
Hierarchical Wrapper Induction for Semistructured

Information Sources

Ion Muslea, Steven Minton, Craig A. Knoblock
Information Sciences Institute and Integrated Media Systems Center
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292-6695

fmuslea, minton, knoblockg@isi.edu

September 10, 1999

Abstract. With the tremendous amount of information that becomes available
on the Web on a daily basis, the ability to quickly develop information agents
has become a crucial problem. A vital component of any Web-based information

agent is a set of wrappers that can extract the relevant data from semistructured
information sources. Our novel approach to wrapper induction is based on the idea of

hierarchical information extraction, which turns the hard problem of extracting data
from an arbitrarily complex document into a series of simpler extraction tasks. We

introduce an inductive algorithm, stalker, that generates high accuracy extraction
rules based on user-labeled training examples. Labeling the training data represents

the major bottleneck in using wrapper induction techniques, and our experimental

results show that stalker requires up to two orders of magnitude fewer examples

than other algorithms. Furthermore, stalker can wrap information sources that

could not be wrapped by existing inductive techniques.

Keywords: wrapper induction, information extraction, supervised inductive learn-

ing, information agents

1. Introduction

With the Web, computer users have gained access to a large variety of

comprehensive information repositories. However, the Web is based on

a browsing paradigm that makes it di�cult to retrieve and integrate

data from multiple sources. The most recent generation of information

agents (e.g., WHIRL (Cohen, 1998), Ariadne (Knoblock et al., 1998),

and Information Manifold (Kirk et al., 1995)) address this problem
by enabling information from pre-speci�ed sets of Web sites to be

accessed via database-like queries. For instance, consider the query

\What seafood restaurants in L.A. have prices below $20 and accept

the Visa credit-card?" Assume that we have two information sources

that provide information about LA restaurants: the Zagat Guide and

LA Weekly (see Figure 1). To answer this query, an agent could use

Zagat's to identify seafood restaurants under $20 and then use LA

Weekly to check which of these accept Visa.

c 1999 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 19/11/1999; 16:12; p.1

2 Ion Muslea, Steven Minton, Craig A. Knoblock

Information agents generally rely on wrappers to extract information

from semistructured Web pages (a document is semistructured if the

location of the relevant information can be described based on a concise,

formal grammar). Each wrapper consists of a set of extraction rules

and the code required to apply those rules. Some systems, such as

tsimmis (Chawathe et al., 1994) and araneus (Atzeni et al., 1997)

depend on humans to write the necessary grammar rules. However,

there are several reasons why this is undesirable. Writing extraction

rules is tedious, time consuming and requires a high level of expertise.

These di�culties are multiplied when an application domain involves a

large number of existing sources or the format of the source documents

changes over time.

In this paper, we introduce a new machine learning method for

wrapper construction that enables unsophisticated users to painlessly

turn Web pages into relational information sources. The next section

presents a formalism describing semistructured Web documents, and

then Sections 3 and 4 present a domain-independent information ex-

tractor that we use as a skeleton for all our wrappers. Section 5 de-

scribes stalker, a supervised learning algorithm for inducing extrac-

tion rules, and Section 6 presents a detailed example. The �nal sections

describe our experimental results, related work and conclusions.

2. Describing the Content of a Page

Because Web pages are intended to be human readable, there are some

common conventions for structuring HTML documents. For instance,

the information on a page often exhibits some hierarchical structure;

furthermore, semistructured information is often presented in the form

of lists of tuples, with explicit separators used to distinguish the dif-

ferent elements. With these observations in mind, we developed the

embedded catalog (EC) formalism, which can describe the structure of

a wide-range of semistructured documents.

The EC description of a page is a tree-like structure in which the

leaves are the items of interest for the user (i.e., they represent the
relevant data). The internal nodes of the EC tree represent lists of k-

tuples (e.g., lists of restaurant descriptions), where each item in the

k-tuple can be either a leaf l or another list L (in which case L is called

an embedded list). For instance, Figure 2 displays the EC descriptions

of the LA-Weekly and Zagat pages. At the top level, an LA-Weekly

page is a list of 5-tuples that contain the name, address, phone,

review, and an embedded list of credit cards. Similarly, a Zagat

document can be seen as a 7-tuple that includes a list of addresses,

paper.tex; 19/11/1999; 16:12; p.2

Hierarchical Wrapper Induction for Semistructured Information Sources 3

Figure 1. LA-Weekly and Zagat's Restaurant Descriptions

name address phone review

credit_card

LIST(CreditCards)

LA−Weekly Document

LIST(Restaurant)

ZAGAT Document

name food decor service cost LIST(Addresses) review

street city area−code phone−number

Figure 2. EC description of LA-Weekly and ZAGAT pages.

where each individual address is a 4-tuple street, city, area-code,

and phone-number.

3. Extracting Data from a Document

In order to extract the items of interest, a wrapper uses the EC descrip-

tion of the document and a set of extraction rules. For each node in the

tree, the wrapper needs a rule that extracts that particular node from

its parent. Additionally, for each list node, the wrapper requires a list

iteration rule that decomposes the list into individual tuples. Given the
EC tree and the rules, any item can be extracted by simply determining

the path P from the root to the corresponding node and by successively

extracting each node in P from its parent. If the parent of a node x is a

list, the wrapper applies �rst the list iteration rule and then it applies

x's extraction rule to each extracted tuple.

In our framework a document is a sequence of tokens S (e.g., words,

numbers, HTML tags, etc). It follows that the content of the root node

in the EC tree is the whole sequence S, while the content of each of

paper.tex; 19/11/1999; 16:12; p.3

4 Ion Muslea, Steven Minton, Craig A. Knoblock

1: <p> Name: Yala <p> Cuisine: Thai <p><i>

2: 4000 Colfax, Phoenix, AZ 85258 (602) 508-1570

3: </i>
 <i>

4: 523 Vernon, Las Vegas, NV 89104 (702) 578-2293

5: </i>
 <i>

6: 403 Pico, LA, CA 90007 (213) 798-0008

7: </i>

Figure 3. A simpli�ed version of a Zagat document.

its children is a subsequence of S. More generally, the content of an

arbitrary node x represents a subsequence of the content of its parent

p. A key idea underlying our work is that the extraction rules can be

based on \landmarks" (i.e., groups of consecutive tokens) that enable

a wrapper to locate the content of x within the content of p.

For instance, let us consider the restaurant descriptions presented

in Figure 3. In order to identify the beginning of the restaurant name,

we can use the rule

R1 = SkipTo()

which has the following meaning: start from the beginning of the doc-

ument and skip everything until you �nd the landmark. More

formally, the rule R1 is applied to the content of the node's parent,

which in this particular case is the whole document; the e�ect of ap-

plying R1 consists of consuming the pre�x of the parent, which ends

at the beginning of the restaurant name. Similarly, one can identify

the end of a node's content by applying a rule that consumes the

corresponding su�x of the parent. For instance, in order to �nd the

end of the restaurant name, one can apply the rule

R2 = SkipTo()

from the end of the document towards its beginning.

The rules R1 and R2 are called start and end rules, and, in most of

the cases, they are not unique. For instance, instead of R1 we can use

R3 = SkipTo(Name) SkipTo()

or

R4 = SkipTo(Name Punctuation HtmlTag)

paper.tex; 19/11/1999; 16:12; p.4

Hierarchical Wrapper Induction for Semistructured Information Sources 5

R3 has the meaning \ignore everything until you �nd a Name landmark,

and then, again, ignore everything until you �nd ", while R4 is

interpreted as \ignore all tokens until you �nd a 3-token landmark

that consists of the token Name, immediately followed by a punctuation

symbol and an HTML tag." As the rules above successfully identify

the start of the restaurant name, we say that they match correctly.

By contrast, the start rules SkipTo(:) and SkipTo(<i>) are said to

match incorrectly because they consume too few or too many tokens,

respectively (in stalker terminology, the former is an early match,

while the later is a late match). Finally, a rule like SkipTo(<table>)

fails because the landmark <table> does not exist in the document.

To deal with variations in the format of the documents, our ex-

traction rules allow the use of disjunctions. For example, if the names

of the recommended restaurants appear in bold, while the other ones

are displayed as italic, one can extract all the names based on the

disjunctive start and end rules

either SkipTo()

or SkipTo(<i>)

and

either SkipTo()

or SkipTo(Cuisine)SkipTo(</i>)

Disjunctive rules, which represent a special type of decision lists (Rivest,

1987), are ordered lists of individual disjuncts. Applying a disjunctive

rule is a straightforward process: the wrapper succesively applies each

disjunct in the list until it �nds the �rst one that matches (see more

details in the next section's footnote).

To illustrate how the extraction process works for list members,

consider the case where the wrapper has to extract all the area codes

from the sample document in Figure 3 . In this case, the wrapper starts

by extracting the entire list of addresses, which can be done based on

the start rule SkipTo(<p><i>) and the end rule SkipTo(</i>). Then
the wrapper has to iterate through the content of list of addresses (lines

2-6 in Figure 3) and to break it into individual tuples. In order to �nd

the start of each individual address, the wrapper starts from the �rst

token in the parent and repeatedly applies SkipTo(<i>) to the content

of the list (each successive rule-matching starts at the point where

the previous one ended). Similarly, the wrapper determines the end of

each Address tuple by starting from the last token in the parent and

repeatedly applying the end rule SkipTo(</i>). In our example, the

paper.tex; 19/11/1999; 16:12; p.5

6 Ion Muslea, Steven Minton, Craig A. Knoblock

list iteration process leads to the creation of three individual addresses

that have the contents shown on the lines 2, 4, and 6, respectively.

Then the wrapper applies to each address the area-code start and end

rule (e.g., SkipTo(`(`) and SkipTo(`)`), respectively).

Now let us assume that instead of the area codes, the wrapper has

to extract the ZIP Codes. The list extraction and the list iteration

remain unchanged, but the ZIP Code extraction is more di�cult be-

cause there is no landmark that separates the state from the ZIP Code.

Even though in such situations the SkipTo() rules are not su�ciently

expressive, they can be easily extended to a more powerful extraction

language. For instance, we can use

R5 = SkipTo(,) SkipUntil(Number)

to extract the ZIP Code from the entire address. The argument of

SkipUntil() describes a pre�x of the content of the item to be extracted,

and it is not consumed when the rule is applied (i.e., the rule stops im-

mediately before its occurrence). The rule R5 means \ignore all tokens

until you �nd the landmark ',', and then ignore everything until you

�nd, but do not consume, a number". Rules like R5 are extremely

useful in practice, and they represent only variations of our SkipTo()

rules (i.e., the last landmark has a special meaning). In order to keep the

presentation simple, the rest of the paper focuses mainly on SkipTo()

rules. When necessary, we will explain the way in which we handle the

SkipUntil() construct.

The extraction rules presented in this section have two main advan-

tages. First of all, the hierarchical extraction based on the EC tree

allows us to wrap information sources that have arbitrary many levels

of embedded data. Second, as each node is extracted independently of

its siblings, our approach does not rely on there being a �xed ordering

of the items, and we can easily handle extraction tasks from docu-

ments that may have missing items or items that appear in various

orders. Consequently, in the context of using an inductive algorithm

that generates the extraction rules, our approach turns an extremely

hard problem into several simpler ones: rather then �nding a single

extraction rule that takes into account all possible item orderings and

becomes more complex as the depth of the EC tree increases, we create

several simpler rules that deal with the easier task of extracting each

item from its EC tree parent.

paper.tex; 19/11/1999; 16:12; p.6

Hierarchical Wrapper Induction for Semistructured Information Sources 7

4. Extraction Rules as Finite Automata

We now introduce two key concepts that can be used to de�ne extrac-

tion rules: landmarks and landmark automata. In the rules described

in the previous section, each argument of a SkipTo() function is a

landmark, while a group of SkipTo() functions that must be applied in

a pre-established order represents a landmark automaton. In our frame-

work, a landmark is a sequence of tokens and wildcards (a wildcard

represents a class of tokens, as illustrated in the previous section, where

we used wildcards like Number and HtmlTag). Such landmarks are

interesting for two reasons: on one hand, they are su�ciently expressive

to allow e�cient navigation within the EC structure of the documents,

and, on the other hand, as we will see in the next section, there is a

simple way to generate and re�ne them.

Landmark automata (LAs) are nondeterministic �nite automata in

which each transition Si ! Sj (i 6= j) is labeled by a landmark li;j ;

that is, the transition

Si

li;j

! Sj

takes place if the automaton is in the state Si and the landmark li;j
matches the sequence of tokens at the input. Linear landmark automata

are a class of LAs that have the following properties:

- a linear LA has a single accepting state;

- from each non-accepting state, there are exactly two possible transi-

tions: a loop to itself, and a transition to the next state;

- each non-looping transition is labeled by a landmarks;

- all looping transitions have the meaning \consume all tokens until

you encounter the landmark that leads to the next state".

The extraction rules presented in the previous section are ordered lists

of linear LAs. In order to apply such a rule to a given sequence of

tokens S, we apply the linear LAs to S in the order in which they
appear in the list. As soon as we �nd an LA that matches within S,

we stop the matching process1.

1 Disjunctive iteration rules are applied in a slightly di�erent manner. As we
already said, iteration rules are applied repeatedly on the content of the whole

list. Consequently, by blindly selecting the �rst matching disjunct, there is a risk
of skipping over several tuples until we �nd the �rst tuple that can be extracted

based on that particular disjunct! In order to avoid such problems, a wrapper that
uses a disjunctive iteration rule R applies the �rst disjunct D in R that ful�lls the

paper.tex; 19/11/1999; 16:12; p.7

8 Ion Muslea, Steven Minton, Craig A. Knoblock

E1: 513 Pico, Venice, Phone: 1- 800 -555-1515

E2: 90 Colfax, Palms , Phone: (818) 508-1570

E3: 523 1st St., LA , Phone: 1- 888 -578-2293

E4: 403 La Tijera, Watts , Phone: (310) 798-0008

Figure 4. Four examples of restaurant addresses.

In the next section we present the stalker inductive algorithm that

generates rules that identify the start and end of an item x within its

parent p. Note that �nding a start rule that consumes the pre�x of p

with respect to x (for short Prefixx(p)) is similar to �nding an end

rule that consumes the su�x of p with respect to x (i.e., Suffixx(p));

in fact, the only di�erence between the two types of rules consists of

how they are actually applied: the former starts by consuming the �rst

token in p and goes towards the last one, while the later starts at the

last token in p and goes towards the �rst one. Consequently, without

any loss of generality, in the rest of this paper we discuss only the way

in which stalker generates start rules.

5. Learning Extraction Rules

The input to stalker consists of sequences of tokens representing the

pre�xes that must be consumed by the induced rule. To create such
training examples, the user has to select a few sample pages and to use

a graphical user interface (GUI) to mark up the relevant data (i.e., the

leaves of the EC tree); once a page is marked up, the GUI generates the

sequences of tokens that represent the content of the parent p, together

with the index of the token that represents the start of x and uniquely

identi�es the pre�x to be consumed.

Before describing our rule induction algorithm, we will present an

illustrative example. Let us assume that the user marked the four area

codes from Figure 4 and invokes stalker on the corresponding four

training examples (that is, the pre�xes of the addresses E1, E2, E3,

and E4 that end immediately before the area code). stalker, which

is a sequential covering algorithm, begins by generating a linear LA

following two criteria. First, D matches within the content of the list. Second, any
two disjuncts D1 and D2 in R that are applied in succession either fail to match, or

match later than D (i.e., one can not generate more tuples by using a combination
of two or more other disjuncts).

paper.tex; 19/11/1999; 16:12; p.8

Hierarchical Wrapper Induction for Semistructured Information Sources 9

(remember that each such LA represents a disjunct in the �nal rule)

that covers as many as possible of the four positive examples. Then it

tries to create another linear LA for the remaining examples, and so

on. Once stalker covers all examples, it returns the disjunction of all

the induced LAs. In our example, the algorithm generates �rst the rule

D1 ::= SkipTo((), which has two important properties:

- it accepts the positive examples in E2 and E4;

- it rejects both E1 and E3 because D1 can not be matched on them.

During a second iteration, the algorithm considers only the uncovered

examples E1 and E3, based on which it generates the rule

D2 ::= SkipTo(-).

As there are no other uncovered examples, stalker returns the dis-

junctive rule either D1 or D2.

To generate a rule that extracts an item x from its parent p, stalker

invokes the function LearnRule() (see Figure 5). This function takes

as input a list of pairs (Ti, Idxi), where each sequence of tokens Ti is

the content of an instance of p, and Ti[Idxi] is the token that represents

the start of x within p. Any sequence S ::= Ti[1], Ti[2], . . . , Ti[Idxi � 1]

(i.e., any instance of Prefixx(p)) represents a positive example, while

any other sub-sequence or super-sequence of S represents a negative

example. stalker tries to generate a rule that accepts all positive

examples and rejects all negative ones.

stalker is a typical sequential covering algorithm: as long as there

are some uncovered positive examples, it tries to learn a perfect disjunct

(i.e., a linear LA that accepts only true positives). When all the positive

examples are covered, stalker returns the solution, which consists

of an ordered list of all learned disjuncts. The ordering is performed

by the function OrderDisjuncts() and is based on a straightforward

heuristic: the disjuncts with fewer early and late matches should appear

earlier; in case of a tie, the disjuncts with more correct matches are

preferred to the other ones.

The function LearnDisjunct() is a greedy algorithm for learning
perfect disjuncts: it generates an initial set of candidates and repeat-

edly selects and re�nes the best re�ning candidate until it either �nds a

perfect disjunct, or runs out of candidates. Before returning a learned

disjunct, stalker invokes PostProcess(), which tries to improve the

quality of the rule (i.e., it tries to reduce the chance that the disjunct

will match a random sequence of tokens). This step is necessary because

during the re�ning process each disjunct is kept as general as possible

in order to potentially cover a maximal number of examples; once the

paper.tex; 19/11/1999; 16:12; p.9

10 Ion Muslea, Steven Minton, Craig A. Knoblock

LearnRule(Examples)

- let RetV al be an empty rule

- WHILE Examples 6= ;
- aDisjunct =LearnDisjunct(Examples)

- remove all examples covered by aDisjunct

- add aDisjunct to RetV al

- return OrderDisjuncts(RetV al)

LearnDisjunct(Examples)

- let Seed 2 Examples be the shortest example

- Candidates = GetInitialCandidates(Seed)

- DO

- BestRefiner = GetBestRe�ner(Candidates)

- BestSolution = GetBestSolution(Candidates [fBestSolutiong)

- Candidates = Re�ne(BestRefiner; Seed)

WHILE IsNotPerfect(BestSolution) AND BestRefiner 6= ;
- return PostProcess(BestSolution)

Re�ne(C; Seed)

- let C consist on the consecutive landmarks l1, l2, � � �, ln
- let TopologyRefs = LandmarkRefs = ;
- FOR i = 1 TO n DO

- let m be the number of tokens in li

- FOR EACH token t in Seed DO

- in a copy Q of C, add the 1-token landmark t between li and li+1
- create one such rule for each wildcard that matches t

- add all these new rules to TopologyRefs

- FOR EACH sequence s = t0t1 � � � tm+1 in Seed DO

- IF Matches(li, s) THEN

- let P = Q = C

- in P , replace li by t0li
- in Q, replace li by litm+1

- create similar rules for each wildcard that matches t0 and tm+1

- add both P and Q to LandmarkRefs

- return TopologyRefs [LandmarkRefs

Figure 5. The stalker algorithm.

paper.tex; 19/11/1999; 16:12; p.10

Hierarchical Wrapper Induction for Semistructured Information Sources 11

re�ning ends, we post-process the disjunct in order to minimize its

potential interference with other disjuncts2.

Both the initial candidates and their re�ned versions are generated

based on a seed example, which is the shortest uncovered example (i.e.,

the example with the smallest number of tokens in Prefixx(p)). For

each token t that ends the seed example and for each wildcard wi that

\matches" t, stalker creates an initial candidate that is a 2-state LA.

In each such automaton, the transition S0 ! S1 is labeled by a land-

mark that is either t or one of the wildcards wi. The rationale behind

this choice is straightforward: as disjuncts have to completely consume

each positive example, it follows that any disjunct that consumes a

t-ended pre�x must end with a landmark that consumes the trailing t.

Before describing the actual re�ning process, let us present the main

intuition behind it. If we reconsider now the four training examples

in Figure 4, we see that stalker starts with the initial candidate

SkipTo((), which is a perfect disjunct; consequently, stalker removes

the covered examples (E2 and E4) and generates the new initial can-

didate R0::=SkipTo(). Note that R0 matches early in both un-

covered examples E1 and E3 (that is, it does not consume the whole

Prefixx(p)), and, even worse, it also matches within the two already

covered examples! In order to obtain a better disjunct, stalker re�nes

R0 by adding more terminals to it. During the re�ning process, we

search for new candidates that consume more tokens from the pre�xes
of the uncovered examples and fail on all other examples. By adding

more terminals to a candidate, we hope that its re�ned versions will

eventually turn the early matches into correct ones, while the late

matches3, together with the ones on the already covered examples, will

become failed matches. This is exactly what happens when we re�ne

R0 into R2 ::= SkipTo(-): the new rule does not match anymore

on E2 and E4, and R0's early matches on E1 and E3 become correct

matches for R2.

2 We perform three types of post processing operations: replacing wildcards

with tokens, merging landmarks that match immediately after each other, and

adding more tokens to the short landmarks (e.g., SkipTo() is likely to match

in most html documents, while SkipTo(Maritime Claims :) matches in sig-
ni�cantly fewer). The last operation has a marginal inuence because it improves

the accuracies of only three of the rules discussed in Section 7.
3 As explained in Section 3, a disjunct D that consumes more tokens than

Prefixx(p) is called a late match on p. It is easy to see that by adding more terminals

to D we can not turn it into an early or a correct match (any re�ned version of D is
guaranteed to consume at least as many tokens as D itself). Consequently, the only

hope to avoid an incorrect match of D on p is to keep adding terminals until it fails

to match on p.

paper.tex; 19/11/1999; 16:12; p.11

12 Ion Muslea, Steven Minton, Craig A. Knoblock

The Re�ne() function in Figure 5 tries to obtain (potentially) bet-

ter disjuncts either by making its landmarks more speci�c (landmark

re�nements), or by adding new states in the automaton (topology re-

�nements). In order to perform a re�nement, stalker uses a re�ning

terminal, which can be either a token or a wildcard (besides the nine

prede�ned wildcards Anything, Numeric, AlphaNumeric, Alphabetic,

Capitalized, AllCaps, HtmlTag, NonHtml, and Punctuation, stalker

can also use domain speci�c wildcards that are de�ned by the user). A

straightforward way to generate the re�ning terminals consists of using

all the tokens in the seed example, together with the wildcards that

match them.4.

Given a disjunct D, a landmark l from D, and a re�ning terminal t,

a landmark re�nement makes l more speci�c by concatenating t either

at the beginning or at the end of l. By contrast, a topology re�nement

adds a new state S and leaves the existing landmarks unchanged. For

instance, if D has a transition

A

l

! B

(i.e., the transition from A to B is labeled by the landmark l), then

given a re�ning terminal t, a topology re�nement creates a new disjunct

in which the transition above is replaced by

A

t

! S

l

! B:

As one might have noted already, LearnDisjunct() uses di�erent

heuristics for selecting the best re�ning candidate and the best current

solution, respectively. This fact has a straightforward explanation: as

long as we try to further re�ne a candidate, we do not care how well

it performs the extraction task. In most of the cases, a good re�ning

candidate matches early on as many as possible of the uncovered ex-

amples; once a re�ning candidate extracts correctly from some of the

training examples, any further re�nements are used mainly to make it

fail on the examples on which it still matches incorrectly.

Both sets of heuristics are described in Figure 6. As we already said,

GetBestRe�ner() prefers candidates with a larger potential coverage

(i.e., as many as possible early and correct matches). At equal coverage,

it prefers a candidate with more early matches because, at the intuitive

level, we prefer the most \regular" features in a document: a candidate

4 In the current implementation, stalker uses a more e�cient approach: for the

re�nement of a landmark l, we use only the tokens from the seed example that are
located after the point where l currently matches within the seed example.

paper.tex; 19/11/1999; 16:12; p.12

Hierarchical Wrapper Induction for Semistructured Information Sources 13

BestRe�ner() BestSolution()

Prefer candidates that have: Prefer candidates that have:

- larger coverage - more correct matches

- more early matches - more failures to match

- more failed matches - fewer tokens in SkipUntil()

- fewer wildcards - fewer wildcards

- shorter unconsumed pre�xes - longer end-landmarks

- fewer tokens in SkipUntil() - shorter unconsumed pre�xes

- longer end-landmarks

Figure 6. The stalker heuristics.

that has only early matches is based on a regularity shared by all

examples, while a candidate that also has some correct matches creates

a dichotomy between the examples on which the existing landmarks

work perfectly and the other ones. In case of a tie, stalker selects the

disjunct with more failed matches because the alternative would be late

matches, which will have to be eventually turned into failed matches by

further re�nements. All things being equal, we prefer candidates that

have fewer wildcards (a wildcard is more likely than a token to match by

pure chance), fewer unconsumed tokens in the covered pre�xes (after

all, the main goal is to fully consume each pre�x), and fewer tokens

from the content of the slot to be extracted (the main assumption in

wrapper induction is that all documents share the same underlying

structure; consequently, we prefer extraction rules based on the docu-

ment template to the ones that rely on the structure of a particular

slot). Finally, the last heuristic consists of selecting the candidate that

has longer landmarks closer to the item to be extracted; that is, we

prefer more speci�c \local context" landmarks.

In order to pick the best current solution, stalker uses a di�erent

set of criteria. Obviously, it starts by selecting the candidate with the

most correct matches. If there are several such disjuncts, it prefers the

one that fails to match on most of the remaining examples (remem-

ber that the alternatives, early or late matches, represent incorrect

matches!). In case of a tie, for reasons similar to the ones cited above,
we prefer candidates that have fewer tokens from the content of the

item, fewer wildcards, longer landmarks closer to the item's content,

and fewer unconsumed tokens in the covered pre�xes (i.e., in case of

incorrect match, the result of the extraction contains fewer irrelevant

tokens).

Finally, stalker can be easily extended such that it also uses

SkipUntil() constructs. The rule re�ning process remains unchanged

(after all, SkipUntil() changes only the meaning of the last landmark

paper.tex; 19/11/1999; 16:12; p.13

14 Ion Muslea, Steven Minton, Craig A. Knoblock

in a disjunct), and the only modi�cation involves GenerateInitial-

Candidates(). More precisely, for each terminal t that matches the

�rst token in an instance of x (including the token itself), stalker

also generates the initial candidates SkipUntil(t).

6. Example of Rule Induction

Let us consider again the restaurant addresses from Figure 4. In order

to generate an extraction rule for the area-code, we invoke stalker

with the training examples fE1,E2,E3,E4g. During the �rst iteration,

LearnDisjunct() selects the shortest pre�x, E2, as seed example. The

last token to be consumed in E2 is \(", and there are two wildcards that

match it: Punctuation and Anything; consequently, stalker creates

three initial candidates:

R1 = SkipTo(()

R2 = SkipTo(Punctuation)

R3 = SkipTo(Anything)

As R1 is a perfect disjunct5, LearnDisjunct() returns R1 and the

�rst iteration ends.

During the second iteration, LearnDisjunct() is invoked with the

uncovered training examples fE1, E3g; the new seed example is E1,

and stalker creates again three initial candidates:

R4 = SkipTo()

R5 = SkipTo(HtmlTag)

R6 = SkipTo(Anything)

As all three initial candidates match early in all uncovered examples,

stalker selects R4 as the best possible re�ner because it uses no wild-

cards in the landmark. By re�ning R4, we obtain the three landmark

re�nements

R7 = SkipTo(-)

R8 = SkipTo(Punctuation)

R9 = SkipTo(Anything)

paper.tex; 19/11/1999; 16:12; p.14

Hierarchical Wrapper Induction for Semistructured Information Sources 15

R10: SkipTo(Venice) SkipTo() R17: SkipTo(Numeric) SkipTo()

R11: SkipTo() SkipTo() R18: SkipTo(Punctuation)SkipTo()

R12: SkipTo(:) SkipTo() R19: SkipTo(HtmlTag) SkipTo()

R13: SkipTo(-) SkipTo() R20: SkipTo(AlphaNum) SkipTo()

R14: SkipTo(,) SkipTo() R21: SkipTo(Alphabetic) SkipTo()

R15: SkipTo(Phone) SkipTo() R22: SkipTo(Capitalized) SkipTo()

R16: SkipTo(1) SkipTo() R23: SkipTo(NonHtml) SkipTo()

R24: SkipTo(Anything) SkipTo()

Figure 7. All 21 topology re�nements of R4.

along with the 21 topology re�nements shown in Figure 7.

At this stage, we have already generated several perfect disjuncts:

R7, R11, R12, R13, R15, R16, and R19. They all match correctly

on E1 and E3, and fail to match on E2 and E4; however, stalker

dismisses R19 because it is the only one using wildcards in its land-

marks. Of the remaining six candidates, R7 represents the best solution
because it has the longest end landmark (all other disjuncts end with a

1-token landmark). Consequently, LearnDisjunct() returns R7, and

because there are no more uncovered examples, stalker completes its

execution by returning the disjunctive rule either R1 or R7.

7. Experimental Results

In order to evaluate stalker's capabilities, we tested it on the 30 infor-

mation sources that were used as application domains by wien (Kush-
merick, 1997), which was the �rst wrapper induction system6. To make

the comparison between the two systems as fair as possible, we did

not use any domain speci�c wildcards, and we tried to follow the ex-

act experimental conditions used by Kushmerick. For all 21 sources

for which wien had labeled examples, we used the exact same data;

for the remaining 9 sources, we worked closely with Kushmerick to

reproduce the original wien extraction tasks. Furthermore, we also

used wien's experimental setup: we start with one randomly chosen

training example, learn an extraction rule, and test it against all the

unseen examples. We repeated these steps 30 times, and we average

the number of test examples that are correctly extracted. Then we

5 Remember that a perfect disjunct correctly matches at least one example (e.g.,

E2 and E4) and rejects all other ones.
6 All these collections of sample documents, together with a detailed description

of each extraction task, can be obtained from the RISE repository, which is located
at http://www.isi.edu/�muslea/RISE/index.html.

paper.tex; 19/11/1999; 16:12; p.15

16 Ion Muslea, Steven Minton, Craig A. Knoblock

repeated the same procedure with 2, 3, . . . , and 10 training examples.

As opposed towien, we do not train on more than 10 examples because

we noticed that, in practice, a user rarely has the patience of labeling

more than 10 training examples.

This section has four distinct parts. We begin with an overview of

the performance of stalker andwien over the 30 test domains, and we

continue with an analysis of stalker's ability to learn list extraction

and iteration rules, which are key components in our approach to hierar-

chical wrapper induction. Then we compare and contrast stalker and

wien based on the number of examples required to wrap the sources,

and we conclude with the main lessons drawn from this empirical

evaluation.

7.1. Overall Comparison of stalker and wien

The data in Table I provides an overview of the two systems' perfor-

mance over the 30 sources. The �rst four columns contain the source

name, whether or not the source has missing items or items that may

appear in various orders, and the number of embedded lists in the EC

tree. The next two columns specify how well the two systems performed:

whether they wrapped the source perfectly, imperfectly, or completely

failed to wrap it. For the time being, let us ignore the last two columns

in the table.

In order to better understand the data from Table I, we have to

briey describe the type of wrappers that wien generates (a more

technical discussion is provided in the next section). wien uses a fairly

simple extraction language: it does not allow the use of wildcards

and disjunctive rules, and the items in each k-tuple are assumed to

be always present and to always appear in the same order. Based on

the assumptions above, wien learns a unique multi-slot extraction rule

that extracts all the items in a k-tuple at the same time (by contrast,

stalker generates several single-slot rules that extract each item in-

dependently of its siblings in the k-tuple). For instance, in order to

extract all the addresses and area codes from the document in Figure 3,

a hypothetical wien rule does the following: it ignores all characters
until it �nds the string \<p><i>" and extracts as Address everything

until it encounters a \(". Then it immediately starts extracting the

AreaCode, which ends at \)". After extracting such a 2-tuple, the rule

is applied again until it does not match anymore.

Out of the 30 sources, wien wraps perfectly 18 of them, and com-

pletely fails on the remaining 12. These complete failures have a straight-

forward explanation: if there is no perfect wrapper in wien's language

(because, say, there are some missing items), the inductive algorithm

paper.tex; 19/11/1999; 16:12; p.16

Hierarchical Wrapper Induction for Semistructured Information Sources 17

Table I. Test domains for wien and stalker: a dash denotes failure, whilep
and ' mean perfectly and imperfectly wrapped, respectively.

SRC Miss Perm Embd wien stalker

ListExtr ListIter

S1 - - -
p

' 1 / 100% 1 / 100%

S2 yes - - - ' 1 / 100% 1 / 100%

S3 - - -
p

' 1 / 100% 5 / 100%

S4 - - -
p p

7 / 100% 1 / 100%

S5 - - -
p p

1 / 100% 1 / 100%

S6 yes - - - ' 1 / 100% 8 / 100%

S7 yes - - -
p

6 & 1 / 100% 2 & 7/ 100%

S8 - - -
p p

1 / 100% 1 / 100%

S9 yes - 1 - ' 10 / 100% 10 / 96%

10 / 94% 7 / 100%

S10 - - -
p p

1 / 100% 1 / 100%

S11 yes yes - - ' 1 / 100% 3 / 100%

S12 - - -
p p

1 / 100% 1 / 100%

S13 - - -
p p

1 / 100% 1 / 100%

S14 - - -
p p

1 / 100% 1 / 100%

S15 - - -
p p

1 / 100% 1 / 100%

S16 yes - - -
p

- -

S17 - - 1 -
p

1 & 1 / 100% 4 & 1 / 100%

S18 yes - - -
p

1 & 4 / 100% 1 & 1 / 100%

S19 - - -
p p

1 / 100% 1 / 100%

S20 - - -
p p

1 / 100% 1 / 100%

S21 yes yes 2 - - - -

S22 - - -
p p

1 / 100% 1 / 100%

S23 - - -
p p

1 / 100% 1 / 100%

S24 yes - 1 - ' 1 / 100% 1 / 100%

1 / 100% 10 / 91%

S25 - - -
p p

1 / 100% 1 / 100%

S26 - - 1 - ' 1 & 1 / 100% 1 & 1 / 100%

S27 - - -
p p

- -

S28 - - -
p p

1 / 100% 1 / 100%

S29 yes yes - - - - -

S30 - - -
p p

1 / 100% 1 / 100%

paper.tex; 19/11/1999; 16:12; p.17

18 Ion Muslea, Steven Minton, Craig A. Knoblock

does not even try to generate an imperfect rule. It is important to

note that wien fails to wrap all sources that include embedded lists

(remember that embedded lists are at least two levels deep) or items

that are missing or appear in various orders.

On the same test domains, stalker wraps perfectly 20 sources and

learns 8 additional imperfect wrappers. Out of these last 8 sources,

in 4 cases stalker generates \high quality" wrappers (i.e., wrappers

in which most of the rules are 100% accurate, and no rule has an

accuracy below 90%). Finally, two of the 30 sources, S21 and S29,

can not be wrapped by stalker.7 In order to wrap all 28 sources,

stalker induced 206 di�erent rules, out of which 182 (i.e., more than

88%) had 100% accuracy, and another 18 were at least 90% accurate;

in other words, only six rules, which represents 3% of the total, had

an accuracy below 90%. Furthermore, as we will see later, the perfect

rules were usually induced based on just a couple of training examples.

7.2. Learning List Extraction and Iteration Rules

As opposed to wien, which performs an implicit list iteration by re-

peatedly applying the same multi-slot extraction rule, stalker learns

explicit list extraction and iteration rules that allow us to navigate

within the EC tree. These types of rules are crucial to our approach

because they allow us to decompose a di�cult wrapper induction prob-

lem into several simpler ones in which we always extract one individual

item from its parent. To estimate stalker's performance, we have to

analyze its performance at learning the 32 list extraction and 32 list

iteration rules that appeared in the 28 test domains above.

The results are shown in the last two columns of Table I, where

we provide the number of training examples and the accuracy for each

such rule. Note that there are some sources, like S16, that have no lists
at all. At the other end of the spectrum, there are several sources that

include two lists8.

7 The documents in S21 are di�cult to wrap because they include a heterogeneous

list (i.e., the list contains elements of several types). As each type of element uses a

di�erent kind of layout, the iteration task is extremely di�cult. The second source,

S29, raises a di�erent type of problem: some of the items have just a handful of
occurrences in the collection of documents, and, furthermore, about half of them

represent various types of formatting/semantic errors (e.g., the date appearing in

the location of the price slot, and the actual date slot remaining empty). Under
these circumstances, we decided to declare this source unwrappable by stalker.

8 For sources with multiple lists, we present the data in two di�erent ways. If
all the learned rules are perfect, the results appear on the same table line (e.g., for

S7, the list extraction rules required 6 and 1 examples, respectively, while the list
iteration rules required 2 and 7 examples, respectively). If at least one of the rules

paper.tex; 19/11/1999; 16:12; p.18

Hierarchical Wrapper Induction for Semistructured Information Sources 19

The results are extremely encouraging: only one list extraction and

two list iteration rules were not learned with a 100% accuracy, and

all these imperfect rules have accuracies above 90%. Furthermore, out

of the 72 rules, 50 of them were learned based on a single training

example! As induction based on a single example is quite unusual in

machine learning, it deserves a few comments. stalker learns a perfect

rule based on a single example whenever one of the initial candidates

is a perfect disjunct. Such situations are frequent in our framework be-

cause the hierarchical decomposition of the problem makes most of the

subproblems (i.e., the induction of the individual rules) straightforward.

In �nal analysis, we can say that independently of how di�cult it is to

induce all the extraction rules for a particular source, the list extraction

and iteration rules can be usually learned with a 100% accuracy based

on just a few examples.

7.3. Efficiency Issues

In order to easily comparewien's and stalker's requirements in terms

of the number of training examples, we divided the sources above in

three main groups:

- sources that can be perfectly wrapped by both systems (Table II)

- sources that can be wrapped perfectly only by one system (Tables III

and IV)

- sources on which wien fails completely, while stalker generates

imperfect wrappers (Table V).

For each source that wien can wrap (see Tables II and IV), we

provide two pieces of information: the number of training pages re-

quired by wien to generate a correct wrapper, and the total number of

item occurrences that appear in those pages. The former is taken from

(Kushmerick, 1997) and represents the smallest number of completely

labeled training pages required by one of the six wrapper classes that

can be generated by wien. The latter was obtained by multiplying the

number above by the average number of item occurrences per page,

computed over all available documents.

For each source that stalker wrapped perfectly, we report four

pieces of informations: the minimum, maximum, mean, and median

number of training examples (i.e., item occurrences) that were required

has an accuracy below 100%, the data for the di�erent lists appear on successive

lines (see, for instance, the source S9).

paper.tex; 19/11/1999; 16:12; p.19

20 Ion Muslea, Steven Minton, Craig A. Knoblock

Table II. Sources Wrapped Perfectly by Both Systems.

SRC wien stalker

(number of examples)

Docs Exs Min Max Mean Median

S4 2.0 20.0 1.0 7.0 2.0 1.0

S5 2.0 14.4 1.0 3.0 1.5 1.0

S8 2.0 43.6 1.0 2.0 1.2 1.0

S10 3.9 39.0 1.0 2.0 1.2 1.0

S12 2.0 88.8 1.0 1.0 1.0 1.0

S13 2.0 20.0 1.0 3.0 1.5 1.0

S14 7.0 679.7 1.0 2.0 1.4 1.0

S15 2.0 70.8 1.0 1.0 1.0 1.0

S19 2.0 40.0 1.0 1.0 1.0 1.0

S20 2.0 65.4 1.0 1.0 1.0 1.0

S22 2.0 200.0 1.0 1.0 1.0 1.0

S23 2.0 109.0 1.0 7.0 1.6 1.0

S25 2.0 65.4 1.0 1.0 1.0 1.0

S27 2.0 2.0 1.0 4.0 2.2 1.5

S28 2.0 150.0 1.0 1.0 1.0 1.0

S30 5.3 15.9 1.0 9.0 2.4 1.0

to generate a correct rule9. For the remaining 8 sources from Tables IV

and V, we present an individual description for each learned rule by
providing the reached accuracy and the required number of training

examples.

By analyzing the data from Table II, we can see that for the 16

sources that both systems can wrap correctly, stalker requires up to

two orders of magnitude fewer training examples. stalker requires no

more than 9 examples for any rule in these sources, and for more than

half of the rules it can learn perfect rules based on a single example

(similar observations can be made for the four sources from Table III).

9 We present the empirical data for the perfectly wrapped sources in such a
compact format because it is more readable than a huge table that provides detailed

information for each individual rule. Furthermore, as 19 of the 20 sources from
Tables II and III have a median number of training examples equal to one, it follows

that more than half of the individual item data would read \item X required a single
training example to generate a 100% accurate rule."

paper.tex; 19/11/1999; 16:12; p.20

Hierarchical Wrapper Induction for Semistructured Information Sources 21

Table III. Source on which wien fails com-

pletely, while stalker wraps them perfectly.

SRC wien stalker

(number of examples)

Min Max Mean Median

S7 - 1.0 7.0 2.3 1.0

S16 - 1.0 10.0 3.4 1.0

S17 - 1.0 4.0 1.5 1.0

S18 - 1.0 4.0 1.4 1.0

Table IV. Sources on which wien outperforms stalker.

SRC wien stalker

Docs Exs Task Accuracy Exs

S1 2.0 80.6 Price 100% 1

URL 91% 10

Product 92% 10

Manufacturer 100% 3

List Extraction 100% 1

List Iteration 100% 1

S3 2.0 34.8 URL 100% 8

Title 100% 1

Abstract 100% 1

Size 100% 1

Date 98% 10

Time 97% 10

List Extraction 100% 1

List Iteration 100% 5

As the main bottleneck in wrapper induction consists of labeling the

training data, the advantage of stalker becomes quite obvious.

Table IV reveals that despite its advantages, stalker may learn

imperfect wrappers for sources that pose no problems to wien. The ex-

planation is quite simple and is related to the di�erent ways in which the

two systems de�ne a training example: wien's examples are entire doc-

uments, while stalker uses fragments of pages (each parent of an item

paper.tex; 19/11/1999; 16:12; p.21

22 Ion Muslea, Steven Minton, Craig A. Knoblock

Table V. Sources on which wien fails, and stalker wraps imperfectly.

SRC Task Accur. Exs SRC Task Accur. Exs

S2 URL 100% 1 S6 Faculty 100% 4

Source 99% 10 University 93% 10

Title 88% 10 Attention 100% 2

Date 84% 10 Address 100% 2

ListExtr 100% 1 City 100% 1

ListIter 100% 1 ZIP 100% 1

S9 Date 100% 1 Province 100% 1

Price 100% 1 Country 100% 1

Airline 100% 1 Phone 100% 1

Flight 100% 1 Fax 96% 10

DepartCity 100% 1 URL 97% 10

DepartCode 100% 1 UpdateOn 100% 1

ArriveCity 99% 10 UpdateBy 100% 1

ArriveCode 100% 2 ListExtr 100% 1

DepartTime 100% 3 ListIter 100% 8

ArriveTime 92% 10 S11 Name 94% 10

Availab. 95% 10 Email 98% 10

Food 100% 6 Update 66% 10

Plane 100% 3 Organiz. 48% 10

ListExtr-1 100% 10 Alt. Name 100% 1

ListIter-1 94% 10 Provider 100% 1

ListExtr-2 96% 10 ListExtr 100% 1

ListIter-2 100% 1 ListIter 100% 3

S24 Language 100% 1 S26 House 100% 1

URL 91% 10 Number 100% 1

Image 100% 6 Price 97% 10

Translat. 89% 10 Artist 100% 1

ListExtr-1 100% 1 Album 71% 1

ListIter-1 100% 1 ListExtr-1 100% 1

ListExtr-2 100% 1 ListIter-1 100% 1

ListIter-2 91% 10 ListExtr-2 99% 10

ListIter-2 100% 1

paper.tex; 19/11/1999; 16:12; p.22

Hierarchical Wrapper Induction for Semistructured Information Sources 23

is a fragment of a document). This means that for sources in which each

document contains all possible variations of the main format, wien is

guaranteed to see all possible variations! On the other hand, stalker

has practically no chance of having all these variations in each randomly

chosen training set. Consequently, whenever stalker is trained only

on a few variations, it will generate an imperfect rule. In fact, the

di�erent types of training examples lead to an interesting trade-o�: by

using only fragments of documents, stalker may learn perfect rules

based on signi�cantly fewer examples than wien. On the other hand,

there is a risk that stalker may induce imperfect rules; we plan to �x

this problem by using active learning techniques (RayChaudhuri and

Hamey, 1997) to identify all possible types of variations.

Finally, in Table V we provide detailed data about the learned rules

for the six most di�cult sources. Besides the problem mentioned above,

which leads to several rules of 99% accuracy, these sources also contain

missing items and items that may appear in various orders. Out of

the 62 rules learned by stalker for these six sources, 42 are perfect

and another 14 have accuracies above 90%. Sources like S6 and S9

emphasize another advantage of the stalker approach: one can label

just a few training examples for the rules that are easier to learn, and

than focus on providing additional examples for the more di�cult ones.

7.4. Lessons

Based on the results above, we can draw several important conclusions.

First of all, compared with wien, stalker has the ability to wrap a

larger variety of sources. Even though not all the induced wrappers are

perfect, an imperfect, high accuracy wrapper is to be preferred to no

wrapper at all.

Second, stalker is capable of learning most of the extraction rules

based on just a couple of examples. This is a crucial feature because

from the user's perspective it makes the wrapper induction process

both fast and painless. Our hierarchical approach to wrapper induction

played a key role at reducing the number of examples: on one hand,

we decompose a hard problem into several easier ones, which, in turn,
require fewer examples. On the other hand, by extracting the items

independently of each other, we can label just a few examples for the

items that are easy to extract (as opposed to labeling every single

occurrence of each item in each training page).

Third, by using single-slot rules, we do not allow the harder items to

a�ect the accuracy of the ones that are easier to extract. Consequently,

even for the most di�cult sources, stalker is typically capable of

learning perfect rules for several of the relevant items.

paper.tex; 19/11/1999; 16:12; p.23

24 Ion Muslea, Steven Minton, Craig A. Knoblock

Last but not least, the fact that even for the hardest items stalker

usually learns a correct rule (in most of the cases, the lower accuracies

come from averaging correct rules with erroneous ones) means that

we can try to improve stalker's behavior based on active learning

techniques that would allow the algorithm to select the few relevant

cases that would lead to a correct rule.

8. Related Work

Research on learning extraction rules has occurred mainly in two con-

texts: creating wrappers for information agents and developing general

purpose information extraction systems for natural language text. The

former are primarily used for semistructured information sources, and

their extraction rules rely heavily on the regularities in the structure of

the documents; the latter are applied to free text documents and use

extraction patterns that are based on linguistic constraints.

With the increasing interest in accessing Web-based information

sources, a signi�cant number of research projects depend on wrappers

to retrieve the relevant data. A wide variety of languages have been de-

veloped for manually writing wrappers (i.e., where the extraction rules

are written by a human expert), from procedural languages (Atzeni

and Mecca, 1997) and Perl scripts (Cohen, 1998) to pattern match-

ing (Chawathe et al., 1994) and LL(k) grammars (Chidlovskii et al.,

1997). Even though these systems o�er fairly expressive extraction lan-

guages, the manual wrapper generation is a tedious, time consuming

task that requires a high level of expertise; furthermore, the rules have

to be rewritten whenever the sources su�er format changes. In order to

help the users cope with these di�culties, Ashish and Knoblock (Ashish

and Knoblock, 1997) proposed an expert system approach that uses a

�xed set of heuristics of the type \look for bold or italicized strings."

The wrapper induction techniques introduced in wien (Kushmerick,

1997) are a better �t to frequent format changes because they rely on

learning techniques to generate the extraction rules. Compared to the

manual wrapper generation, Kushmerick's approach has the advantage
of dramatically reducing both the time and the e�ort required to wrap a

source; however, his extraction language is signi�cantly less expressive

than the ones provided by the manual approaches. In fact, the wien

extraction language can be seen as a non-disjunctive stalker rules that

use just a single SkipTo() and do not allow the use of wildcards. There

are several other important di�erences between stalker and wien.

First, as wien learns the landmarks by searching common pre�xes at

the character level, it needs more training examples than stalker.

paper.tex; 19/11/1999; 16:12; p.24

Hierarchical Wrapper Induction for Semistructured Information Sources 25

Second, wien cannot wrap sources in which some items are missing or

appear in various orders. Last but not least, stalker can handle EC

trees of arbitrary depths, while wien's approach to nested documents

turned out to be impractical: even though Kushmerick was able to

manually write 19 perfect \nested" wrappers, none of them could be

learned by wien.

SoftMealy (Hsu and Dung, 1998) uses a wrapper induction algo-

rithm that generates extraction rules expressed as �nite transducers.

The SoftMealy rules are more general than the wien ones because

they use wildcards and they can handle both missing items and items

appearing in various orders. Intuitively, SoftMealy's rules are similar to

the ones used by stalker, except that each disjunct is either a single

SkipTo() or a SkipTo()SkipUntil() in which the two landmarks must

match immediately after each other. As SoftMealy uses neither multi-

ple SkipTo()s nor multiple SkipUntil()s, it follows that its extraction

rules are strictly less expressive than stalker's. Finally, SoftMealy

has one additional drawback: in order to deal with missing items and

various orderings of items, SoftMealy may have to see training examples

that include each possible ordering of the items.

In contrast to information agents, most general purpose information

extraction systems are focused on unstructured text, and therefore

the extraction techniques are based on linguistic constraints. However,

there are three such systems that are somewhat related to stalker:
whisk (Soderland, 1999), Rapier (Cali� and Mooney, 1999), and

srv (Freitag, 1998). The extraction rules induced by Rapier and srv

can use the landmarks that immediately precede and/or follow the item

to be extracted, while whisk is capable of using multiple landmarks.

But, similarly to stalker and unlike whisk, Rapier and srv extract

a particular item independently of the other relevant items. It follows

that whisk has the same drawback as SoftMealy: in order to handle

correctly missing items and items that appear in various orders, whisk

must see training examples for each possible ordering of the items.

None of these three systems can handle embedded data, though all use

powerful linguistic constraints that are beyond stalker's capabilities.

9. Conclusions and Future Work

The primary contribution of our work is to turn a potentially hard

problem { learning extraction rules { into a problem that is extremely

easy in practice (i.e., typically very few examples are required). The

number of required examples is small because the EC description of

a page simpli�es the problem tremendously: as the Web pages are

paper.tex; 19/11/1999; 16:12; p.25

26 Ion Muslea, Steven Minton, Craig A. Knoblock

intended to be human readable, the EC structure is generally reected

by actual landmarks on the page. stalker merely has to �nd the

landmarks, which are generally in the close proximity of the items to

be extracted. In other words, the extraction rules are typically very

small, and, consequently, they are easy to induce.

We plan to continue our work on several directions. First, we plan to

use unsupervised learning in order to narrow the landmark search-space.

Second, we would like to use active learning techniques to minimize

the amount of labeling that the user has to perform. Third, we plan to

provide PAC-like guarantees for stalker.

Acknowledgments

This work was supported in part by USC's Integrated Media Systems

Center (IMSC) - an NSF Engineering Research Center, by the National

Science Foundation under grant number IRI-9610014, by the U.S. Air

Force under contract number F49620-98-1-0046, by the Defense Lo-

gistics Agency, DARPA, and Fort Huachuca under contract number
DABT63-96-C-0066, and by research grants from NCR and General

Dynamics Information Systems. The views and conclusions contained

in this paper are the authors' and should not be interpreted as repre-

senting the o�cial opinion or policy of any of the above organizations

or any person connected with them.

References

Ashish, N. and C. Knoblock: 1997, `Semi-automatic wrapper generation for Internet
information sources'. In: Proceedings of Cooperative Information Systems. pp.

160{169.

Atzeni, P. and G. Mecca: 1997, `Cut and paste'. In: Proceedings of the 16th ACM

SIGMOD Symposion on Principles of Database Systems. pp. 144{153.

Atzeni, P., G. Mecca, and P. Merialdo: 1997, `Semi-structured and structured data
in the Web: going back and forth'. In: Proceedings of ACM SIGMOD Workshop

on Management of Semi-structured Data. pp. 1{9.
Cali�, M. and R. Mooney: 1999, `Relational Learning of Pattern-Match Rules for

Information Extraction'. In: Proceedings of the Sixteenth National Conference
on Arti�cial Intelligence (AAAI-99). pp. 328{334.

Chawathe, S., H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,

J. Ullman, and J. Widom.: 1994, `The TSIMMIS project: integration of het-
erogeneous information sources'. In: Proceedings of the 10th Meeting of the

Information Processing Society of Japan. pp. 7{18.
Chidlovskii, B., U. Borgho�, and P. Chevalier: 1997, `Towards sophisticated wrap-

ping of Web-based information repositories'. In: Proceedings of 5th International

RIAO Conference. pp. 123{35.

paper.tex; 19/11/1999; 16:12; p.26

Hierarchical Wrapper Induction for Semistructured Information Sources 27

Cohen, W.: 1998, `A Web-based Information System that Reasons with Structured

Collections of Text'. In: Proceedings of the Second International Conference on
Autonomous Agents (AA-98). pp. 400{407.

Freitag, D.: 1998, `Information Extraction From HTML: Application of a Gen-
eral Learning Approach'. In: Proceedings of the 15th Conference on Arti�cial

Intelligence (AAAI-98). pp. 517{523.

Hsu, C. and M. Dung: 1998, `Generating Finite-State Transducers for Semi-
structured data extraction from the Web'. Journal of Information Systems

23(8), 521{538.

Kirk, T., A. Levy, Y. Sagiv, and D. Srivastava: 1995, `The Information Manifold'.

In: Proceedings of the AAAI Spring Symposium: Information Gathering from
Heterogeneous Distributed Environments. pp. 85{91.

Knoblock, C., S. Minton, J. Ambite, N. Ashish, J. Margulis, J. Modi, I. Muslea, A.
Philpot, and S. Tejada: 1998, `Modeling Web Sources for Information Integra-

tion'. In: Proceedings of the 15th National Conference on Arti�cial Intelligence
(AAAI-98). pp. 211{218.

Kushmerick, N.: 1997, `Wrapper induction for information extraction'. Ph.D. thesis,
Dept. of Computer Science, U. of Washington, TR UW-CSE-97-11-04.

RayChaudhuri, T. and L. Hamey: 1997, `Active learning-approaches and issues'.

Journal of Intelligent Systems 7, 205{243.
Rivest, R. L.: 1987, `Learning Decision Lists'. Machine Learning 2(3), 229{246.

Soderland, S.: 1999, `Learning Information Extraction Rules for Semi-structured and
Free Text'. Machine Learning 34(1/2/3), 233{272.

paper.tex; 19/11/1999; 16:12; p.27

paper.tex; 19/11/1999; 16:12; p.28

