

Figure 3. Per-core IPC over time for the Mandelbrot set approximation, running on 32 cores.

��� ��� ��� ��� 	
����� ���� ��� ���� ��� �����

�

��

���

����

������� ������� ������� �������� ��!" �������� ��#

#
�
��
$
�
�
%
$
&'
(�

)
�&
�
*�
+

Figure 4. Throughput for one cryptographic stream on one core.

framework and immediately obtain feedback from existing
benchmark code simply re-compiled towards the new ISA.
This is possible because the hardware/software interfaces
stay mostly the same between ISAs for D-RISC: the thin
operating system code and benchmark code can be reused
as soon as the ISA is implemented, as no other code (e.g.
OS drivers, etc) needs to be ported/rewritten. In 2012, this
opportunity was used by undergraduate students to introduce
support for the MIPS ISA, where MGSim’s D-RISC previously
only supported the SPARC and Alpha ISAs. The task could
be completed by pairs of students within four weeks (10-
20 hours/week), without prior exposure to neither MGSim’s
internals nor other ISAs.

B. Cache behavior analysis

In another activity, undergraduate students were given a
couple of memory-intensive sequential benchmarks and a list
of architecture configurations. The goal was to investigate the
cache behavior of these programs and how the structure of the
memory system was impacting their performance.

MGSim supports this activity in three ways. First, its
detailed memory architecture models accurately reflect con-
tention and delays in the memory network: the distribution
of memory latencies is spread to reflect the diversity found
in real chips. Then by running the benchmarks in a full-
system emulation environment, the students were able to
capture the memory behavior of operating system services as
well, which was relevant for some benchmarks. Finally, by
providing a fully automatable user interface, MGSim enabled
students to run a large number of experiments over many
architecture parameters, so as to recognize relevant parameters.
For example, through a combinatorial exploration taking less
than eight hours of work, and again without prior exposure to
cache analysis, students were able to discover empirically that
the benefits of increased set associativity become marginal as
the cache size grows, and that the benefits of increased cache
size depends on the application being executed.

C. Parallel programming

In 2011 and 2012, a parallel programming summer school
was organized for graduate students at the University of
Amsterdam. The goal was to present the technologies and
trade-offs of parallelism over various platforms, including
shared memory multi-cores. One of the targets of the practicals
was thus the Microgrid platform, and students used MGSim
to carry out evaluations on their own computer. Next to the
educational value of the Microgrid, which provides a radically
different set of trade-offs between concurrency management
overheads than other architectures, the particular benefit of
MGSim was its determinism: students could re-play the fine-
grained interactions between threads and the memory system,
investigate race conditions reliably, and observe in detail how
their mapping and scheduling decisions impacted the cache
behaviour of their code.

Figure 5. Entity-relationship diagram of an MGSim simulator.

VI. FRAMEWORK AND COMPONENT MODELS

MGSim’s framework is composed of five main parts,
illustrated in fig. 5. The simulation kernel implements a
rather conventional sequential, discrete-event, component-level
simulation. It provides base abstractions for processes, reg-
isters, buffers, latches, arbitrators and ports, as well as an
execution driver that schedules ready component processes
at each simulation cycle. The library of component models
provides object classes for the various component types found
on the chip: processors (cores), caches, memory networks,
I/O interconnects, etc. The component models are imple-
mented using the base abstractions from the simulation ker-
nel. Typically, a component defines one or more processes,
optionally some internal state for its processes, and latches,
buffers and/or arbitrators visible from other components. The
system configuration constructor instantiates the component
models and connects them together to form a full architecture
model. This part is further distributed between a top-level
“system topology” constructor and the individual constructors
of component models, which may choose to instantiate sub-
components or dependent components. The simulation front-
end provides a user interface to MGSim. The interface is
composed of command-line parsing, configuration file loader,
interactive command interpreter, event trace filtering, asyn-
chronous monitoring, etc. Finally, an optional asynchronous
monitor runs asynchronously in a separate thread of execution.
It periodically samples the state of selected components and
writes it to a trace file or FIFO for analysis or visualization
by external tools.

A. Simulation overview

Upon initialization of an MGSim instance, the front-end
parses the command-line parameters and configuration file(s).
It then creates a configuration object that holds a database
of configuration variables. The front-end then instantiates the
configuration constructor, which in turn populates the archi-
tecture model by instantiating components according to the
configuration. After this point, the model is ready: no further
objects are constructed, and the simulation can start.

If invoked to run interactively, the front-end displays an
interactive prompt and accepts user commands. For example,
invoking the run command starts the simulation by trigger-
ing the step method of the simulation kernel. This method
advances the simulation by one or more master cycles, from
a master clock running at the lowest common multiple of the
frequencies of all clocks in the model. At every cycle, the
following happens.

First, any pending updates to stateful structures shared by
components (e.g. FIFO buffers) are committed, to become
visible during the new cycle. Then the acquire phase of the
cycle is run for all active component processes. During the
acquire phase, process handlers declare their intent to use
shared structures and request arbitration. Also during acquire,
processes may not update internal state. After the acquire phase
completes, all involved arbitration requests are resolved by the
kernel. Once arbitration has been resolved, all active processes
run the check phase of the cycle. During this phase, the results
of arbitration is reported to each process, which determines
which control path to use (e.g. stall, access another shared
storage, etc.). Again, during this phase, processes may not
update internal state. Once the check phase has completed, all
remaining non-blocked processes run the commit phase of the
cycle. During this phase, processes use the control path chosen
during the check phase, may update their internal state, and
declare updates to shared storage to be effected at the start of
the next cycle. They may also emit informational messages to
be logged to a synchronous event trace by the kernel.

At the end of each cycle, active processes are then resched-
uled to run at the next cycle or some cycles later, according
to their simulated clock frequency.

Note that during the check phase, processes may become
blocked because of denied arbitration, but also when attempt-
ing to read from empty FIFOs. When a process becomes idle
on an empty input FIFO, it will thus only be reactivated
after a subsequent cycle produces data into the FIFO. This
is the mechanism by which MGSim models the behavior of
asynchronous networks of components.

B. Anatomy of a component

Components in the simulation framework correspond to
components on chip, i.e. to an area of hardware. They are
organized in a tree, where each child node represents a sub-
parts of its parent component. For example, the DCache (L1
data cache) and Pipeline components are child nodes of
the processor component (Processor) which encompasses
them. Each component is related to its parent component and
children components, if any, a clock domain (either its own or
shared with its parent), and the specific simulation kernel that
drives the entire component tree.

Additionally, each component may define one or more of
the following. Processes represent state machines or functional
circuits. Shared storages and arbitrators, e.g. FIFO buffers,
registers or single-bit latches, may be used by two or more
processes including processes from other components, and may
cause processes to block upon access. Internal state is used
by only one process, or represents state shared by processes
of the same component that does not require arbitration nor
decide process scheduling. Services provide part of the logic
of processes from other components. Inspection handlers are
invoked from MGSim’s interactive command prompt upon user
commands. Finally, administrative data may be implemented
as well for meta-information that does not represent hardware
components (e.g. counters for statistics).

Processes in the simulation framework represent the activ-
ities of data transformation and communication in the system.
They are triggered by the availability of data in a specific

10 9 6 5

11 8 7 4

12 13 2 3

15 14 1 0

26 25 22 21

27 24 23 20

28 29 18 19

31 30 17 16

L2 L2

L2L2

COMA DIRECTORY

L2 L2

L2L2

R R R R

R R R R R

R

RRRRR

Figure 6. Example MGSim configuration: a 32-core Microgrid.

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

Debugging
output

ROM

UART
controller

RPC
controller

Graphical
framebuffer

Pseudo
terminal (pty)

Syscall
emulation

Graphical output (SDL)

LCD
controller

Standard
output

High-speed system network

SMC
(System mgt

chip)

Figure 7. Example MGSim configuration: a full-system Microgrid platform.

shared storage, which is called its source storage. When
triggered, a process becomes active and its cycle handler is
called by the kernel at every cycle of the corresponding clock
domain. The process’ cycle handler may then in turn attempt
to acquire more storage or arbitrators, fail while doing so and
thus stall. When stalled, the cycle handler re-tries the same
behavior in subsequent cycles until the behavior succeeds.
Upon successful completion, a process may either consume
data from its source storage or stay ready to be invoked again
for another behavior in the next cycle (e.g. in state machines).
A process becomes idle when its source storage becomes
empty.

C. MGSim’s component library

The standard platform configuration shipped with MGSim
is depicted in figs. 2, 6 and 7. The origin of this specific
configuration and its relationship with the FPGA UTLEON3
implementation was described above in section III and previ-
ously published in [3], [20].

This platform is composed of reusable components from
MGSim’s library. We provide an overview of this library
in table III. When MGSim starts, the system configuration
constructors aggregates high-level configuration requests from
the users, for example “desired type of memory interconnect,”
“desired number of cores” and “desired number of cores per
L2 cache,” then derives automatically a system topology and
instantiates the components. The user thus does not need to
explicitly list the configuration of each component individually.
However, if so desired the user can optionally override the
configuration of some components to produce heterogeneous

Figure 8. Example visualization of synchronous event traces.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 0.0005 0.001 0.0015 0.002 0.0025
 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 5e+08

 5.5e+08

si
m

ul
at

ed
 c

yc
le

s
or

 in
st

ru
ct

io
ns

 p
er

 re
al

 s
ec

on
d

si
m

ul
at

ed
 in

st
ru

ct
io

ns
 p

er
 s

im
ul

at
ed

 s
ec

on
d

simulated seconds

Simulation performance
of MGSim simulating a 1GHz model

on an Intel Core2 Duo 2.4GHz simulation host
running the whet.c benchmark on the simulated platform

sim. instructions per sim. seconds (performance of whet.c)
sim. instructions per real second (performance of MGSim)

sim. cycles per real second (performance of MGSim)

Figure 9. Example application of asynchronous monitoring.

models; for example a configuration can specify “16 cores, but
so that cores 4-15 are not connected to the I/O subsystem,” or
“32 cores, but so that core 0 has larger L1 and L2 caches.”

D. Trace visualization and simulation speed

Like most cycle-accurate simulators, MGSim can produce
detailed event traces of a simulation, reporting all component-
to-component interactions. MGSim’s event trace format is
homogeneous and can thus be processed automatically to
produce interactive visualization. An example is given in fig. 8:
a 8-core model is running a parallelized implementation of the
equation of state fragment found as loop 7 of the Livermore
benchmark suite [21]. The visualization uses one column
per component and one row per cycle. Within one column,
different colors are used for different hardware threads in the
D-RISC core. The browser window is centered in the start of
the benchmark’s data-parallel operation; the cursor is hovering
at the intersection between cycle 171 and the L1 D-Cache of
core 2, and a pop-up label shows a memory event occurring
at that location.

MGSim also provides asynchronous monitoring, to capture
the evolution over time of semi-continuous variables in the
simulation model. It is implemented using a monitor thread
running concurrently with the simulation thread, which re-

Table III. OVERVIEW OF THE MAIN COMPONENTS IN MGSIM’S LIBRARY.

Top-level simula-
tion component

Hardware component modeled Simulation detail Main sub-components

Processor D-RISC core and TMU-to-TMU NoC protocol circuit-level interactions Pipeline, DCache, ICache,
RegisterFile, Allocator, Network,
MMUInterface, IOInterface

FPU Asynchronous FPU pipeline intruction latencies and structural hazards
DDRChannel DDR3 controller DDR latencies and D-RAM bank contention
SerialMemory Single D-RAM bank with bus interconnect request latencies and contention
ParallelMemory Single D-RAM bank with crossbar request latencies and contention Port
BankedMemory Multiple D-RAM banks with crossbar request latencies and contention Bank
DDRMemory Multiple DDR channels with crossbar request latencies and contention DDRChannel
ESAMemory Multiple DDR channels with L2 cache and

crossbar
request latencies and contention Cache, DDRChannel

COMA Ring-based L2 cache diffusion network with
write-update coherency protocol

request latencies, network/cache interactions,
contentions

Cache, Directory, DDRChannel

ZLCOMA Ring-based L2 cache diffusion network with
write-invalidate coherency protocol

request latencies, network/cache interactions,
contentions

Cache, Directory, DDRChannel

ActiveROM Passive ROM and DMA controller request bandwidth and latency
UART NS/PC16650 UART request bandwidth and latency
Display Graphical output interface request bandwidth and latency FrameBufferInterface,

ControlInterface
RTC Programmable real-time clock functional only
LCD Character matrix display functional only
RPC Pseudo-device: exposes the host’s filesystem functional only
SMC Pseudo-device: enumeration and initialization functional only

Table IV. MGSIM PERFORMANCE COMPARED TO RELATED TOOLS.

Simulator Performance

UTLEON3 (FPGA) 20MIPS, 1 core
MGSim 3.3 100-1000KIPS shared by all active simulated cores
MGSim 3.3
(traces disabled)

0.5-2 MIPS shared by all active simulated cores

HLSim
(higher-level, software)

100MIPS-1GIPS, scalable to multiple host cores

peatedly samples a set of selected variables to an output
trace. An example use case is illustrated in fig. 9. In this
example, a 16-core simulation model was configured to run
the classical Whetstone benchmark6 (a sequential program)
using an Apple MacBook Pro as simulation host. The monitor
thread was configured to sample the simulation cycle counter
and the counter for the number of instructions executed in
the cores’ pipeline. The sampling rate was configured to 1000
samples/s. The execution of whet.c lasted for approximately
4.22 real seconds, little over 2.3ms of simulated time; it ran
about 3.1M instructions. During this time, the monitor thread
produced 3705 samples at an approximated effective rate of
876 samples/s.

As the figure shows, for this model and this host MGSim
runs approximately 200K instructions per real second (KIPS)
in general, or 150-200x slower than an equivalent hardware
implementation. This perspective gives a better view of the
simulation speed than the naive estimation based on the final
counts, which indicate 3.1 × 106/4.22 or about 740KIPS for
this particular program.

We have measured that enabling traces (both synchronous
and asynchronous) slows down the simulation by a factor
3x-6x on average. We indicate the position of MGSim’s
performance compared to related tools in table IV.

VII. SHORTCOMINGS AND POSSIBLE FUTURE WORK

Our experience using MGSim for architecture research and
education has revealed a few shortcomings, which we briefly
review here.

6http://www.netlib.org/benchmark/whetstone.c

The first is the common occurrence of implementation or
design errors when implementing a new model in MGSim. The
most common error is the definition of deadlocking circuits
due to circular dependencies. Although the component model
exposes all dependencies between buffers and processes, the
MGSim framework is not yet able to analyze and detect
circular dependencies automatically. The implementation of
such a detection mechanism would significantly reduce the
time required to troubleshoot modeling errors.

The second shortcoming is the lack of a facility to check-
point/restore the entire simulation state. When a failure occurs,
the only mechanism available to-date to reproduce the issue
is to re-play the entire execution scenario since the start of
the simulation. If the program further uses I/O, an exact re-
execution is nearly impossible. This becomes an issue partic-
ularly when troubleshooting long-running software within the
simulated platform. Mechanisms to serialize and de-serialize
the simulation state, similarly to the “freeze” feature of virtual
machines, would greatly increase the suitability of MGSim as
a sandbox environment to troubleshoot simulated software.

The third shortcoming is visible in the light of the previous
two: were MGSim extended to address the issues already
mentioned using the same C++ infrastructure, the complexity
of the source base would gradually increase and may put it out
of the intellectual reach of students or newcomers to the field.
Moreover, increasing the amount of code without automated
functional validation would increase the rate of specification
errors and decrease the overall quality of the project. To ensure
the continued relevance of MGSim, a shift to higher-level
specifications is required. We can for example envision using
languages like CλaSH [22] or BlueSpec [23] and generate
both MGSim components and RTL-level models from the same
input specification.

Next to these shortcomings, the question arose of what to
do about the similarities between MGSim and Gem5, discussed
previously in section II-B. Despite the different project goals,
the overlap between the technical approaches is striking; in
particular, the inter-component interfaces, component granular-
ity and configuration facilities are intriguingly similar between

http://www.netlib.org/benchmark/whetstone.c

the two projects. This opens two opportunities. The first is to
investigate whether MGSim’s library of memory models could
be reused with Gem5, which is somewhat still lacking in this
regard. The other is to determine whether Gem5’s core models
could be reused with MGSim, to provide increased platform
compatibility to programs running on the simulated platform.

VIII. SUMMARY AND CONCLUSIONS

We have presented MGSim, an open source framework
and component library to simulate many-core processors.
MGSim’s framework is written in C++ and implements a
highly configurable, discrete-event, multi-clock simulation en-
gine. Its library of components provides a versatile hardware
multithreaded in-order RISC core supporting multiple ISAs,
multiple memory interconnects, and an I/O subsystem which
enables full-system emulations. Its comprehensive inspection
and monitoring facilities make it suitable for both architecture
research and education.

MGSim is currently used at the University of Amsterdam
and its partners. Its applications include scientific research
on the Microgrid architecture [3] and general graduate-level
education on processor, cache and memory architectures.
Performance-wise, MGSim is known to run models containing
thousands of components at 100-1000KIPS on conventional
desktop-grade hardware.

MGSim is similar to Gem5 [4], another C++-based frame-
work for discrete-event, component-based multi-core simula-
tions. The two frameworks run with comparable performance.
Where Gem5 focuses on compatibility with real hardware and
intra-core accuracy on models with few cores, MGSim focuses
on implementation simplicity and accuracy with large many-
core models.

REFERENCES

[1] A. Bolychevsky, C. Jesshope, and V. Muchnick, “Dynamic scheduling
in RISC architectures,” IEE Proceedings - Computers and Digital
Techniques, vol. 143, no. 5, pp. 309–317, September 1996.

[2] T. Bernard, K. Bousias, L. Guang, C. R. Jesshope, M. Lankamp, M. W.
van Tol, and L. Zhang, “A general model of concurrency and its
implementation as many-core dynamic RISC processors,” in Proc. Intl.
Conf. on Embedded Computer Systems: Architecture, Modeling and
Simulation (IC-SAMOS 2008), W. Najjar and H. Blume, Eds. Samos,
Greece: IEEE, July 2008, pp. 1–9.

[3] R. Poss, M. Lankamp, Q. Yang, J. Fu, M. W. van Tol, and C. Jesshope,
“Apple-CORE: Microgrids of SVP cores (invited paper),” in Proc.
15th Euromicro Conference on Digital System Design (DSD 2012),
S. Niar, Ed. IEEE Computer Society, September 2012. [Online].
Available: pub/poss.12.dsd.pdf

[4] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The M5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, pp. 52–60, 2006.

[5] M. W. van Tol, C. R. Jesshope, M. Lankamp, and S. Polstra, “An
implementation of the SANE Virtual Processor using POSIX threads,”
J. Syst. Archit., vol. 55, no. 3, pp. 162–169, 2009.

[6] K. Bousias, N. Hasasneh, and C. Jesshope, “Instruction level parallelism
through microthreading – a scalable approach to chip multiprocessors,”
The Computer Journal, vol. 49, no. 2, pp. 211–233, March 2006.
[Online]. Available: http://comjnl.oxfordjournals.org/content/49/2/211.
abstract

[7] R. ‘kena’ Poss, “On the realizability of hardware microthreading—
revisting the general-purpose processor interface: consequences
and challenges,” Ph.D. dissertation, University of Amster-
dam, 2012. [Online]. Available: http://www.raphael.poss.name/
on-the-realizability-of-hardware-microthreading/

[8] M. Daněk, L. Kafka, L. Kohout, J. Sýkora, and R. Bartosinski,
UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
ser. Circuits and Systems. Springer, November 2012. [Online].
Available: http://www.springer.com/engineering/circuits+%26+systems/
book/978-1-4614-2409-3

[9] D. Saougkos and G. Manis, “Run-time scheduling with the C2uTC
parallelizing compiler,” in 2nd Workshop on Parallel Programming and
Run-Time Management Techniques for Many–Core Architectures, in
Workshop Proceedings of the 24th Conference on Computing Systems
(ARCS 2011), ser. Lecture Notes in Computer Science. Springer, 2011,
pp. 151–157.

[10] R. k. Poss, “SL—a “quick and dirty” but working intermediate
language for SVP systems,” University of Amsterdam, Tech.
Rep. arXiv:1208.4572v1 [cs.PL], August 2012. [Online]. Available:
http://arxiv.org/abs/1208.4572

[11] C. Grelck, S. Herhut, C. Jesshope, C. Joslin, M. Lankamp, S.-B.
Scholz, and A. Shafarenko, “Compiling the Functional Data-Parallel
Language SaC for Microgrids of Self-Adaptive Virtual Processors,” in
14th Workshop on Compilers for Parallel Computing (CPC’09), IBM
Research Center, Zurich, Switzerland, 2009.

[12] Z. Tan, C. Lin, H. Yin, and B. Li, “Optimization and benchmark of
cryptographic algorithms on network processors,” IEEE Micro, vol. 24,
no. 5, pp. 55–69, September/October 2004.

[13] Y. Yue, C. Lin, and Z. Tan, “NPCryptBench: a cryptographic benchmark
suite for network processors,” SIGARCH Comput. Archit. News, vol. 34,
no. 1, pp. 49–56, September 2005.

[14] M. Lankamp, R. Poss, Q. Yang, J. Fu, I. Uddin, and C. R. Jesshope,
“MGSim—simulation tools for multi-core processor architectures,”
University of Amsterdam, Tech. Rep. arXiv:1302.1390v1 [cs.AR],
February 2013. [Online]. Available: http://arxiv.org/abs/1302.1390

[15] C. Jesshope, M. Lankamp, and L. Zhang, “Evaluating CMPs and their
memory architecture,” in Architecture of Computing Systems – ARCS
2009, ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2009, vol. 5455/2009, pp. 246–257.

[16] L. van Duijn, “Dynamic program loading in a shared
address space,” BSc Thesis, University of Amsterdam,
Institute for Informatics, June 2012. [Online]. Available:
http://dist.svp-home.org/doc/leendert-van-duijn-program-loading.pdf

[17] M. W. van Tol, “On the construction of operating systems for the
Microgrid many-core architecture,” Ph.D. dissertation, University of
Amsterdam, 2013. [Online]. Available: http://dare.uva.nl/record/436834

[18] M. I. Uddin, M. W. van Tol, and C. R. Jesshope, “High level simulation
of SVP many-core systems,” Parallel Processing Letters, vol. 21, no. 4,
pp. 413–438, December 2011.

[19] M. I. Uddin, C. R. Jesshope, M. W. van Tol, and R. Poss, “Collecting
signatures to model latency tolerance in high-level simulations of
microthreaded cores,” in Proceedings of the 2012 Workshop on Rapid
Simulation and Performance Evaluation: Methods and Tools, ser.
RAPIDO ’12. New York, NY, USA: ACM, 2012, pp. 1–8. [Online].
Available: pub/mirfan.12.pdf

[20] R. Poss, M. Lankamp, M. I. Uddin, J. Sýkora, and L. Kafka,
“Heterogeneous integration to simplify many-core architecture
simulations,” in Proc. 2012 Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools, ser. RAPIDO ’12.
ACM, 2012, pp. 17–24. [Online]. Available: pub/poss.12.rapido.pdf

[21] F. McMahon, “The livermore FORTRAN kernels: A computer test of
the numerical performance range,” Lawrence Livermore National Lab.,
CA (USA), Tech. Rep. UCRL-53745, Dec 1986.

[22] R. Wester, C. P. R. Baaij, and J. Kuper, “A two step hardware design
method using CλaSH,” in 22nd International Conference on Field
Programmable Logic and Applications, ser. FPL’12. Oslo, Norway:
IEEE Computer Society, August 2012, pp. 181–188.

[23] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high
level specifications,” in Proc. 2nd ACM and IEEE International Confer-
ence on Formal Methods and Models for Co-Design, ser. MEMOCODE
’04, june 2004, pp. 69–70.

pub/poss.12.dsd.pdf
http://comjnl.oxfordjournals.org/content/49/2/211.abstract
http://comjnl.oxfordjournals.org/content/49/2/211.abstract
http://www.raphael.poss.name/on-the-realizability-of-hardware-microthreading/
http://www.raphael.poss.name/on-the-realizability-of-hardware-microthreading/
http://www.springer.com/engineering/circuits+%26+systems/book/978-1-4614-2409-3
http://www.springer.com/engineering/circuits+%26+systems/book/978-1-4614-2409-3
http://arxiv.org/abs/1208.4572
http://arxiv.org/abs/1302.1390
http://dist.svp-home.org/doc/leendert-van-duijn-program-loading.pdf
http://dare.uva.nl/record/436834
pub/mirfan.12.pdf
pub/poss.12.rapido.pdf

	Introduction
	Context and related work
	Emulation vs. simulation
	Related work

	Original research target: Microgrids
	Ongoing research projects using MGSim
	Application to education
	ISA design and organization
	Cache behavior analysis
	Parallel programming

	Framework and component models
	Simulation overview
	Anatomy of a component
	MGSim's component library
	Trace visualization and simulation speed

	Shortcomings and possible future work
	Summary and conclusions
	References

