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Abstract. The Vaucanson library works on weighted finite state machines in an alge-
braic framework. As computing tools, FSMs must provide efficient services. Yet, ab-
straction is needed to obtain genericity but also to define properly what objects we are
working on.
Even if parameterized classes are a known solution to this problem, the different kinds
of algorithm specializations are limited when using usual template techniques.
This paper describes a new design pattern called ELEMENT which enables the orthogo-
nal specialization of generic algorithms w.r.t. the algebraic concept and w.r.t. the imple-
mentation. The idea is to make concept and implementation explicitly usable as object
instances.
First, we show how it solves the specialization problem. Then, we detail its implemen-
tation and how we deal with some technical pitfalls.

Vaucanson is a C++ generic library for weighted finite state machine manipulation. For
the sake of generality, in Vaucanson FSMs are defined using algebraic structures such as
alphabet (for the letters), free monoid (for the words), semiring (for the weights) and series
(mapping from words to weights) [5]. As usual, the challenge is to maintain efficiency while
providing a high-level layer for the writing of generic algorithms. One of the particularities
of FSM manipulation is the need for a fine grained specialization power on an object which
is both an algebraic concept and an intensive computing machine.

Vaucanson is the core of a project initiated in 2001 by Jacques Sakarovitch of the École
Nationale Supérieure des Télécommunications (ENST, Paris). The project is now a col-
laborative work between the ENST and the École Pour l’Informatique et les Techniques
Avancées (EPITA, Paris).

1 Algorithms for weighted finite state machines

1.1 Two points of view

On the one hand, the mathematical aspect of automata requires the definition of a precise
context. Indeed, an algorithm must specify on what kind of semiring or alphabet it works.
A hierarchy of algebraic concepts is necessary to make their context explicit. Such a hierar-
chy can be found in any book about algebraic structures.

On the other hand, weighted finite state machines are used to process large amount of
data. In addition, algorithms on automata can have exponential complexity, so primitive



operations should be as fast as possible. Efficiency cannot be sacrificed to gain the con-
venience of abstraction. Choosing the most relevant data structure is essential. However,
many data structures exist to represent letters, alphabets, words, weights, series and au-
tomata. Furthermore, they are highly correlated since an automaton is built with series, a
series is defined by words and weights, and a word by letters. Then each implementation
is parameterized by some other implementations leading to something like a nest of dolls.
Such implementations cannot be easily mixed in a monolithic hierarchy. Also, we want to
reuse data structures from external libraries.

Thus, the design problem is to unify these two points of view into the same object to
enable both implementation-driven and algebraic-driven writing of algorithms.

1.2 Generic algorithms and specialization power

Abstraction has lead to many algorithms with a general formulation. Generic programming
is relevant, because general algorithms should be written once. More precisely, an algo-
rithm can be generic w.r.t the mathematical concept and w.r.t the underlying data structure
used as implementation of that concept.

However, some theoretical results are restricted to a precise algebraic context. Thus,
we must be able to bound the algorithm input to a particular family of concepts. Likewise,
algorithms can be written using the properties of a particular implementation, so restriction
facilities over implementation parameters must be available. The figure 1 sums up some
desirable specializations.
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Fig. 1. Different type boundings of algorithm input

To be transparent to the final user and to improve genericity, these different specializa-
tions must be compatible with overloading.

1.3 Plan

The sequel of this paper is organized as follows. The section 2 shows the lack of answer in
the well known C++ template techniques. Then, the section 3.1 presents our design pattern.
In section 4, we apply it and observe that it fills our requirements. Finally, in section 5,
the implementation techniques are presented to explain precisely how we deal with some
pitfalls.



2 Confronting our desires with C++ template techniques

In practice, polymorphism implemented with late binding is too expensive for intensive
computing. The generative power of C++ template mechanisms is known to enable ab-
straction with limited efficiency loss. The Standard Template Library (STL) has shown the
workability of such polymorphism [4].

Yet, parameterization à la STL is unbounded. We cannot define two generic functions
with the same name and the same arity because type variables are free. The Barton and
Nackman trick [6] and other works [2] tend to reproduce the object oriented programming.
The idea is to compel the open recursion to be static, ie the static type system knows exactly
the subclasses that are used as instantiations of a particular abstract class. The following
code attempts to illustrate this idea:

/ / Th i s v e r s i o n i s v a l i d f o r any sub−c l a s s o f A.
template < c l a s s C>
void algorithm ( const A<C>& i ) ;

/ / Th i s v e r s i o n i s v a l i d f o r any sub−c l a s s o f B .
template < c l a s s C>
void algorithm ( const B<C>& i ) ;

However, the one-dimensional discrimination of a single object hierarchy is not enough
to design both the mathematical concept and the implementation. At first sight, the BRIDGE
design pattern [3], or more precisely the GENERIC BRIDGE [1] design pattern could be suit-
able. Yet, the GENERIC BRIDGE is asymmetric, it is centered on the concept. Consequently, if
the object is a concept parameterized by its implementation, specialization of type 4 is for-
bidden because of the invariance of the template argument. The following code illustrates
this:

s t r u c t Matrix { } ;
s t r u c t CompressedMatrix : public Matrix { } ;

/ / Th i s canno t be c a l l e d with arguments o f t y p e A<CompressedMatrix > .
void algorithm ( const A<Matrix >& i ) ;

3 The ELEMENT design pattern

3.1 Presentation of the design pattern

Traditionally, concepts and implementations are separated by using abstract and concrete
classes in hierarchies. Doing so, the chosen implementation for member function calls only
depends on the actual class type. Then, a concept can be denoted by an abstract class whose
subclasses are its implementations.

Our idea is to make explicit the separation between the concept and the implementation
at the object level. We compose our entities with an instance of a concept class and an
instance of an implementation.

By separating concepts and implementations in different hierarchies, we allow separate
refinements of concepts and implementation algorithms. Moreover, we allow to use the



same data type to implement distinct concepts, without the hassle of defining whole new
concrete classes.

For example, elements of a tropical semiring are distinguished by their association with
an instance of the concept (Z,max, +), and can be implemented by several basic C++ inte-
ger types. Conversely, basic C++ integer types can either represent elements of a tropical
semiring or elements of a “classical” semiring (Z,+,×), depending on the concept instance
they are linked to. In either case, a single class Element is responsible for the composition.

As demonstrated later, this design entails more freedom and specialization facilities.
For the sake of simplicity, we denote the abstract concept associated to an entity, in-

stance of class Element , its structure and the corresponding instance the structural element.

3.2 A two-component generic object

Implementation
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Fig. 2. Class diagram of the ELEMENT design pattern

The main item in this pattern is the Element class, a generic class which acts as a glue be-
tween a concept and an implementation. Indeed, the pattern can be read as Element<S ,T>
is the type of an element of set S implemented by T , or in other words Element<S ,T> structures
the value type T by S.

All services except construction and assignment are provided by decoration through
the parent class MetaElement . Class MetaElement<S ,T> serves three roles:

– to specify the interface for the class Element<S ,T> viewed as an implementation of con-
cept S denoting how any instance of T must fulfill the requirement of the concept S,

– to offer additional abstract services implemented using only services defined in the
specified interfaces,

– to link services to their external implementations.

Of course, this class must be specialized over S and T . For additional genericity, the hi-
erarchy between concepts should be mapped to a hierarchy between their specializations of
MetaElement , so that the final Element<S ,T> is decorated in correlation to the inheritance
graph of concepts.

Figure 2 describes the design pattern in UML, while figure 3 details the decoration
mechanism.



3.3 External functions as an adaptation layer

To reduce the number of MetaElement specializations, default code for concept require-
ment implementation is needed. We could define it directly in the specialization of MetaElement<S ,T>
for S fixed and T free, assuming the presence of methods and inner types (such as begin()
/ end() , iterator , etc). Yet, this solution inhibits implementation with partial default be-
havior. Moreover, this forces implementations to be C++ classes, whereas C++ builtin types
or externally-defined structures can also be wanted as implementation types.

We decided to use external functions to define how the implementation fulfills con-
cept requirements. Therefore, any MetaElement specialization is just a way to choose what
external functions are to be used. Doing so, we introduce a fine grained specification of
implementation services. At the same time, we also solve some binary method problems.

4 Applying the pattern: decomposition for specialization control

Given class Element , we can decompose any entity, or Element instance, for typing pur-
pose. The following listing illustrates generic way to implement algorithms over Element :

/ / G e n e r i c wrapper
template < typename S , typename T>
void algorithm ( const Element<S , T>& e )
{

/ / C a l l t h e i m p l e m e n t a t i o n , decompos ing
/ / t h e Element i n s t a n c e a l o n g t h e way .
return algorithm_impl ( e . s e t ( ) , e . value ( ) , e ) ;

}

Once this framework is set up, implementations of algorithms can be specialized in
any of the directions illustrated in figure 1. This is done by the following constructions:

/ / Type 1 : t h e c o n c e p t and v a l u e t y p e a r e f i x e d .
void algorithm_impl ( const S1& s , const T1& v , const Element<S1 , T1>& e ) ;

/ / Type 2 : c o n c e p t f i x e d , g e n e r i c i m p l e m e n t a t i o n f o r any v a l u e t y p e .
template < c l a s s T>
void algorithm_impl ( const S1& s , const T& v , const Element<S1 , T>& e ) ;

/ / Type 3 : v a l u e t y p e f i x e d , g e n e r i c i m p l e m e n t a t i o n f o r any c o n c e p t .
template < c l a s s S>
void algorithm_impl ( const S& s , const T1& v , const Element<S , T1>& e ) ;

/ / Type 4 : g e n e r i c i m p l e m e n t a t i o n f o r any sub−c o n c e p t o f S1 .
template < c l a s s S , c l a s s T>
void algorithm_impl ( const S1& s , const T& v , const Element<S , T>& e ) ;

/ / Type 5 : g e n e r i c i m p l e m e n t a t i o n f o r any v a l u e sub−c l a s s o f T1 .
template < c l a s s S , c l a s s T>
void algorithm_impl ( const S& s , const T1& v , const Element<S , T>& e ) ;

/ / Type 6 : g e n e r i c i m p l e m e n t a t i o n f o r any sub−c l a s s o f ( S1 , T1 ) .



template < c l a s s S , c l a s s T>
void algorithm_impl ( const S1& s , const T1& v , const Element<S , T>& e ) ;

5 Implementation of class Element

5.1 Design considerations

The implementation of class template Element , and therefore the whole structure of the
design pattern, was subject to the following guidelines:

– object instances of class Element should behave as “naturally” as possible w.r.t. the user.
Especially, a user who has no experience with the library should be able to infer most
of the use cases of Element from simple examples.

– the behavior and the set of available services in class Element can change depending
on its static parameters. For example, instances of Element intended to represent val-
ues in an algebraic semiring have a star() method. Similarly, instances intended to
represent automata have an add_state() method.

– at any time, a reference to the structural element of an Element instance can be retrieved
with no computation cost. For example, it is possible from an instance of Element in-
tended to represent a word to retrieve the whole alphabet over which it is defined.

– singleton structures should induce no memory footprint in Element instances. For ex-
ample, there is no run-time data associated with the canonical semiring structural el-
ement surrounding the basic C++ types (int , short , ...). Therefore corresponding
Element instances should be as small (from the C++ compiler’s point of view) as the
basic C++ types used as value types, for optimization purposes.

There are three facets in the current implementation of class Element , closely related to
the requirements presented above.

5.2 Element<S , T> as a wrapper around T

Because Element<S ,T> is actually a wrapper around type T , its main role is to aggregate a
value of type T . Therefore, a number of basic services to handle the value data are provided
by class Element , presented in table 1. Their use is valid iff the corresponding requirements
over type T are met.

These basic services are trivially implemented using only the properties of type T . They
are therefore distinct from all additional services presented below, which also depend on
type S and on the availability of related operators.

5.3 Element<S , T> as an element of a set

The power of our design pattern is that the same data type T can be structured by several
distinct structural elements.

However, parameterization of class Element by the static type of its structure S is usu-
ally not sufficient. Indeed, a structure type S may denote several different structural el-
ements with distinct behavioral influences on Element<S ,T>. For instance, this can be
observed in Vaucanson when using tropical semirings where the special infinity value is



Description Example use Requirements
Referencing Element<S,T>& e; (none)

const Element<S,T>& ce;
Access to the aggregated value T& v = e.value();

const T& cv = ce.value();
Default construction Element<S,T> ev; T default-constructible
Copy construction Element<S,T> ev(ce); T copy-constructible
Construction from a value Element<S,T> ev(cv);
Assignment ev = e; T assignable
Destruction T destructible

Table 1. Services of class Element<S ,T>

dynamically defined: the static type information (TropicalSemiring) is not sufficient to ex-
press the correct computation of addition and multiplication in the semiring, because the
actual, dynamic value for infinity must be tested.

Because of this, we chose to hold a reference to the structural element in each object
instances of Element<S ,T>. For this purpose, Element<S ,T> aggregates a reference to
an instance of S via a mechanism presented in section 5.5. This reference can be retrieved
with the set() method. For consistency purposes, the following properties must hold:

– once defined, the structural element of an Element instance cannot be changed nor
modified; this is virtually ensured by set() returning a “const” reference.

– structural elements must be classifiable by means of operator== ; this helps keeping1

global instances of structures, using unique references to designate unique structural
elements, for efficient by-reference comparisons.

Linking Element instances to structural elements is done at instantiation time, using the
following construct:

Element<S , T> e ( /∗ s t r u c t u r a l e l e m e n t ∗ / s , /∗ v a l u e ∗ / v ) ;

Take note of the additional argument s given to the constructor of class Element . This
construction does not invalidate the construction style presented in table 1; in fact, Element
instances that have been constructed without giving a reference to the structural element
are in a state called “transitional”, during which only the basic operations are valid. Passing
to the normal state is done by post-construction binding to a structural element with the
attach() method:

Element<S , T> e ( v ) ;
/ / Here e i s in t h e t r a n s i t i o n a l , i n c o m p l e t e s t a t e .
e . a t t a c h ( s ) ;
/ / Now e i s f u l l y d e f i n e d .

5.4 Subjecting the behavior of values to structures

The design of class Element targeted maximum extensibility via template specialization
and method overloading, as presented in section 1.2. It was achieved by delegating com-
putation for all services offered by class Element to global functions with special names (of

1 The uniqueness is ensured by a global type table discussed in section 5.6.



the form op_X, for each operation X). These can then be refined via template specialization
and function overloading (as in section 4).

By default, this delegation is set up for all standard C++ operations; table 2 shows how
delegations are expressed and table 3 shows the mapping between standard C++ opera-
tions and special function names.

Description Operation Function call
binary operations e1 Op e2 op_##OpName(e1.set(), e2.set(),

e1.value(), e2.value())
e1 Op v1 op_##OpName(e1.set(), e1.value(), v1)
v1 Op e1 op_##OpName(e1.set(), v1, e1.value())
e1 Op v2 op_##OpName(e1.set(), e1.value(),

op_convert(e1.set(),
SELECT(T1), v2))

v1 Op e2 op_##OpName(e2.set(),
op_convert(e2.set(),

SELECT(T2), v1),
e2.value())

difference e1 != e2 !(e1 == e2)
comparison e1 > e2 e2 < e1

e1 >= e2 !(e1 < e2)
e1 <= e2 !(e2 < e1)

negation - e1 op_neg(e1.set(), e1.value())
prefix incr. and decr. Op e1 op_in_##OpName(e1.set(), e1.value())
postfix incr. and decr. e1 Op Element<S1,T1> copy(e1); Op copy

e1 : Element<S1, T1>, e2 : Element<S2, T2>, v1 : T1, v2 : T2

Table 2. Delegation of standard C++ operations to function calls

operator+() op_add
binary operator-() op_sub

operator*() op_mul
operator/() op_div
operator%() op_mod

operator+=() op_in_add
operator-=() op_in_sub
operator*=() op_in_mul
operator/=() op_in_div
operator%=() op_in_mod

operator=() op_assign
operator==() op_eq
operator<() op_lt

prefix operator++() op_in_inc
prefix operator--() op_in_dec
unary operator-() op_neg

swap() op_swap

Table 3. Mapping between C++ operator names and function names

Distinction between sets of delegations is made by parameterized inheritance of class
Element . Indeed, Element<S ,T> inherits from MetaElement<S ,T>, which is by default
empty but can be specialized to provide additional methods. For example, in Vaucanson



delegations such as star() (op_star ) for semiring elements or add_state (op_add_state )
for automata, have been added.

As a matter of fact, all the standard delegations are set up in Element ’s root parent class,
SyntacticDecorator , from which each specialization of MetaElement must inherit directly or
indirectly.

Figure 3 shows a UML description of the model.

Fig. 3. Model for Element

5.5 Eliding references to structural elements

As presented in section 5.3, Element<S ,T> holds a reference to its structural element, an
instance of type S. However in many cases a structural element is entirely defined by its
static type S, i.e., there is no useful dynamic data associated to instances of S.

In these cases, a simple aggregation of a C++ reference (pointer) in Element<S ,T>
would be a waste of memory space and time (for allocation and copy of the unneeded
reference).

We avoided this waste by the encapsulation of the aggregation through a dedicated
class, SetSlot . SetSlot derives from class SetSlotAttribute, parameterized by S and a Boolean
value: the specialization of SetSlotAttribute for the Boolean true actually has a pointer at-
tribute, whereas its default specialization has no such attribute but an accessor that returns
a null reference.

When instantiating SetSlot , the Boolean attribute passed to the parent instance of SetSlotAttribute
is taken from the value of dynamic_traits<S>::ret , dynamic_traits being a helper



which defaults its attribute ret to false but can be specialized for any structure type
S.

This mechanism is illustrated on figure 4.

Fig. 4. Intelligent aggregation of references to structural elements

5.6 Ensuring unique instances of structural elements

To allow efficient by-reference comparison of structural elements, a mechanism was set
up to ensure that all Element instances sharing the same dynamic type (structurally equal
structural elements) share the same reference to a unique structural element.

Practically, it ensures that if any two distinct Element<S ,T> instances e1 and e2 were
instantiated from distinct structural elements s1 and s2 verifying s1 == s2 , then the
property &e1.set() == &e2.set() always holds even if &s1 != &s2 .

This was done by implementing an operator that keeps, for each static type S, a list of
all distinct instances. It reports for any instance of S the address of the equivalent instance
in the list, adding it to the list if necessary.

This mechanism therefore implies two requirements over S for Element<S ,T>:

– S must possess an equivalence operator== ,
– S must be copy-constructible, and values created by copy construction must be equal

by means of operator== .

It is important to notice that this implementation is only efficient when there are few
distinct instances of any structure. When a structure has many instances, containers such
as std::set (requiring operator< over structural elements) or hash maps (requiring a
hash function) could replace the list.



5.7 Return types for operators

Most operations over Element instances return values whose types are independent from
their arguments. That is, the return type can either be the same Element type or another
basic or compound C++ type. However, some operators, especially arithmetical opera-
tors, should return a type computed from the types of its arguments. In Vaucanson this is
shown, for instance, in the multiplication of a polynom by a weight or the lazy transposition
of an automaton, which returns its argument encapsulated in a dedicated TransposeView
adapter.

For this purpose, most operators are associated with a dedicated trait structure which
computes the return type from both the structure type and value type; the generalized form
for operators is thus:

template <typename S1 , typename S2 , typename T1 , typename T2>
typename op_##OpName## _ t r a i t s <S1 , S2 , T1 , T2 > : : r e t _ t
operator Op( const Element<S1 , T1 >& , const Element<S2 , T2>&)

with op_##OpName##_traits being specialized as needed.
Of course, since it represents the most widely used case, the default return type for

op_##OpName##_traits<S, S, T, T> is Element<S ,T>.

6 Conclusion

The ELEMENT design pattern is relevant for the orthogonal algorithm specialization prob-
lem, and we are thus using it successfully in Vaucanson. The idea can be generalized to
problems where objects are built with more than two orthogonal components. Therefore,
we hope that this design pattern will be used in other fields.

Finally, we want to thanks Astrid Wang-Reboud, David Lesage, Nicolas Burrus, Niels
Van-Vliet and Akim Demaille for their advises about both technical and writing issues.
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