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1. Introduction
Emergency medical service (EMS) providers respond to
calls for assistance, providing medical services at the scene
of the call, and transporting the sick or injured to a hospital.
The local municipality contracts these services from an EMS
provider for a particular geographic region. Municipalities
evaluate potential EMS providers by how quickly the provider
can respond to calls. In particular, contracts typically require
that the percentage of late calls in a set time interval, for
example, one month, be at most some threshold level, for
example, 10%. A call is considered late if the response time,
i.e., the time from when the call is first received to the arrival
of an ambulance on the scene, is greater than a threshold,
usually on the order of nine minutes. See Ingolfsson (2012)
for an excellent introduction to, and overview of, EMS
management from an operations perspective.

To win the EMS contract in a municipality, EMS providers
must propose a shift schedule that gives the start and finish
times of all ambulance shifts, thereby determining the number
of ambulances deployed as a function of time. The key
question we consider is: How can a municipality know if
a proposed shift schedule can meet response-time targets
without knowing how ambulances will be deployed around a
city, or how ambulances will be dispatched to calls?

EMS providers have traditionally used static policies for
ambulance deployment. In a static policy, ambulances are
assigned to fixed bases for an entire shift and return to

the assigned base on call completion. Usually each base
is staffed with two or three ambulances. More recently,
increasing roadway congestion has motivated many EMS
providers to spread ambulances out to meet response time
performance targets. In these policies, ambulances are no
longer located in groups, so a dispatched ambulance leaves
a hole in coverage. A location is covered at time t if an
available ambulance at time t can reach that location within
the response-time threshold. The term coverage (at time t)
refers to the set of locations in a city that are covered at
time t.

To reduce the impact of coverage holes on the expected
response times for future calls, many EMS providers now
use ambulance redeployment, also known as system-status
management. Ambulance redeployment is the practice of
repositioning idle ambulances in real-time to better respond
to future calls. Typically such policies have an apparently
modest impact on performance, reducing the percentage
of late calls by up to about 5%. So, for example, 16%
of calls might be late in a system operated with static
policies, while 11% of calls might be late in a system using
redeployment (Maxwell 2011). While these reductions may
sound modest, they can allow an EMS provider to meet
contractual performance targets without adding ambulances.
This can be costly.

Ambulance redeployment policies may be constructed in
myriad ways. The diversity of methods available perhaps
reflects the mathematical intractability of finding a truly

1014



Maxwell et al.: Ambulance Redeployment Bounds
Operations Research 62(5), pp. 1014–1027, © 2014 INFORMS 1015

optimal policy. Redeployment policies may be constructed
by solving integer programs in real time (Gendreau et al.
2001, Brotcorne et al. 2003, Richards 2007, Nair and Miller-
Hooks 2009, Zhang 2012, Naoum-Sawaya and Elhedhli
2013), by presolving certain integer programs to construct
look-up tables (Gendreau et al. 2006, Alanis et al. 2013),
by solving or approximately solving stochastic dynamic-
programming formulations (Berman 1981a, c, b; Zhang et al.
2010; Zhang 2010; Maxwell et al. 2010, 2013), and by
screening potential policies with approximate models and
subsequently comparing the top candidate policies through
simulation (Alanis et al. 2013), through online simulation
(Yue et al. 2012) or through heuristics (Andersson 2005,
Andersson and Vaerband 2007). See Mason (2013) and
Henderson (2009) for further discussion of redeployment
methods.

Returning to our original question: How can a municipality
know whether a proposed ambulance schedule can meet
contractual response time targets, without knowing the
deployment/dispatch policy? Straightforward techniques,
such as simulation, are not applicable, as one must know the
deployment/dispatch policy to simulate the system. To answer
this question, which arose when the fourth author of this
paper was asked to analyze the proposed ambulance services
for a county in North America, we derive a lower bound on
the fraction of late calls achievable by nearly any ambulance
redeployment policy (mild restrictions on the policies we
consider are discussed in §2). The bound also applies to
static policies, which are special cases of redeployment
policies. The bound we derive can be used to determine
when a proposed ambulance schedule is not sufficient to
meet contractual targets. Indeed, a version of the bound
was used in the fourth author’s testimony in the case of an
EMS provider who believed another company’s proposal was
unrealistic. The bounds may also be used to determine when
to terminate searches for effective redeployment policies
and to determine when measures other than ambulance
redeployment are necessary to improve response times. We
know of no other practical bounds in the open literature for
ambulance deployment, including for static policies.

Constructing useful bounds for ambulance redeployment
is nontrival, as exemplified by the following two proposals,
neither of which work well in our context. First, one might
expect that a lower bound on the performance of any
ambulance-redeployment policy is given by the proportion
of unreachable calls, that is, the proportion of call arrivals
that arise in locations that are so far from any ambulance
base that they cannot be reached within the time threshold.
If all calls are attended by ambulances responding from a
base, then this bound is valid. However, this was shown to
have little practical value for two example cities in Maxwell
(2011). In one city, this unreachable bound returned values
on the order of 1% when the fraction of late calls obtained
by our best redeployment policy was on the order of 17%.
The proportion of unreachable calls does not provide a lower
bound when ambulances may respond to calls from the

road, e.g., when returning to a base after completing a call,
thereby enabling a response within the time threshold.

The second type of bounds one might consider is generic,
i.e., when the ambulance redeployment problem is modeled
as a stochastic dynamic program. Bounds on the optimal
value of generic stochastic dynamic programs have recently
been devised (Brown et al. 2010) and are obtained by solving
a version of the dynamic program that has more information
at the time of decisions than the original formulation. Unfor-
tunately we have been unsuccessful in our attempts to apply
this general methodology to obtain bounds in ambulance
redeployment, owing to the complexity of solving the relaxed
dynamic program where more information is assumed to
be known.

Nevertheless, we develop a computationally tractable
lower bound on the expected number of late calls over a
finite time horizon achievable by nearly any policy. To our
knowledge, this paper gives the first such lower bound,
which we call the cover bound. It arises by modeling the
ambulance system as a multiserver queue where servers
represent ambulances, and customers represent calls for
ambulance service.

To analyze the ambulance system as a multiserver queue,
consider the timeline of events when a call is received
(Figure 1). Recall that our performance metric is the percent-
age of late calls, which is a function of response times. In the
queueing model, response time corresponds to the amount of
time in the queue plus tij , the time for an available ambulance
to travel from its location i to the call location j , which we
assume is deterministic. The service time corresponds to the
total amount of time the ambulance spends responding to a
call, including traveling to the call location, assisting at the
scene, and providing transport and transfer to a hospital if
needed. Assume that when a call is received, it is assigned to
the nearest available ambulance. If no ambulance is available,
the calls are served in first in, first out fashion as ambulances
become free.

Now consider two such ambulance queueing systems,
identical in every way except for their service-time distribu-
tions. The first is the real system; the second is the bounding

Figure 1. Timeline of events from when a call is received
at location j and assigned to an ambulance
that will start traveling from location i, to the
completion of the call.
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system. If the service times for calls in the bounding system
are always smaller than in the real system, then the bounding
system always has at least as many ambulances available
to serve calls as the real system. In the real system, the
service-time distribution depends on the time and location
of the call, the number of ambulances available, and the
geographic configuration of ambulances. The geographic
configuration of ambulances at the time of the call in the real
system, in particular, depends on the redeployment policy � .
To create an analogous service-time distribution for the
bounding system, which does not depend on � , we generate
a stochastic lower bound on the service-time distribution of
the real queue, that is, a distribution that is stochastically
smaller than the service-time distribution obtained from
any configuration of available ambulances. Computing this
bounding service-time distribution requires solving a set
of integer programs, several for each potential number of
available ambulances.

It may be intuitive that one can now run the bounding
system as a multiserver queue using the bounding service-
time distribution and record the estimated fraction of late
calls as an estimated lower bound on the fraction of late
calls for the real system. However, the bounding service-time
distribution collapses information about tij into the service
time, which makes recovering information about the response
times, and hence late calls, from the service times impossible.
Therefore an additional step is required. Just before each
call is received in the bounding system, we instantaneously
reposition all the available ambulances to maximize coverage,
thereby creating a lower-bounding probability that the call
is late. We show that the expected value of the sum of
these lower-bounding probabilities is a lower bound on the
performance of any ambulance-redeployment policy that
implements mild call-queueing assumptions. Because the
expected value can be accurately estimated using discrete-
event simulation, the bounding system yields the desired
lower bound.

We call our bound the cover bound because idle ambu-
lances are instantaneously repositioned into coverage-optimal
locations that minimize the probability that the call will
be late, thus randomizing over the call location. These
ambulance locations can be identified by solving a set of
standard integer programs (Church and ReVelle 1974) that
maximize coverage subject to a constraint on the number of
available ambulances. This observation allows us to recover
sufficient information from simulating the bounding system
to bound the response time, even though we do not keep
track of specific ambulance locations.

Interestingly, simply assuming that available ambulances
are located so as to maximize coverage just before each call
does not produce a bound in and of itself, although in exper-
iments reported in Maxwell (2011), the difference between
the supposed bound obtained through this assumption alone
and the value of a true bound is very small. If ambulances
were to actually respond from the coverage-optimal loca-
tions, then the service time in the queueing system can

Figure 2. We wish to locate a single ambulance at one
of two bases.
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Notes. Demand can arise in only two locations, at the high and low
demand points; no hospital transport is required. The high demand point is
reachable within the response-time threshold only from Base 1. Thus the
coverage-optimal location is at Base 1, but the service times include driving
a longer distance to the low demand point. Therefore service times may be
larger on average than if the ambulance were positioned at Base 2.

be inflated compared to some other set of locations. This
policy could lead to higher use of the ambulances and poorer
response-time performance; see Figure 2 for an example.

The cover bound is computed assuming that ambulances
can only be at a finite number of locations. Of course,
ambulances can be anywhere on the road network, so the
bound is based on an approximation to the true dynamics.
Mathematically, we derive the cover bound with notation that
assumes that calls and ambulances can be at, for example,
any intersection in the road network. However in practice,
when we compute the bound assuming ambulances can be at
any intersection in the road network, the resulting bound is
too loose to be useful. (Maxwell 2011 reports that the lower
bound ranges between 3% and 4% while the ambulance
redeployment policy in use results in 18% to 22% late calls.)
Consequently, in our numerical experiments, we use a stylized
model of ambulance redeployment where ambulances always
respond from ambulance bases. Even though ambulances
only respond from bases, this assumption still allows for
dynamic policies because ambulances may respond from
different bases throughout the day, the identity of which
will usually depend on the overall state of the system.
This stylized model is justified by empirical computations
indicating that the fraction of calls for which ambulance
response originates from a base is quite large (on the order
of 80%) for realistic simulation models (Maxwell 2011).

Simulation results (Maxwell 2011) suggest that the perfor-
mance of ambulance redeployment policies on the stylized
model where all ambulances respond from bases is often
very similar to performance on more realistic models where
ambulance responses can originate anywhere. Because the
lower bound is quite tight for the stylized model, it seems
reasonable to use the value of the bound as computed on
the stylized model as a heuristic bound on the potential
performance of ambulance redeployment polices. Indeed,
this is how we recommend using the results of this paper
in practice.

For the stylized model, simulation results reported here
show that the cover bound is very tight for one realistic
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example, but not as tight in another. To better understand
these results, we design an experiment that involves artificial
cities. These artificial cities differ in terms of the number of
modes of the distribution of call locations, the dispersion of
the demand around these modes, and the degree to which
ambulance bases cluster around demand modes. For each
artificial city we compute both the cover bound and the
performance of a redeployment policy. The results shed light
on what features of a city are such that we can expect the
gap between the cover bound and the performance of the
specific redeployment policy to be small (or large).

The rest of the paper is organized as follows. In §2 we
state our assumptions on the ambulance system that, taken
together, define a model of ambulance dynamics. Section 3
constructs the cover bound and proves its validity. We also
formulate the well known integer program that maximizes
coverage for a given number of available ambulances. In §4,
we show in detail how to construct the stochastic lower bound
on the service-time distribution that the bound uses. Section 5
provides simulation results demonstrating the performance of
the bound on two realistic examples. Section 6 presents the
results of the designed experiment that sheds light on when
we can expect the bound to be effective. Section 7 provides
closing remarks and suggestions for future research..

This paper is an outgrowth of Chapter 5 of Maxwell
(2011), where a version of the cover bound was derived, and
Ni et al. (2012), where the results of the designed experiment
were first reported.

2. Model and Assumptions
Consider a model of ambulance operations over a finite
deterministic time horizon 601 t̄ 7. Calls arrive in time accord-
ing to an arbitrary call-arrival process that is independent
of the state of the system. Usually the arrival process is
assumed to be a nonhomogeneous Poisson process, but for
now we only assume that the expected number of calls
received in 601 t̄ 7 is finite. Call locations, ambulance posi-
tions, and hospital locations are restricted to a finite set
81121 0 0 0 1 J 9 of locations. There are H hospitals at loca-
tions s4151 s4251 0 0 0 1 s4H5 ∈ 81121 0 0 0 1 J 9 and A ambulances.
Successive call locations are independent and identically
distributed (iid) and the probability that a call originates
at location j is dj , j = 1121 0 0 0 1 J . The time tij required to
travel from Location i to Location j is deterministic and
does not vary with time. This is perhaps the most restrictive
of our assumptions, as travel times on road networks can
depend heavily on the time of day.

We highlight the following assumption about the deploy-
ment policies we consider.

Assumption 1. When a call is received, it is immediately
assigned to an available ambulance. If no ambulance is
available, calls are queued and served in a first in, first out
fashion as ambulances become free.

Ambulances that are traveling but not currently assisting
a patient (e.g., an ambulance has finished transferring a

patient to a hospital and is returning to a base) are consid-
ered available. To understand the restrictions imposed by
Assumption 1, consider a call arriving when only a single
ambulance, 30 minutes away in travel time, is available,
but an ambulance that is 5 minutes away in travel time is
expected to complete its job in 5 more minutes. We do
not wait for the closer but currently occupied ambulance to
become available before assigning the job.

One artificial and inappropriate way to reduce response
times is to ensure that ambulances are never at an ambulance
base. This works because ambulance crews at a base require
a brief activation delay or turn-out time to finish what they
are doing, get to their ambulance and depart; this time is
either eliminated or at least substantially reduced when
the crew is on the road or parked at some other location.
Naturally, ambulance crews prefer waiting at ambulance
bases for calls rather than sitting in their vehicles for entire
shifts, and so it is inappropriate for a policy to induce
reductions in response times by simply requiring that the
vehicles be away from a base at almost all times. Hence, in
the results given in this paper we assume that all turn-out
times are zero, thereby eliminating this artificial advantage
of roving ambulances.

Upon being assigned to a call at Location i, an ambulance
travels to Location i (with no turn-out time) and spends
a random amount of time at the scene. (Unless otherwise
stated all random quantities are independent of one another.)
Then, with probability hi0, the call at Location i is completed
at the scene and the ambulance is free to answer other
calls and/or be directed elsewhere. Otherwise the ambulance
transports the patient to hospital j with probability hij , j =

1121 0 0 0 1H , so that
∑H

j=0 hij = 1 for all i = 1121 0 0 0 1 J . Our
experience is that this assumption of a location-dependent
hospital-choice distribution is reasonable in many cities.
However, the assumption does not hold universally. For
example, if hospital diversion is used, then the hospital-
choice distribution may depend on the state of the system,
and our argument establishing the bound does not hold. Our
bounds might still be of practical use in such a setting, even
if they are not strictly valid, if the service-time distribution
(i.e., the distribution of the time required for an ambulance
to handle the call, from first being notified, to the time
that the ambulance clears the call, either at the scene or at
the hospital where the patient has been dropped off) is not
dramatically altered.

The distribution of the (random) time required to transfer
a patient at hospital j can be hospital specific, although we
use a common distribution in our work. After the patient
transfer is complete the ambulance is free to answer other
calls and/or be directed elsewhere.

The ambulance redeployment policy may arbitrarily direct
available ambulances to any location at any time, and there
is no limit to the number of vehicles that can simultaneously
occupy a location or the number of times a vehicle may
be asked to move. (In practice, frequent redeployments are
avoided to minimize crew frustration, but our bound applies
irrespective of the frequency of redeployments.)
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3. Cover Bound
Let N be the random number of calls received over the
time horizon 601 t̄ 7. Fix an arbitrary redeployment policy �
and let L denote the random number of late (i.e., response
time exceeds the time threshold) calls that result. We will
compute a lower bound on E4L5 that does not depend on
the policy �. This bound can then be used to bound the
long-run fraction of late calls by dividing by E4N5. To
see why, consider an infinite sequence of i.i.d instances of
the interval 601 t̄ 7, in the ith of which the number of calls
(late calls) is N4i5 4L4i55. Then the fraction of late calls over
n such instances is

L415+L425+ · · · +L4n5

N415+N425+ · · · +N4n5
0

If we divide both the numerator and denominator by n and
apply the strong law of large numbers to both, we see that
the long-run fraction of late calls is E4L5/E4N5.

So how do we bound E4L5? Let Lk be the indicator taking
value 1 if the kth call received is late, and 0 otherwise, and
let I4 · 5 denote a generic indicator function. Let Tk be the
time of arrival of the kth call, and let Ak and Ck denote
the number and configuration (i.e., set of locations) of the
available ambulances at time Tk− (just before the kth call
arrival). Then the expected number of late calls is given by

E4L5=E

( N
∑

k=1

Lk

)

=E

(

�
∑

k=1

LkI4k¶N5

)

=

�
∑

k=1

E6LkI4k¶N57

=

�
∑

k=1

E4E6LkI4k¶N5 � Tk1Ak1Ck75

=

�
∑

k=1

E4I4k¶N5E6Lk � Tk1Ak1Ck750

Now suppose the existence of a decreasing function
v2 8011121 0 0 0 1A9→ 60117 such that

E6Lk � Tk1Ak1Ck7¾ v4Ak5 (1)

for all k almost surely. The quantity on the left-hand side of
(1) is the conditional probability that a call is late, conditional
on the time of the call, and the number and configuration of
available ambulances just before the call is received. Our
lower bound on this quantity depends only on the number
of available ambulances at the time the call is received.
Shortly, we will show how to compute v4 · 5 by solving
integer programs. The condition that v4 · 5 be decreasing
is natural in that we expect the lateness probability to be
decreasing in the number of available ambulances.

Equipped with the function v we then have

E4L5¾
�
∑

k=1

E4I4k¶N5v4Ak55=E

( N
∑

k=1

v4Ak5

)

0

We complete the construction of the bound and the proof
that it is valid using a comparison of queues, i.e., a coupling
(i.e., joint construction) of the ambulance dynamics under
the policy � and the ambulance dynamics of the bounding
system. In this construction the call arrival process is identical
in both systems, but the number of available ambulances
Ãk in the bounding system at the time of the kth arrival
satisfies Ãk ¾Ak for all k on all sample paths. Since v4 · 5 is
decreasing,

N
∑

k=1

v4Ak5¾
N
∑

k=1

v4Ãk51

and taking expectations we conclude that

E4L5¾E

( N
∑

k=1

v4Ãk5

)

0 (2)

The right-hand side of (2) is our desired bound. It can
be estimated to arbitrary accuracy via simulation provided
that we can simulate the bounding system and compute
the function v. We defer the construction of the bounding
system to §4.

The quantity v4m5 gives the fraction of demand that
cannot be covered by m ambulances. (Recall that the demand
at a location is said to be covered if an available ambulance
can reach that location within the time threshold.) For
1 ¶m¶A, let v4m5 be the optimal objective value of the
integer program (Church and ReVelle 1974)

min
J
∑

j=1

dj41 −wj5

s.t.
J
∑

i=1

xi ¶m1

wj ¶
J
∑

i=1

�4i1 j5xi ∀ j = 1121 0 0 0 1 J 1

xi ∈ 80119 ∀ i = 1121 0 0 0 1 J 1

wj ∈ 80119 ∀ j = 1121 0 0 0 1 J 0 (3)

Here the parameter �4i1 j5 equals 1 if the travel time from i
to j is no larger than the time threshold, and 0 otherwise.
The decision variable xi indicates whether an ambulance is
stationed at Location i, and the decision variable wj indicates
whether Location j is covered. The first constraint limits the
number of ambulances to m, and the second allows wj to
be 1 only if Location j is covered. The integer program thus
seeks a set of locations for the m ambulances that minimizes
the fraction of uncovered demand, as required. Furthermore,
as m increases, the feasible region increases, so that v4 · 5 is
decreasing in m. Finally, we set v405= v415. The intuition
here is that calls arriving when no ambulance is free must
wait until at least one becomes free; the chance that the call
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is not covered at that stage is at least v415 because of the
queueing delay.

4. Bounding System
We now give the joint construction that ensures that the
number of available ambulances at the time of the kth call
in the bounding system and the true system satisfy Ãk ¾Ak

for all k (pathwise).
Recall that the service time for a call is the sum of

the time spent traveling to the scene, at the scene, and
if necessary traveling to a hospital and transferring the
patient to the hospital. We exploit a set of distribution
functions 4G̃m2 0 ¶ m ¶ A5, the mth of which gives a
stochastic lower bound on the conditional distribution of
the service time conditional on the locations of the m
available ambulances at the time the call is received. The
stochastic lower bound holds uniformly for all possible
locations of the m ambulances. We further require that the
distribution functions are stochastically decreasing in m,
i.e., that G̃04x5¶ G̃14x5¶ · · ·¶ G̃A4x5 for all x. We will
construct such a set of distribution functions shortly, but for
now assume that they exist.

Let the number of calls received N and the times of
arrivals of the calls T1 ¶ T2 ¶ · · ·¶ TN on the interval 601 t̄ 7
be given. These quantities are common to both the original
and bounding systems. Let 4Uj 2 j ¾ 15 be an i.i.d sequence
of U40115 random variables that is independent of N and
4T11 T21 0 0 0 1 TN 5. We will use these uniform random variables
to generate service times in both the original system and in
the bounding system.

We use the concept of virtual workload (Kiefer and
Wolfowitz 1955) to establish our results. The virtual workload
(henceforth workload) of an ambulance is the time required
for that ambulance to complete its currently assigned call
(if any) and also any calls that are queued and will eventually
be served by that ambulance. To track the workloads as
calls arrive, we assume that the service times of calls are
realized at the time at which the call is received. This
means that we generate the time spent traveling to the scene,
time at the scene, time spent traveling to a hospital and
transferring the patient to the hospital for each call at the
time at which the call arrives. This allows us to track the
workloads; the resulting system dynamics are statistically
identical to the case where these service-time components
are generated as they unfold. This assumption is a purely
theoretical device for establishing that the bound is valid.

The workload dynamics are as follows. For k¾ 1, let Wk

be the virtual workload vector in increasing order (Kiefer
and Wolfowitz 1955) at time Tk+, i.e., just after the arrival of
the kth call, and set W0 to be the initial vector of workloads
(at time 0). The ith component Wk4i5 of the vector Wk gives
the ith smallest workload of any of the A ambulances in the
system controlled by the fixed redeployment policy � just
after the kth call has arrived and the work associated with
that call has been assigned to one of the ambulances under

Assumption 1. Let 4W̃k2 k¾ 05 be the corresponding vector
process in the bounding system, and set W̃0 =W0.

We show inductively that W̃k ¶Wk for all k (pathwise).
This immediately implies that the number of free ambulances
just before the time of the kth call, Ãk ¾Ak, for all k, since
all components of the workload vectors decrease linearly at
rate 1 between call arrival times, at least until they hit 0.
The number of available ambulances just before the time of
the kth arrival is the number of components of the workload
vector that are equal to 0 at time Tk−, just before the kth call.

To show inductively that W̃k ¶ Wk, suppose that for
some k¾ 1, W̃k−1 ¶Wk−1. Recall that Ãk is the number of
available ambulances in the bounding system just before
the time of the kth call arrival. Generate the service time
for the kth call in the bounding system via G̃−1

Ãk
4Uk5. The

service time of the kth call under policy � depends on the
number, Ak, and location, Ck, of the available ambulances at
time Tk−. Denote the distribution function of this service
time by G4· �Ak1Ck5. Generate the service time of the kth
call in the system controlled by � via G−14Uk � Ak1Ck5.
Now, Ãk ¾Ak since W̃k−1 ¶Wk−1 and all components of the
workload vectors decreased at the same unit rate (until they
hit zero) between the call arrival times Tk−1 and Tk. Hence,

G̃Ãk
4 · 5¾ G̃Ak

4 · 5¾G4· �Ak1Ck51

and it follows that G̃−1
Ãk
4Uk5¶G−14Uk �Ak1Ck5. In other

words, the kth service time in the bounding system is no
more than that in the system controlled by � . We therefore
have W̃k ¶Wk, exactly as in the proof of Theorem 6.2.1 of
Stoyan (1983). Now generate the travel time, scene time,
hospital selection (if any) and hospital transfer time (if any)
in the system controlled by � from their appropriate condi-
tional distributions given the service time. These conditional
distributions may be complicated, but they exist and that is
all that we require to establish the validity of the bound.
This then allows us to advance the ambulance dynamics
in the system controlled by �, and the inductive step is
complete. We have proved the following result.

Theorem 1. Consider an arbitrary ambulance redeployment
policy operating on an ambulance system that is modeled as
in §2. Under the construction of 4Ãk2 k¾ 15 given above,
the expected number of late calls over the interval 601 t̄ 7 is
bounded below by (2).

We use integer programming to compute the distribution
functions 4G̃m2 1 ¶m¶A5. We then set G̃0 = G̃1. The idea
behind this choice of distribution function for m= 0 is that
when no ambulances are available at the time at which a
call arrives, the call will be queued and served when at
least one ambulance becomes available. The service-time
distribution bound is then taken to be that associated with
one ambulance, since the time the call spends in the queue
does not count towards service time.
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Figure 3. The construction of G̃m for a fixed m.
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Notes. The service-time distribution function (including travel time to the
scene) depends on the configuration of available ambulances at the time the
call is received. There is therefore one such distribution function for each
set of locations as illustrated by the 5 hypothetical fine curves. There are an
enormous number of such curves but we do not attempt to enumerate them.
Instead we solve integer programs to obtain the points indicated by squares.
The heights of these squares are the values �m4r5 (r takes values on the
horizontal axis). The squares lie on the pointwise maximum of the fine
curves, indicated by the heavier line. We then construct the right-continuous
increasing function G̃m4 · 5 by connecting the dots with a staircase in such a
way that the staircase lies above the pointwise upper bound.

Fix m¾ 1. We use an integer program to compute tempo-
rary values �m4r5 for each of a finite selection of values
r1 < r2 < · · ·< rk say. We then define G̃m4r5= 0 for r < 0
and for r ¾ 0 we use the construction depicted in Figure 3.
More precisely, given the values 4�m4ri52 1 ¶ i¶ k5, for
r ¾ 0 we set G̃m4r5= �m4ri+15 if ri ¶ r < ri+1 (taking r0 = 0,
rk+1 = � and �m4�5= 1).

The distribution functions that result from this construction
are piecewise constant, and have jumps only at the times
ri, i = 0111 0 0 0 1 k. In other words, they are the distribution
functions of discrete random variables taking at most k+ 1
values. As such they are straightforward distributions from
which to simulate.

It remains to specify how we compute the points �m4r5
for each fixed m and r . To explore this computation in detail,
let Fj4 · 5 denote the distribution function of the service time
of a call that originates at location j , not including the travel
time to the scene for an ambulance (that is, Fj4 · 5 is the
distribution function of Sj in Figure 1). This distribution
function therefore captures only the time at scene, the time
to transport to hospital, and the time spent at the hospital.
We need to compute Fj and we henceforth assume it is
given. For a call originating at Location j served by an
ambulance at Location i, the probability that the service time
(including travel time to the scene) is at most r is equal to
Fj4r − tij5.

The integer program below selects locations for the m
ambulances and assignments of every Demand Location j to
an ambulance to maximize the probability that the service
time will be completed within r time units. The quantity
�m4r5 is the optimal value of the integer program

max
J
∑

j=1

djpj

s.t.
J
∑

i=1

xi ¶m1

yij ¶ xi1 ∀ i1 j = 1121 0 0 0 1 J 1

J
∑

i=1

yij = 11 ∀ j = 1121 0 0 0 1 J 1

pj =

J
∑

i=1

Fj4r − tij5yij1 ∀ j = 1121 0 0 0 1 J 1

xi ∈ 801191 ∀ i = 1121 0 0 0 1 J 1

yij ∈ 801191 ∀ i1 j = 1121 0 0 0 1 J 1

pj ∈ 601171 ∀ j = 1121 0 0 0 1 J 0

The decision variables in this formulation are xi1 yij1pj

with i1 j taking values in 81121 0 0 0 1 J 9. As with the integer
program (3), xi is the indicator that an ambulance is placed at
Location i; the first constraint limits the available ambulances
to m. The variables yij are indicators as to whether demand
at Location j is served from Location i; the second and third
constraints state that demand can be served from Location i
only if an ambulance is positioned there, and each location j
must be served from exactly one location. The variable pj

gives the probability that the service time will be at most r
given that the call originates at Location j , and the final
constraint assigns this probability in accordance with the
Location i that serves demand at Location j .

Recall that we required the distribution functions to satisfy
the condition G̃0 ¶ G̃1 ¶ · · · ¶ G̃A. As m increases, the
feasible region increases, so �m4r5 is increasing in m for
fixed r , which then implies that G̃m4r5 is increasing in m
for each fixed r , provided that the points r11 r21 0 0 0 1 rk used
to define the distribution functions are the same for each m.

This formulation is a p-median problem, which is difficult
to solve to optimality for large instances. If we relax the
integer constraints and solve the resulting linear program,
we obtain an upper bound on the optimal solution. A check
of the construction in Figure 3 shows that we can replace
the values �m4r5 with upper bounds, and the resulting cdf
will still be a stochastic lower bound as desired. Hence, our
bounds remain valid if we solve the relaxation instead of the
full integer program. We found in numerical experiments
that solving the linear programming relaxation yields no
more than a percent of integrality gap, and so in the next
section we solve the linear programming relaxation instead
of the tighter integer program.
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In summary, the computation of the bound proceeds as
follows.

1. Select a set of points r11 r21 0 0 0 1 rk that cover the range
of reasonable call service times (e.g., from 0 to 3 hours) and
are sufficiently fine to ensure that the staircase function in
Figure 3 is a reasonable approximation to the smooth curve
(e.g., 30 second increments).

2. For each point ri, i = 11 0 0 0 1 k, and for each num-
ber of available ambulances m = 1121 0 0 0 1A, solve the
p-median problem (or its relaxation for a weaker bound)
to obtain �m4ri5. This also yields the distribution functions
G̃01 G̃11 0 0 0 1 G̃A.

3. Simulate a queueing system with the same arrival
process of calls as in the real system, but with the kth service
time obtained as G̃−1

Ãk
4Uk5, where Ãk indicates the number of

available ambulances in the simulation just before the time of
arrival of the kth call, and 4Uk2 k¾ 15 is a sequence of i.i.d.
U40115 random variables that is independent of the arrival
process. Use the simulation to estimate the expectation (2)
yielding the desired bound.

5. Computational Results on Realistic
Models

In this section we provide computational results for realistic
but not real models of ambulance operations in Edmonton,
Canada and Melbourne, Australia. The models are realistic
in the sense that calls arise according to a Poisson process
in space and time, ambulances respond on road networks,
and patients are delivered to a variety of hospitals when
transport is required. The models are not real in the sense
that we use a constant (in time) arrival rate that we select to
be representative, we use a simplified road network with
travel times that do not depend on the time of day, and our
ambulances do not work shifts but instead are simply fixed
in number throughout the simulation. In other respects, the
models are identical to those used in Maxwell et al. (2010).
We emphasize that the results reported here are meant to be
representative, and should not be construed as reflecting
actual on-time performance in Edmonton and Melbourne.

The Edmonton model has 4,725 locations where calls
can arise, 11 bases, 16 ambulances, and 5 hospitals. See
Figure 4 for the road network (modeled at the avenue level),
locations of bases and hospitals, and a depiction of the
demand distribution. The choice of hospital to transport to
corresponds to that seen in historical data. The time spent at
the scene is exponentially distributed with mean 12 minutes.
The probability that transport to hospital is required is 0.75,
and the time spent at the hospital is Weibull distributed
with shape parameter 2.5 and mean 30.4 minutes. These
distributions and parameters for the various components of
a call are similar to what is seen in general EMS systems
(Ingolfsson 2012, Maxwell 2011), and not necessarily what
is seen in Edmonton. Travel times are deterministic and are
not time dependent.

The Melbourne model has 1,413 locations where calls
can arise, 87 bases, 97 ambulances, and 22 hospitals. See

Figure 4. Road network, distribution of demand (darker
regions correspond to greater demand), bases
(squares), and hospitals (circles) in Edmonton.

Figure 5 for the road network, locations of bases, and a
depiction of the demand distribution. The hospital-choice
distribution depends on the location of the call and is inferred
from historical data. The distributions for time at scene and
transfer to hospital care are the same as in Edmonton, as is
the probability that transport to hospital is required.

For both Edmonton and Melbourne models, the ambulance
redeployment policy we use is based on formulating the
ambulance redeployment problem as a dynamic program
and building approximations of the value function. This
approximate dynamic programming (ADP) policy takes the
current state of the ambulance fleet into consideration when
deciding where to reposition an available ambulance, unlike
static policies that always reposition an available ambulance
back to its fixed home base. The ADP policy is built on
Maxwell (2011), where detailed computational experiments
show that this policy can provide practically significant
improvements over static policies.

A complete version of the lower bound calculations
allows ambulances to respond from any node in the road
network. This allows for ambulances being redirected to a
new call while returning to base, and for ambulances being
parked at arbitrary locations throughout a city, and not just
bases. Unfortunately, the resulting bound is too loose to be
useful. We therefore restrict candidate ambulance locations
to bases only. This means the results presented here are not
true bounds in the strict sense, but they can certainly be
interpreted as bounds from a practical perspective. Indeed,
simulation results for representative redeployment policies in
Maxwell (2011) show that ambulances respond from bases
more than 80% of the time. Furthermore, being stationed
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Figure 5. Road network, distribution of demand (darker regions correspond to greater demand), bases (squares), and
hospitals (circles) in Melbourne.

Notes. Left panel: The entire region. Right panel: The city center.

away from the amenities of a base is not desirable from the
crew perspective.

For both Edmonton and Melbourne models, the values ri
were evenly spaced from 0 to 200 minutes in steps of 0.4
minutes. An interval of width 200 minutes was sufficient to
ensure that calls were served within this time window. To
compute the location-dependent distribution functions Fj4 · 5
we used numerical convolution with step size 0.2 minutes.
The resulting integer programs take approximately 2 days of
computation on a system consisting of a 3.4 GHz CPU with
8 GB of memory running under Arch Linux.

For an arrival rate in Edmonton of 4 calls per hour, a 95%
confidence interval on the cover bound is 41401±0015%. The
ADP policy obtained using Maxwell et al. (2013) methods
achieves 41609 ± 0045%. When the arrival rate is 6 calls per
hour representing a very busy scenario, the cover bound is
41407±0045%, with the ADP policy achieving 1907%±004%.

For the Melbourne case, we take the average call arrival
rate over day and night as our homogenous arrival rate,
which is 23 calls per hour. In this case, the cover bound is
41102 ± 0015% and our best ADP policy is 41803 ± 0045%.

6. Computational Results on
Artificial Models

The results in the previous section suggest that the Edmonton
policy is very close to optimal, while in Melbourne we have
less information. Indeed, for Melbourne we do not know
whether the bound is weak, the policies are substantially
suboptimal, or if both the bounds and the policies need
improvement. In this section, we conduct experiments on
artificially-constructed cities to gain insight into why we see
such differences in performance between Edmonton and
Melbourne.

To explore the difference in performance of the bounds on
a set of artificial cities, we vary three defining characteristics
across a set of 18 total cities:

1. the number of modes in the two-dimensional probability
distribution of demand,

2. the concentration of the demand distribution around its
modes, and

3. the degree to which the bases are concentrated under
the modes of the demand distribution.

The first factor, the number of modes in the demand
density, represents different city configurations. We construct
cities with 1, 2, or 5 peaks in demand density, representing
one city center, a twin city, or one city center with four
suburban areas, respectively. We also vary the second factor,
the concentration of the demand distribution, over three
different levels. The demand at each peak can be highly
concentrated (H), moderately concentrated (M), or lightly
concentrated (L). Different levels of demand concentration
around the peaks indicate the amount of city sprawl. Finally,
we consider two possible configurations of bases in the
city. In the first, the ambulance bases are concentrated
under the demand (C), and in the second, the ambulance
bases are uniformly distributed throughout the city (U).
Considering each level of these factors results in 18 cities
from a 32 ×2 full-factorial design. For each city, we compute
the performance of the ADP policy and the cover bound,
and explore the performance results.

Our fictional cities, nine of which are shown in Figure 6,
are 15 miles by 15 miles, with 7 ambulances each traveling
at 24 miles per hour. Each city has 25 ambulance bases
and 2 hospitals. The word base means a location where
ambulances might be asked to wait for their next call,
and is often referred to as a post in the industry. We
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Figure 6. Distribution of demand, bases, and hospitals in artificial cities.
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use the Manhattan metric to compute the distances from
point to point. The call arrival process is Poisson with a
constant rate of 3 calls per hour, and call locations are
chosen independently from a two-dimensional probability
distribution. The density of the location distribution is
constant within each of the 25 cells on a 5 × 5 grid on the
city, but the value varies from cell to cell. Figure 6 shows the
maps of nine cities, with each panel depicting the demand
density (shaded so that regions with high demand intensities
are darker), the hospital locations, and the base locations in
the clustered-base cities. The base locations for the uniform-
base cities are at the centers of the 3 mile-by-3 mile squares
of the grid. As shown in Figure 6, each fictional city has
two hospitals, where the hospital locations do not vary by
city. The name of a fictional city is given by XYZ1 where X
is the number of peaks, 1, 2, or 5; Y is the peakedness, H,
M, or L; and Z is the configuration of the ambulance bases,
C or U.

We assume zero turnout time for ambulances responding
to a new call. All distributions and parameters are the same
as used in the Edmonton and Melbourne models except
that when hospital transport is required the choice between
the two hospitals is random with probabilities 0.4 and
0.6, respectively. As with those models, after completing a
call, an ambulance may be redeployed to one of the bases,

unless calls have queued up, in which case the ambulance is
deployed to the first call received. We then compute the
cover bound and compare it to the performance of the ADP
policy. For each of the 18 configurations, we use common
random numbers to simulate the bounding system in parallel
with the ADP policy for 10,000 iterations.

Figures 7–9 summarize our computational results. Figure 7
shows box plots of the estimated percent of late calls
as output from the simulation for each fictional city. An
estimated lower bound on the percent of late calls is also
shown for each city. We are particularly interested in the
gap between the simulation performance and the lower
bound; box plots of this gap are plotted for each city in
Figure 8. Finally, to better assess trends in the data across
the main effects, we show main-effects box plots for the gap
between the simulation performance and the lower bound in
Figure 9.

From Figure 7, it is clear that as the number of modes
in the demand distribution increases, the lower bound and
the percent of late calls from the simulated policy both
increase. That is, unimodal cases are easier than multimodal
cases. We suspect this increase in the percent of late calls
occurs because multimodal demand distributions imply less
cooperation among the ambulances since each peak is covered
somewhat separately from the others. Thus the economies
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Figure 7. Box plots of the simulation results for each
city and lines for the mean simulation perfor-
mances and estimated lower bounds.
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of scale associated with larger queueing systems are lost.
Furthermore, the lower bound is only moderately affected
by base clustering, which makes sense as the lower bound
is based on covering demand. As long as base locations
are positioned so that large fractions of the demand can be
covered with available ambulances, small changes in the
location of the ambulance are not important.

Figure 7 also shows anomalous simulation results for
cities 5MC and 5LC. While the overall trend for the effect
of base locations is that concentrated base locations perform
better than uniform base locations, this trend is reversed in
the simulation data for two city pairs: 5MC and 5MU, and
5LC and 5LU. While the lower bound is unaffected by this

Figure 9. Box plots of the main effects for the gap between the simulation and lower bound results for each city.
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Figure 8. Box plots of the gap between the simulation
and lower bound results for each city.
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anomaly, the simulation results for cities 5MC and 5LC are
unexpectedly poor. This poor performance also reverses the
mean trend, but not the median trend, for base locations in
Figure 9. To investigate this performance, we plot each of
the 5-mode cities in Figure 10, where the size of the base
square is proportional to the average percent, over 10,000
simulation runs, of the time an ambulance was reassigned to
that base.

Figure 10 broadly shows that clustering the bases under
the demand results in more advantageous ambulance assign-
ments, except for cities 5MC and 5LC. In city 5HC, each of
the satellite modes is strong enough to warrant ambulance
assignments to bases under each of the demand modes,
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Figure 10. Maps of bases and demands for the artificial cities.
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Note. The size of the bases (squares) are proportional to the average percent of ambulance reassignments to that base across 10,000 simulation replications.

as in City 5HU. However in cities 5MC and 5LC, this
satellite demand is not strong enough to force assignment of
ambulances to bases under the demand, which hurts overall
performance. In contrast, because the bases are not clustered
in cities 5MU and 5LU, the ambulances are placed nearer the
demand modes, resulting in improved performance. Indeed,
removing all bases from cities 5MC and 5LC except the
five used by city 5HC (the top-left frame of Figure 10),
significantly reduced the fractions of missed calls in those
cities to levels lower than those in cities 5MU and 5LU.

With these anomalous results explained, we now revisit
the gap data in Figures 8 and 9. As the number of demand
modes increases, the gap between the lower bound and the
simulation data increases, and as the demand distribution
becomes less peaked, the gap increases, except for the
previously discussed special case of city pairs 5MC, 5MU
and 5LC, 5LU. Our results suggest that unimodal cases
are easier than multimodal cases, and that as the number
of modes increases, the location distribution becomes less
concentrated. The cover bound assumes that as long as
there is one ambulance near a location, that location is
covered. In contrast, quickly reaching calls is expected to
become more difficult when location distributions are less
concentrated.

As an aside, in all of our cases the demand can be covered
with a full complement of ambulances. This is not typically
true in practice because city outskirts tend to contain low-
density populations. If we were to include such areas in
our cities, then we believe that both the lower bound and

the ADP policy results would be shifted upwards, thereby
disguising the effects we wish to uncover.

The effects above do not appear to be due to different
ambulance utilizations in the different cases. We estimated
utilizations in all cases to approximately one decimal place,
and all estimated utilizations fell between 34% and 39.8%;
all estimated utilizations in the 5-mode cases fell between
37.8% and 39.9%. These utilizations levels are typical of
EMS systems in practice; we chose our experimental design
parameters to ensure that this was the case.

Melbourne has satellite demand points that each represent
a nontrivial fraction of overall demand so, as with our
artificial cities, it is possible that the policy in Melbourne
can be improved by increased ambulance assignments to
those locations. To check this, we performed an experiment
in which we try to force the ADP policy to use bases at the
centers of demand, rather than bases that lie between demand
peaks. We first determined the minimal amount of uncovered
demand, ṽ4975 for example, with a full complement of 97
available ambulances, given by the optimal objective value
of the integer program (3), with the added restriction that
ambulances can only be located within the 87 bases. We then
found the smallest value m such that the optimal objective
function value, ṽ4m5, of (3), again with the restriction that
ambulances can only be located at bases, is still equal to
ṽ4975. The minimal value of m is 60, i.e., we can cover
the same fraction of demand with as few as 60 ambulances
(stationed only in bases) as we can with 97 ambulances.
We then simulate the ADP policy from Maxwell et al. (2013)
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as before, but restricting ambulance redeployment to the 60
bases identified as the optimal locations in obtaining ṽ4605.
The fraction of late calls for the policy working with these
60 locations was 41705 ± 0035%, representing a practically
significant reduction over the value of 41803±0045% obtained
when using all 87 bases.

We believe the observations in this section will lead to
additional improvements in deployment policies. For example,
in the redeployment policies of Maxwell et al. (2013) the
value function approximation relies on partitioning demand
between ambulance bases; cooperation between bases is
ignored. When the system becomes busy, the partition is not
an accurate model of operations. We now conjecture that the
partition should not be relative to the bases, but rather to the
locations of the available ambulances. It is not yet clear how
to implement this change in an ADP framework; that is a
topic of future research.

7. Conclusions
We developed a bound on the long-run fraction of calls
with response times over some threshold for ambulance
redeployment policies. This cover bound is built by opti-
mally positioning available ambulances at the time calls are
received, and using a comparison-of-queues (i.e., a coupling)
to ensure that a certain bounding queueing system always
has more ambulances available than would be the case for
any redeployment policy. By simulating the bounding system,
we obtain the cover bound.

Our results on realistic but not real cases based on the
cities of Edmonton and Melbourne indicate that the bound
is very tight in Edmonton, but for the much larger city of
Melbourne, there is a nontrivial gap between the bound
and the performance of our best redeployment policy to
date. Simulation results for artificial cities suggest that the
larger gap in Melbourne may be primarily due to a less
effective policy, rather than a poor bound. Based on these
results we subsequently improved the policy in Melbourne
by a practically significant amount, although an appreciable
gap remains between the performance of our best policy
to date (approximately 17.5% of calls are late) and our
bound (approximately 11.2% of calls are late). Further
improvements to the redeployment policy in Melbourne are
the subject of future research.

Our assumption that travel times are deterministic and
do not depend on time is restrictive. We would like to
explore methods for avoiding this assumption, perhaps
through a more sophisticated calculation that allows time
dependence or by applying our bounding approach separately
to time periods over which the travel-time assumption is
approximately satisfied.
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