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Commercial plant breeders improve economically important traits by selectively mating indi-
viduals from a given breeding population. Potential pairings are evaluated before the growing
season using Monte Carlo simulation, and a mating design is created to allocate a fixed breeding
budget across the parent pairs to achieve desired population outcomes. We introduce a novel
objective function for this mating design problem that accurately models the goals of a certain
class of breeding experiments. The resulting mating design problem is a computationally bur-
densome simulation optimization problem on a combinatorially large set of feasible points. We
propose a two-step solution to this problem: (i) simulate to estimate the performance of each
parent pair, and (ii) solve an estimated version of the mating design problem, which is an integer
program, using the simulation output. To reduce the computational burden when implementing
steps (i) and (ii), we analytically identify a Pareto set of parent pairs that will receive the entire
breeding budget at optimality. Since we wish to estimate the Pareto set in step (i) as input
to step (ii), we derive an asymptotically optimal simulation budget allocation to estimate the
Pareto set that, in our numerical experiments, out-performs Multi-objective Optimal Comput-
ing Budget Allocation (MOCBA) in reducing misclassifications. Given the estimated Pareto
set, we provide a branch and bound algorithm to solve the estimated mating design problem.
Our approach dramatically reduces the computational effort required to solve the mating design
problem when compared to naive methods.
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1. Introduction

Plant breeding is concerned with the evolution of plant populations under selection pressure imposed

by humans (Allard, 1999). This process has proceeded for thousands of years as breeders purged

undesirable plants and preferentially propagated individuals with desirable characteristics (Allard,

1999; Simmonds, 1979). In a given breeding population, the space of potential outcomes (i.e.,

progeny) is often too large to produce and evaluate empirically (Simmonds, 1979). Thus historically,

breeders have optimized traits over a small subset of feasible progeny. Modern computing allows

breeders to explore the space of candidate matings using Monte Carlo simulation, the results

of which can accelerate the process of improving economically important traits during natural

breeding. Thus the question of how to conduct matings to achieve “maximal” improvement in the
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progeny is a question of decision-making under uncertainty. Unlike traditional operations research

application areas such as manufacturing, finance, healthcare, reliability, and transportation systems,

plant breeding and agriculture have received less attention from the operations research community.

Traditionally the domain of statisticians, agriculture is rife with decisions that must be made under

uncertainty. Thus agriculture and plant breeding offer impactful and interesting opportunities for

the operations research community and, more broadly, the industrial engineering community —

one of which we explore in this paper, called the mating design problem.

The mating design problem arises when commercial breeders selectively mate individuals to

improve quantitative traits, such as height or yield. The mating design problem can be informally

described as follows: given a finite parent population and limited resources for breeding — that

is, a set number of plants that can be planted, called the breeding budget — find an assignment

of the breeding budget to parent pairs that maximizes the expected value of some statistic of the

trait observed in the progeny. A solution to the mating design problem, called a mating design,

allocates the finite breeding budget to specific mate pairs. Given a predetermined population of

parent pairs, our primary objectives in this work are (i) to identify optimal mating designs while

(ii) avoiding excessive cloud computing costs due to large-scale scientific simulations, and (iii) to

produce accurate predictions of progeny traits expected from the selected mating designs.

Researchers have used operations research techniques such as linear programming (Jansen

and Wilton, 1985), integer programming (McConnel and Galligan, 2004), and genetic algorithms

(Kinghorn, 2011) to solve variants of the mating design problem. This line of work measures the

quality of a mating design with respect to the average trait in the progeny population. However,

some argue that mating designs should be evaluated with respect to individuals in the tail of the

progeny distribution (Chahota et al., 2007; Snape, 1982). As a result, researchers began using

quantiles of the progeny distribution to measure mating design quality (Zhong and Jannink, 2007;

Smith and Hammond, 1987; Schnell, 1983). We offer a fundamental improvement to the mating

design problem by introducing a novel objective function that directly maximizes the expected

maximum progeny trait, rather than the mean or a quantile.

To reduce the computational burden associated with optimizing the new objective function,

we analytically characterize and discard the subset of parent pairs guaranteed to receive zero

allocation at optimality in the mating design problem, regardless of the breeding budget. The
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remaining parent pairs are characterized as the solution to a bi-objective simulation optimization

(SO) problem, called the “Pareto set.” Our simulation experiments indicate that this Pareto set

is typically small enough to allow efficient construction of the optimal mating design via branch

and bound. Therefore, our solution approach effectively reduces the mating design problem to

a problem solved in two steps. First, we estimate the Pareto set of parent pairs using Monte

Carlo simulation. Then, we solve an estimated version of the mating design problem using a

branch-and-bound algorithm on the estimated Pareto set. This procedure dramatically reduces

the search space of potential progeny and prevents the need to re-simulate if the breeding budget

changes. We present simulation evidence to suggest that our approach does, in fact, identify near-

optimal solutions with high predictive accuracy. We view predictive accuracy as a vital performance

requirement as predictions of trait selection gains are often used to justify the resource expenditure

incurred by proceeding with empirical experiments.

Plant breeding is an application of great consequence, since “... the planet’s population is pre-

dicted to reach 9 billion people by 2050. To feed all these people, we must grow plants that deliver

higher yield, are more nutritious, use water and nutrients more efficiently, and tolerate more envi-

ronmental variations ...” (Purdue University, 2013). This work illustrates a successful theoretical

advancement and implementation in plant breeding, an important but less visible domain for the

operations research and industrial engineering communities.

1.1 Problem Statement and Overview of Approach

We now consider the mating design problem and our solution approach in more detail. For each

candidate parent pair, suppose that the trait expression in a child is one realization from the progeny

trait distribution corresponding to that parent pair. For example, the height of a child plant is

one realization from the distribution of the height of child plants produced by its parent pair. We

assume the distributional family for the trait is known, but the parameters of the distribution are

unknown. We now define the new max breeding problem.

Max breeding problem: Consider a finite number r > 0 of breeding parent pairs producing a

fixed, finite sample of b > 0 children, and let the vector of breeding allocations to the parent pairs

be b = (b1, b2, . . . , br). For random observations of the children’s traits Yij , j = 1, . . . , bi from
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parent pair i, we wish to solve:

Find: arg max
b1,...,br

E
[

max
i=1,...,r

max
j=1,...,bi

Yij
]

(1)

s.t.
∑r

i=1 bi = b, bi ∈ Z+ ∀ i = 1, . . . , r,

where Z+ is the set of nonnegative integers. That is, we wish to find the allocation of the breeding

budget b that maximizes the expected maximum of the trait observed in the progeny. The solution

to this problem, b∗ = (b∗1, b
∗
2, . . . , b

∗
r), is a vector containing the number of child plants to breed

from each of the parent pairs in the population.

Since breeders must construct the entire mating design prior to the growing season, at which

time the children’s traits are realized simultaneously, we cannot use “real-life” sequential methods to

solve this problem. Indeed, the problem in (1) resembles the max k-armed bandit problem described

by Cicirello and Smith (2005) and Streeter and Smith (2006a,b), but simultaneous observation of

the children’s traits, or “rewards,” in the growing season precludes the application of such sequential

methods. Instead, we use Monte Carlo simulation to assess the trait distributions of the parent

pairs (see Li et al. (2012) for a discussion of simulation in breeding). Thus the problem in (1) can

be considered a ranking and selection (R&S) problem over the space of all possible breeding budget

allocations (see, e.g., Kim and Nelson (2006) for an overview of R&S methods). However, the set

of feasible points is combinatorially large, rendering R&S methods impractical.

Thus we propose a different, two-step approach. In the first step, called the simulation step,

we simulate progeny from each parent pair to estimate the trait distribution parameters. In the

second step, called the IP step, we solve an estimated version of the integer program in (1), using

estimates of the trait distributions for each parent pair obtained as output from the simulation

step. For clarity, we emphasize here that the computational budget in the simulation step, n, is

separate and distinct from the physical breeding budget b in (1). The breeding budget b is part of

the problem, while the simulation budget n is part of our solution. The final output of the IP step,

the estimated optimal breeding allocation, is a function of the simulation budget n. Under mild

assumptions, as the simulation budget n tends to infinity, the estimated solution to the mating

design problem that results from the IP step converges to the true solution to (1).

Two potential issues remain when solving the max breeding problem with this two-step ap-
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proach. First, if the number of parent pairs r is large, both the simulation step and the IP step

may still require significant computing effort. Second, the solution to the max breeding problem

sometimes allocates all children to a single parent pair, which is unlikely to be implemented in prac-

tice. Thus we wish to return to the user a reduced set of parent pairs likely to produce extrema, in

addition to the allocation resulting from the IP step. The breeder then acts as a human-in-the-loop

during the “optimization” process, accounting for factors external to the genetic model.

We address these two issues by analytically identifying and eliminating from consideration

parent pairs that will not receive any of the breeding budget at optimality in the mating design

problem (1). In particular, when the trait distributions are normal with finite mean µi and finite

variance σ2i for all i = 1, . . . , r, the only parent pairs that receive non-zero breeding budget at

optimality in (1) are members of a Pareto set that is characterized by parent pairs with non-

dominated means and variances, P = {parent pairs i : (µi > µk)∪(σ2i > σ2k) for all k = 1, . . . , r; k 6=

i}. (We further discuss this set in §2). Then instead of solving (1) for r parent pairs, it is equivalent

to solve (1) for only parent pairs in P, and allocate none of the breeding budget for parent pairs

outside the Pareto set P. We then focus our simulation effort on identifying the Pareto set in the

simulation step since only parent pairs that are estimated as Pareto will be included in the IP step.

Further, we can return the estimated Pareto set to the breeder as part of the mating design process.

We note here that the assumption of normal trait distributions is typical for quantitative traits such

as yield (Falconer and Mackay, 1996; Lynch and Walsh, 1998), and is based on the infinitesimal

model of genetic architecture. While the infinitesimal model is not taken as an exact description

of biological reality, countless experiments have led the scientific community to accept the model

as a useful and practical approximation of quantitative trait expression. Unless otherwise stated,

henceforth we consider normal trait distributions.

1.1.1 Search space reduction in the IP step

How much easier is the max breeding problem in (1) on the reduced search space of parent pairs in

P? For randomly generated populations of parent pairs using the standard maize genetic map (Mc-

Mullen et al. (2009); see Appendix A of the online supplement for simulation details), we calculated

sample quantiles of the cardinality of the estimated Pareto set across different parent pair popula-

tion sizes. Given a randomly generated set of parent pairs, 500 children were simulated from each
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parent pair to estimate the mean and variance parameters. The cardinality of the estimated Pareto

set (|P̂|) was calculated for this parent pair population, using the estimated means and variances.

This process was repeated 3,000 times for each parent pair population size. Sample quantiles of

|P̂| are presented in Figure 1.
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Figure 1: The cardinality of the estimated Pareto set is robustly small relative to the total number
of parent pairs.

The data in Figure 1 appear to follow a logarithmic law, and the cardinality of the estimated

Pareto set rarely exceeds 25 parent pairs — even when the original population is 20,000 parent

pairs. Thus we have drastically reduced the search space of the max breeding problem. For example,

assuming b = 50 children, r = 100 potential parent pairs, and |P̂| = 15, the number of feasible

solutions is reduced from approximately 1.34 × 1040 to 4.78 × 1013 — a far smaller number, but

still too large to solve (1) with available R&S methods. Further, since the estimated Pareto set is

“small,” we can present the entire set to the breeder.

1.1.2 Simulation effort reduction in the simulation step

In addition to reducing the computational burden of the IP step, a focus on identifying the Pareto set

in the simulation step can save significant simulation effort. In the case of normal trait distributions,

where the Pareto set is characterized by parent pairs with non-dominated means and variances,

estimating the Pareto set is a bi-objective SO problem on an unordered finite set.

The body of work on SO in the presence of multiple performance measures is relatively new,

with most work posing additional performance measures as constraints (see, e.g., Szechtman and

Yücesan, 2008; Andradóttir and Kim, 2010; Batur and Kim, 2010; Lee et al., 2012; Hunter and
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Pasupathy, 2013; Pasupathy et al., 2014; Healey et al., 2013; Healey and Andradóttir, 2014; Park

and Kim, 2011; Luo and Lim, 2013; Nagaraj and Pasupathy, 2013). Very little work has been done

in the area of simultaneous stochastic objectives, apart from that of Ryu et al. (2009); Kim and Ryu

(2011b,a) in continuous spaces, and Butler et al. (2001); Lee et al. (2010) on finite spaces. Since

Butler et al. (2001) use utility functions to turn the multi-objective problem into a single-objective

problem, it is not an appropriate method for our context. Thus the only appropriate method is

Multi-objective Optimal Computing Budget Allocation (MOCBA) by Lee et al. (2010), a heuristic

sampling framework developed along the lines of the popular Optimal Computing Budget Allocation

(OCBA) framework (Chen et al., 2000) for multi-objective SO on finite sets. MOCBA requires the

assumption that each objective is estimated by a sample mean constructed from independent and

identically distributed (iid) normal random variables.

We implement and evaluate MOCBA’s performance in estimating the Pareto set in the context

of our plant breeding application. We also derive, implement, and evaluate a new sequential

sampling scheme that is based on the asymptotically optimal sampling allocation. To derive the

sampling allocation in a bi-objective context, we use a large deviations (LD) framework. Such

a framework has previously been employed in the unconstrained, single-objective context (Glynn

and Juneja, 2004), and in the constrained, single-objective context (Hunter and Pasupathy, 2013;

Pasupathy et al., 2014). The asymptotically optimal sampling allocation is characterized as the

solution to a concave maximization problem, which we progressively estimate through a sequential

sampling framework. Sampling terminates when the simulation budget has been expended or some

amount of wall-clock time has passed. This paper is the first to derive an asymptotically optimal

sampling allocation in a bi-objective context and to show successful implementation of an LD-based

allocation when objective estimates are non-normal. Specifically, our second objective is a sample

variance, which can be written as a sum of iid squared normal random variables, having a chi-square

distribution.

Our implementation reveals that our sequential sampling framework out-performs MOCBA on

a variety of performance measures, in part because of the way our sampling framework controls for

misclassification errors. Two types of error can occur in estimating a Pareto set: misclassification

by exclusion (MCE), where a truly Pareto parent pair is falsely estimated as non-Pareto, and

misclassification by inclusion (MCI), where a non-Pareto parent pair is falsely estimated as Pareto.
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MOCBA controls MCE and MCI errors by first creating a bound on each type of error, and

then allocating to control the type of error whose estimated bound is the largest in each step of

the sequential algorithm. As the estimated bounds converge to their true values, the allocation

will be based on minimizing the larger bound. In contrast, the sampling framework we present

allocates to simultaneously control both types of error, MCE and MCI, at each step in the sequential

implementation. Further, as the sampling budget tends to infinity, our algorithm will continue to

allocate in a way that controls both types of error simultaneously.

The estimated Pareto set resulting from the simulation step is used in the IP step to estimate

the optimal breeding budget allocation. Since the estimated Pareto set is constant as a function

of the breeding budget, we also save simulation resources in the event that the breeding budget

changes. For normal trait distributions, we use a branch and bound method for solving the resulting

nonlinear integer program.

1.2 Notation and Assumptions

We assume that an appropriate genetic simulation model, the desired parent pairs, and the trait

distributional family are provided as input to the methods we develop. Unless otherwise stated,

we consider traits for which the trait distribution is assumed to be normal. Formally, we make the

following assumptions; for brevity, we write i ≤ r as shorthand for i = 1, 2, . . . , r.

Assumption 1. (i) For each parent pair i ≤ r, the observations of the children’s traits are iid

copies from a normal distribution with unknown finite mean µi and unknown finite variance σ2i > 0;

(ii) observations of the children’s traits are mutually independent across parent pairs; (iii) (µi, σi) 6=

(µk, σk) ∀ i, k ≤ r where i 6= k; and (iv) µi 6= µk and σ2i 6= σ2k ∀ i ∈ P, k ≤ r, i 6= k.

Assumption 1(iv) is standard in optimal allocation literature, since it ensures all parent pairs

are distinguishable on each objective with a finite sample size.

The probability space we consider is conditional on the fixed and unknown mean and variance

of the trait distribution for each parent pair. It may be possible to develop a higher-level Bayesian

model that accounts for some belief about the population structure due to pedigree. There are

instances in which population structure is minimally-informative — it may be the case that all

parent pairs share a single common parent, or that each parent pair is distinct, as may result
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from each parent breeding with itself. However population structure may be highly informative,

as when half the population shares one parent, while the other half does not. The methods we

present are general in that they can be used for any population structure, do not require a detailed

population model, and provide significant computational gains over previously-used naive methods.

Exploiting information about population structure may result in methods that further reduce the

computational effort of the simulation step. We consider such methods as future research.

2. The Max Breeding Problem

In this section, we first provide intuition on the nature of optimal breeding budgets. We then

formulate the objective function for the max breeding problem under the normality assumption.

Throughout this section, we assume that the parameters of the trait distributions are known.

First, consider the case in which the trait is either present or not present in a child. For example,

a child may either be resistant or susceptible to a particular disease, and suppose that the resistant

state is desirable. Thus the trait distributions under consideration are Bernoulli with parameter

θi for each parent pair i ≤ r, where θi represents the probability that the child of parent pair i

is resistant to the disease. Then the max breeding problem is equivalent to the following problem

that minimizes the probability of observing no children with the desirable trait:

Find: arg min
b1,...,br

r∏

i=1

(1− θi)bi s.t.
r∑

i=1

bi = b, bi ≥ 0, bi integer ∀i ≤ r.

The solution to this problem gives all the breeding budget to the parent pair with the largest

probability of producing a child with the desirable trait, which we assume is unique. Thus letting

k = arg maxi≤r θi, the solution is b∗k = b and b∗i = 0 for all i 6= k. The Pareto set of parent pairs is

P = {parent pairs i : i = arg maxi≤r θi}, and identifying the Pareto set is an R&S problem.

Unlike with Bernoulli trait distributions, when the trait distribution is normal, one will not

necessarily allocate all of the breeding budget to one parent pair in the max breeding problem. In

Example 1 we show that allocating all of the breeding budget to one parent pair may be suboptimal.

Example 1. Let two parent pairs have normal trait distributions with means and standard devi-

ations µ1 = 0, σ1 = 50, and µ2 = 50, σ2 = 0.01. Let b = (b1, b2) be the breeding allocation. Table 1
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shows allocations and the estimated expected maximum trait value for breeding budget b = 3.

Table 1: The expected value of the maximum is larger when the parent pairs share the breeding
budget.

b1 b2 Estimated expected value of maximuma

3 0 42.32
0 3 50.08
2 1 57.98

a 10,000,000 children simulated (standard errors < 0.02).

When one child is observed (b = 1), intuitively, the child should be bred from the parent pair

with the largest mean. When the breeding budget is infinite, the children should be bred from

the parent pair with the largest variance — as the breeding budget grows, the largest-variance

parent pair will overcome the largest-mean parent pair in producing extrema. For finite budgets

larger than one, there is a balance in allocating to high-mean and high-variance parent pairs. In

this example, allocating one sample to the higher-mean, lower-variance parent pair places a high

probability on observing at least one child with a large trait value. The remainder of the samples

are then allocated to capitalize on the high-variance parent pair’s ability to produce extrema.

In Proposition 1, we specify the max breeding problem as an integer program, assuming the

means and variances are known. Let M(b) be a random variable representing the maximum trait

observed among the progeny for some breeding budget b, and let E[M(b)] be its expected value.

That is, E[M(b)] is the objective function of the max breeding problem in (1), where we explicitly

note the dependence of the maximum on the breeding budget b.

Proposition 1. Let Φ be the standard normal cumulative distribution function (cdf). The expected

value of the maximum child characteristic is

E[M(b)] =
∫∞
0 1−∏r

i=1 Φ
(
y−µi
σi

)bi
dy −

∫ 0
−∞

∏r
i=1 Φ

(
y−µi
σi

)bi
dy.

Proof. Let the cdf of M(b) be FM (y). Since all children represent iid draws, FM (y) = P{M(b) ≤

y} = P{maxi,j Yij ≤ y} =
∏r
i=1 Φ

(
y−µi
σi

)bi
, where Φ(·) is the standard normal cdf. Define random

variables M(b)+ = max{M(b), 0} and M(b)− = −min{M(b), 0}. Then E[M(b)] = E[M(b)+] −

E[M(b)−] =
∫∞
0 1− FM (y)dy −

∫ 0
−∞ FM (y)dy, and the result follows.
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To optimally allocate samples to maximize the expected maximum child characteristic observed,

we wish to solve the max breeding problem

Problem MB : maximize
∫∞
0 1−∏r

i=1 Φ
(
y−µi
σi

)bi
dy −

∫ 0
−∞

∏r
i=1 Φ

(
y−µi
σi

)bi
dy

s.t.
∑r

i=1 bi = b, bi ≥ 0 and bi integer for all i ≤ r.

Solving Problem MB may be unwieldy for large b and r. Thus we identify and discard parent pairs

that receive a sample size of zero at optimality.

Loosely speaking, to generate extrema from two normal distributions, where one distribution

has larger mean and variance than another distribution, all random variables should be generated

from the distribution with the larger mean and variance. Therefore intuitively, all parent pairs that

are dominated in both mean and variance by some other parent pair should not receive any of the

final breeding budget. This intuition is correct: for any breeding budget b ≥ 1, the only parent

pairs that receive nonzero breeding budget in the max breeding problem are a subset of a Pareto

set of increasing means and decreasing variances. Theorem 1 states this result.

Theorem 1. Let the Pareto set P be the set of all non-dominated parent pairs, P = {parent pairs i :

(µi > µk) ∪ (σ2i > σ2k) for all k ≤ r; k 6= i}. Then for all b ≥ 1, the set of parent pairs receiving

nonzero sample at optimality in the max breeding problem, Problem MB, is a subset of P.

Proof. See Appendix B of the online supplement.

While in Example 1 two parent pairs share the allocation, it is not intuitively obvious from

Theorem 1 that three or more parent pairs may share the allocation at optimality in Problem MB.

Thus there will not necessarily be a “best mean” parent pair and a “best variance” parent pair

that will together receive all of the breeding budget, as shown in Example 2.

Example 2. Let three parent pairs have normal trait distributions with means and standard

deviations µ1 = 0.80, σ1 = 0.58;µ2 = 1.0, σ2 = 0.4025;µ3 = 1.15, σ3 = 0.20. Let b = (b1, b2, b3) be

the breeding allocation. For budget b = 3, at optimality in Problem MB, each of the three parent

pairs receives an allocation of one child, as shown in Table 2.
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Table 2: For b = 3, the expected maximum is largest when all three parent pairs share the budget.

b1 b2 b3 E[M(b)]a b1 b2 b3 E[M(b)]a

3 0 0 1.2908 1 0 2 1.3395
2 1 0 1.3176 0 3 0 1.3406
0 0 3 1.3193 0 2 1 1.3457
1 2 0 1.3325 2 0 1 1.3457
0 1 2 1.3356 1 1 1 1.3466

a Calculated by numerical integration in MATLAB.

3. Allocating the Simulation Budget in the Simulation Step

We now consider the problem of efficiently allocating a simulation budget to estimate the Pareto

set. For normal trait distributions, identifying the Pareto set P through Monte Carlo simulation is a

bi-objective SO problem. The asymptotically optimal sampling allocation that maximizes the rate

of decay of the probability of a misclassification is derived in Appendix C of the online supplement,

which we outline in §3.1 before presenting a sequential implementation in §3.2. For brevity, the

results in §3.1 are presented with an emphasis on knowledge required for implementation, with full

details and all proofs in the online supplement.

3.1 Asymptotically Optimal Allocation Strategy

Consider a procedure to estimate the Pareto set that consists of expending a simulation budget n

to estimate the means and variances of the trait distributions for each parent pair and returning

to the user the estimated set of Pareto parent pairs. Let α = (α1, α2, . . . , αr) be the proportional

allocation of the simulation budget n to the parent pairs. For now, we ignore that nαi is not

necessarily an integer. For each parent pair producing nαi children with characteristics Yij observed

as iid copies from a normal distribution with mean µi and variance σ2i for all j = 1, . . . , nαi, let

Ŷi = 1
nαi

∑nαi
`=1 Yi` estimate µi and σ̂2i = 1

nαi

∑nαi
`=1(Yi` − 1

nαi

∑nαi
`=1 Yi`)

2 estimate σ2i . Then the

estimated Pareto set is P̂ = {parent pairs i : (Ŷi > Ŷk) ∪ (σ̂2i > σ̂2k) ∀k ≤ r; k 6= i}.

Under this sampling paradigm, as the simulation budget tends to infinity, the probability of a

misclassification (MC) event, that is, misclassifying a parent pair on its status as Pareto or non-

Pareto, decays to zero. In this section, we present the asymptotically optimal sampling allocation

that maximizes the rate of decay of the probability of misclassification (P{MC}) as a function of
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the proportional sampling allocation, α.

In the context of our estimation procedure, an MC event can occur in one of two ways, which

we will call misclassification by exclusion (MCE) and misclassification by inclusion (MCI). MCE

is the event in which a truly Pareto parent pair is falsely excluded from the estimated Pareto set

by being estimated as dominated by another parent pair, be it Pareto or non-Pareto. MCI is the

event in which a truly non-Pareto parent pair is falsely included in the estimated Pareto set by

being estimated as non-dominated. That is,

MCE := ∪
i∈P

∪
k≤r, k 6=i

(Ŷi ≤ Ŷk) ∩ (σ̂2i ≤ σ̂2k)
︸ ︷︷ ︸

some i ∈ P dominated by some k

and MCI := ∪
j /∈P

∩
k≤r, k 6=j

(Ŷj ≥ Ŷk) ∪ (σ̂2j ≥ σ̂2k).
︸ ︷︷ ︸
some j /∈ P not dominated by any k

A straightforward way of writing the MC event is MC := MCE∪MCI, such that the probability of

an MC event is P{MC} = P{MCE ∪MCI}, but this probabilistic statement is difficult to analyze

due to dependence in the MCI term. Thus we reformulate the MC event for easier analysis.

First, let us label the true Pareto parent pairs by their means, so that µ0 := −∞ < µ1 <

. . . < µp−1 < µp and σ21 > σ22 > . . . > σ2p > σ2p+1 := 0, where p is the cardinality of P. Then

the true Pareto parent pairs are (µ`, σ
2
` ) for ` = 1, . . . , p, where ` uniquely indexes the Pareto

parent pairs. We also define the true phantom parent pairs, which are the coordinates (µ`, σ
2
`+1)

for ` = 0, 1, . . . , p, where we place phantom parent pairs at (−∞, σ21) and (µp, 0). There are p + 1

phantom parent pairs. Assuming the true Pareto set is known, Figure 2 displays the Pareto and

phantom Pareto parent pairs.
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Figure 2: If the Pareto set were known, then to be falsely estimated as Pareto, the non-Pareto
parent pairs must be falsely estimated as being in the MCI or MCE “regions,” thereby dominating
a phantom parent pair.
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Since the true Pareto set is actually unknown, the phantom Pareto parent pairs must be es-

timated. Define Ŷ[`] and σ̂2[`] as corresponding to the order statistics of the estimated mean and

variance values of the true Pareto set, so Ŷ[0] := −∞ < Ŷ[1] < . . . < Ŷ[p−1] < Ŷ[p] and σ̂2[1] >

σ̂2[2] > . . . > σ̂2[p] > σ̂2[p+1] := 0, and the estimated phantom parent pairs for the true Pareto set are

(Ŷ[`], σ̂
2
[`+1]) for ` = 0, 1, . . . , p. Define misclassification by dominating a phantom parent pair as

MCIph := ∪
j /∈P
∪p`=0(Ŷ[`] ≤ Ŷj) ∩ (σ̂2[`+1] ≤ σ̂2j ).

︸ ︷︷ ︸
some j /∈ P dominates some phantom system

Theorem 2. Let MCph := MCE ∪MCIph. Then P{MC} = P{MCph}.

Since Theorem 2 holds, henceforth we use the notation P{MC} to refer to the probability of a

misclassification event.

Recall that to efficiently identify the Pareto set, we wish to identify the sample allocation vector

that maximizes the rate of decay of the P{MC}. Before presenting the rate of decay of P{MC} in

Theorem 3, we first require additional notation and results. By Glynn and Juneja (2004), under

Assumption 1, for all i ∈ P, k ≤ r such that µk < µi,

G(αi, αk) := − lim
n→∞

1

n
logP{Ŷi ≤ Ŷk} =

(µi − µk)2
2(σ2i /αi + σ2k/αk)

.

We present an expression for the large deviations rate function corresponding to the event σ̂2i ≤ σ̂2k
in Proposition 2.

Proposition 2. Under Assumption 1, for all i ∈ P, k ≤ r such that σ2k < σ2i ,

H(αi, αk) :=− lim
n→∞

1

n
logP{σ̂2i ≤ σ̂2k} =

αi
2

log

(
σ2i /αi + σ2k/αk
σ2k(1/αi + 1/αk)

)
+
αk
2

log

(
σ2i /αi + σ2k/αk
σ2i (1/αi + 1/αk)

)
.

Since the estimated mean and estimated variance for a normal distribution are independent,

the objectives Ŷi and σ̂2i are independent for all i ≤ r. This fact, along with the additional material

provided in the online supplement, yields the following Theorem 3.

Theorem 3. Let α0 := 1 and αp+1 := 1. Under Assumption 1, the rate function of P{MC} for
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the mating design problem is

− lim
n→∞

1

n
logP{MC} = min

(
min
i∈P

min
k≤r, k 6=i

(
G(αi, αk)I{µk<µi} +H(αi, αk)I{σ2

k<σ
2
i }

)
,

min
j /∈P

min
`=0,...,p

(
G(α`, αj)I{µj<µ`} +H(α`+1, αj)I{σ2

j<σ
2
`+1}

))
.

Thus the overall rate of decay of the probability of a misclassification is the slowest among the rates

of decay of many pairwise misclassification events.

To maximize the rate of decay of P{MC}, we allocate sample by solving

Problem Q : maximize z

s.t. G(αi, αk)I{µk<µi} +H(αi, αk)I{σ2
k<σ

2
i }
≥ z ∀ i, k ∈ P, k 6= i,

G(α`, αj)I{µj<µ`} +H(α`+1, αj)I{σ2
j<σ

2
`+1}
≥ z ∀ j /∈ P, ` = 0, . . . , p,

∑r
i=1 αi = 1, αi ≥ 0 ∀ i ≤ r.

Note that the first set of constraints in Problem Q hold for all i, k ∈ P, k 6= i instead of for all

i ∈ P, k ≤ r, k 6= i. This simplification occurs because anytime some j /∈ P falsely excludes i ∈ P,

it must also dominate a phantom parent pair, an event whose rate function already appears in the

second set of constraints in Problem Q. Thus Problem Q has p(p− 1) constraints corresponding to

controlling the rate of decay of P{MCE}, and (r−p)(p+1) constraints corresponding to controlling

the rate of decay of P{MCIph}, where each constraint has at least one nonzero term in the sum.

Problem Q is a concave maximization problem in α, which follows from a proof similar to that in

Glynn and Juneja (2006).

Since Slater’s condition holds for the concave maximization Problem Q, the Karush-Kuhn-

Tucker (KKT) conditions are necessary and sufficient for global optimality (see, e.g., Boyd and

Vandenberghe, 2004). The KKT conditions for Problem Q imply that αi > 0 for all i ≤ r. While

in the case of Glynn and Juneja (2004) and Hunter and Pasupathy (2013), the KKT conditions

required equating the rates of the suboptimal systems, the KKT conditions here are somewhat less

insightful: the optimal allocation in Problem Q may be determined by various combinations of the

pairwise “contests” between the systems. Thus we solve Problem Q with numerical optimization.
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Example 3. One hundred parent pairs were randomly generated using the standard maize genetic

map. Each parent pair received a sample of 500 children to estimate the mean and variance, which

we assume are the true mean and variance in this example. Figure 3 shows the locations of the means

and standard deviations for the one hundred parent pairs. The size of the circle is proportional

to the amount of sample received when the allocation is optimal under equal allocation and the

proposed allocation scheme, respectively. That is, Figure 3(b) provides a pictorial representation

of the solution to Problem Q.
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Figure 3: The size of the circle is proportional to the amount of sample received by each of 100
parent pairs.

3.2 Sequential algorithm for estimating the Pareto set

Since µi and σ2i must be estimated for all i ≤ r, Problem Q cannot be implemented as written.

Define the following estimated rate functions, in which we replace all unknown quantities with their

corresponding estimators:

Ĝ(αi, αk) := (Ŷi−Ŷk)2
2(σ̂2

i /αi+σ̂2
k/αk)

, and Ĥ(αi, αk) := αi
2 log

(
σ̂2
i /αi+σ̂

2
k/αk

σ̂2
k(1/αi+1/αk)

)
+ αk

2 log
(
σ̂2
i /αi+σ̂

2
k/αk

σ̂2
i (1/αi+1/αk)

)
.
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We now define the estimated Problem Q, called Problem Q̂:

Problem Q̂ : maximize z

s.t. Ĝ(αi, αk)I{Ŷk<Ŷi} + Ĥ(αi, αk)I{σ̂2
k<σ̂

2
i }
≥ z ∀ i, k ∈ P̂, k 6= i,

Ĝ(α[`], αj)I{Ŷj<Ŷ[`]} + Ĥ(α[`+1], αj)I{σ̂2
j<σ̂

2
[`+1]

} ≥ z ∀ j /∈ P̂, ` = 0, . . . , |P̂|,
∑r

i=1 αi = 1, αi ≥ 0 ∀ i ≤ r,

where [`] denotes the `th order statistic, and α[`] is the allocation corresponding to the `th ordered

estimated Pareto parent pair. We propose Algorithm 1 to iteratively estimate the Pareto set and

update the optimal allocation scheme by solving Problem Q̂.

Algorithm 1 Sequential algorithm for implementation of the optimal allocation scheme in the
mating design problem with normal trait distributions.

Require: Number of pilot samples δ0 > 0; number of samples between allocation vector updates
δ > 0; and a minimum-sample vector ε = {ε1, . . . , εr} > 0.

1: Initialize: collect δ0 samples from each parent pair i ≤ r.
2: Set n = rδ0, ni = δ0. {Initialize total simulation effort and effort for each parent pair.}
3: Update the sample means Ŷi and sample variances σ̂2i for all parent pairs i ≤ r. Update the

estimated Pareto set P̂.
4: Solve Problem Q̂ to obtain the estimated optimal allocation α̂∗(n) = (α̂1(n), . . . , α̂r(n)).
5: Collect one sample at each of the parent pairs Xi, i = 1, 2, . . . , δ, where the Xi’s are iid random

variates having probability mass function α̂∗(n) on support {1, 2, . . . , r}; update nXi = nXi +1.

6: Set n = n+ δ and update ᾱn = {ᾱ1,n, . . . , ᾱr,n} = {n1/n, n2/n, . . . , nr/n}.
7: if ᾱn > ε then
8: Set δ+ = 0.
9: else

10: Collect one sample from each parent pair in the set of parent pairs receiving insufficient
sample In = {i : ᾱi,n < εi}.

11: Update ni = ni + 1 for all i ∈ In. Set δ+ = |In|.
12: end if
13: Set n = n+ δ+ and go to Step 3.

The sequential allocation scheme in Algorithm 1 first takes an initial amount of sample δ0 from

each parent pair and initializes all of the estimators. Then the estimated optimal allocation problem,

Problem Q̂, is solved. The resulting estimated optimal allocation is used as a sampling distribution

from which to choose the index of the next parent pair to sample, denoted by the random variable

Xi in the algorithm. The vector ε ensures that each parent pair is sampled infinitely often, and
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should be small relative to 1/r. Once the sample δ has been expended, all estimators are updated,

and the process repeated. Algorithm 1 is nonterminating, however the user may wish to terminate

the algorithm after some total budget has been expended or some overall amount of computing

time has passed. We present Example 4 to demonstrate the sequential algorithm.

Example 4. Let the true means and standard deviations for 100 parent pairs be as specified in

Example 3, with the optimal allocation shown in Figure 3(b). We implement Algorithm 1 by

assuming the (µi, σi) pairs in Figure 3(a) are true and sequentially generating children from the

appropriate normal distributions. The parameters for Algorithm 1 are δ0 = 100, δ = 2500, and

εi = 10−10 for all i ≤ r. A description of the solver used to find the estimated optimal allocation in

Step 4 of Algorithm 1 is given in Appendix D.1 of the online supplement. Sample quantiles of the

optimality gap of the rate of decay of P{MC} for Algorithm 1, z(α∗) − z(ᾱn), calculated across

100 sample paths, are shown in Figure 4. The optimality gap for equal allocation is also shown.

We also implement MOCBA on this problem. To use MOCBA, we approximate the distribution

of the sample variance as σ̂2i ≈ N
(
(ni−1)
ni

σ2i ,
2(ni−1)
n2
i

σ4i

)
, where ni is the sample received by parent

pair i and N(·, ·) indicates a normal distribution with mean and variance parameters. Therefore if

we were to observe iid copies of a random variable “σ2i ” from which we could construct a sample

mean, we would assume σ2i ≈ N
(
(ni−1)
ni

σ2i ,
2(ni−1)
ni

σ4i

)
, where we scale the distribution of σ̂2i by

ni. We set the MOCBA parameters as N0 = 100 (initial sample size), ∆ = 2500 (increased sample

per iteration), and δ = 1250 (the maximum number of samples a parent pair can receive in a given

iteration; we set δ = ∆/2 as in the numerical section of Lee et al. (2010)). Lee et al. (2010) also

suggest that the allocation calculations be simplified by using the αi from the previous iteration.

Since it is possible that αi = 0 for some i ≤ r in the previous iteration, resulting in operations that

divide by zero, we use the fraction of sample allocated to system i so far, ᾱi,n = ni/n. Sample

quantiles of the optimality gap of the rate of decay of P{MC} for MOCBA, z(α∗)− z(ᾱMOCBA,n),

calculated across 100 sample paths, are also shown in Figure 4.

As expected, in Figure 4, the optimality gap for the implementation of Algorithm 1 reduces

as the sample size increases. The optimality gap for MOCBA appears to have a larger initial

variance than than that of the proposed procedure. For larger sample sizes, MOCBA appears to

be a competitive alternative to equal allocation.
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Figure 4: The 25th, 50th, and 75th sample quantiles of the distributions of the optimality gap for
the problem in Example 3 using equal allocation, MOCBA, and the proposed Algorithm 1

To better understand the meaning of the optimality gap in Figure 4, recall that the probability

of misclassification is P{MC(α)} ≈ e−nz(α), where z(α) is the large deviations rate of decay of

the probability of misclassification, as a function of the allocation to the parent pairs, α. Thus

the optimality gap z(α∗) − z(α), can be interpreted as z(α∗) − z(α) ≈ − 1
n logP{MC(α∗)} +

1
n logP{MC(α)}, which implies P{MC(α∗)} ≈ e−n(z(α

∗)−z(α))P{MC(α)}. For example, if the

optimality gap z(α∗) − z(α) = 2.8 × 10−5 at sample size n = 1 × 105, then P{MC(α∗)} ≈

(0.061)P{MC(α)}. Therefore what appears to be a “small” optimality gap can still lead to signif-

icant computational savings over competing methods.

Note that in Algorithm 1, the choice of δ0 and δ will affect how quickly the optimality gap

converges to zero. Methods for choosing δ0 and δ are future research; we suspect that the rates

of convergence of the rate functions Ĝ(·) and Ĥ(·) to their true values G(·) and H(·) may provide

guidance in this respect. We also speculate that, due to autocorrelation in ᾱn, it may be better to

err on the side of “larger” δ0 so that initial poorer estimates of the optimal allocation do not result

in a sample path that initially performs worse than equal allocation.

4. Solving the Estimated Max Breeding Problem in the IP Step

Having estimated the Pareto set, the breeder may wish to create the mating design by solving the

max breeding problem on the estimated Pareto set. In this section, we develop a branch and bound

algorithm for constructing the optimal mating design, given the estimated Pareto set. Thus we
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consider

Problem M̂B : maximize

∫ ∞

0
1−

|P̂|∏

i=1

Φ

(
y − Ŷi
σ̂i

)bi
dy −

∫ 0

−∞

|P̂|∏

i=1

Φ

(
y − Ŷi
σ̂i

)bi
dy

s.t.
∑|P̂|

i=1 bi = b, bi ≥ 0 and bi integer for all i ≤ |P̂|.

We wish to find the optimal mating design b̂∗(n) that solves this modified max breeding problem,

which is a nonlinear integer program. As the simulation budget n tends to infinity, assuming that

we sample from each parent pair infinitely often (as in Algorithm 1), the solution to Problem M̂B

will tend to the solution of Problem MB, b∗. Henceforth, we suppress the explicit notation that

the solution to Problem M̂B depends on the simulation budget n.

4.1 Lower and upper bounds

To prune the search space in the branch and bound algorithm, we need lower and upper bounds

on the performance of designs encountered during enumeration. The max breeding problem is

a maximization problem, so any feasible solution produces a valid lower bound on the optimal

objective value. We construct an initial feasible solution by finding the mate pair producing the

largest objective value when receiving the entire breeding budget b. Thus we compute

LBi :=
∫∞
0 1− Φ

(
y−Ŷi
σ̂i

)b
dy −

∫ 0
−∞Φ

(
y−Ŷi
σ̂i

)b
dy

for each i ∈ P̂. We then define LB := max
i∈P̂ LBi.

At a given node in the search tree, we test whether further branching can produce a solution

that exceeds the best solution so far. We propose an upper bound for the performance of designs

encountered through further branching in the search space. Let Z+ denote the set of non-negative

integers, and let B := {b ∈ Z|P̂|+ :
∑|P̂|

i=1 bi ≤ b} be the set of feasible mating designs that breed from

the parent pairs in the estimated Pareto set. Given a set of ordered pairs F = {(i1, k1), (i2, k2), . . .}

where i1, i2, . . . are parent pairs in P̂ and k1, k2, . . . are the fixed breeding budget variables at

the current node of the search tree, define B(F) := {b ∈ B : bi = k for all (i, k) ∈ F} as the set

containing all mating designs that can be encountered through further branching. To prune the

search space, we need an upper bound on the performance of designs in B(F). Let L(F) = {j ∈

20



P̂ : j 6= i for all (i, k) ∈ F} be the set of indices of free variables, that is, variables not fixed by

F , and let d be the breeding budget remaining after fixing the elements of F . Suppose L(F) 6= ∅.

Consider the piecewise function f : R 7→ R, f(y) := minj∈L(F) Φ
(
y−Ŷj
σ̂j

)
, and let

UB :=
∫∞
0 1− f(y)d

∏
(i,k)∈F

Φ
(
y−Ŷi
σ̂i

)k
dy −

∫ 0
−∞ f(y)d

∏
(i,k)∈F

Φ
(
y−Ŷi
σ̂i

)k
dy.

The following proposition states that the expected maximum achieved through further branching

is less than or equal to the upper bound.

Proposition 3. Let Ê[M(b)] denote the objective value of Problem M̂B as a function of b. Then

Ê[M(b)] ≤ UB for all b ∈ B(F).

Proof. Let b ∈ B(F). By analysis similar to that in equation (B.2) (see Appendix B of the online

supplement),

UB − Ê[M(b)] =
∫∞
−∞

∏
(i,k)∈F

Φ
(
y−Ŷi
σ̂i

)k
(

∏
i∈L(F)

Φ
(
y−Ŷi
σ̂i

)bi − f(y)d

)
dy. (2)

By construction, Φ
(
y−Ŷj
σ̂j

)
≥ f(y) ∀ y, j ∈ L(F). Since b ∈ B(F), then

∑
j∈L(F) bj ≤ d, and

∏
i∈L(F) Φ

(
y−Ŷi
σ̂i

)bi ≥ f(y)d ∀ y. Thus the quantity in line (2) is positive.

4.2 Branch and bound algorithm

We present a branch and bound algorithm, Algorithm 2, that uses the bounds derived in §4.1. To

initialize the algorithm, we first evaluate LBi for all i ∈ P̂, sort the parent pairs by descending

order of LBi, and store the list as L. The set L is an ordered set of mate pairs whose allocation is

not fixed. Then an initial feasible solution and lower bound is found by taking LB = max
i∈P̂ LBi,

as discussed in §4.1. The variable bLB stores the breeding budget allocation that produces the

bound LB, that is, the best feasible breeding budget found so far. Then the implicit enumeration

function is called.

Each state of the implicit enumeration scheme is characterized by L; d, the remaining breeding

budget; and b, a vector containing the values of bi for all mate pairs whose allocation is fixed. The

ENUM function begins by choosing the first free parent pair i in the ordered list L. If L \ {i} = ∅,
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then i receives the remaining breeding budget d, and the incumbent solution is updated if necessary.

If L\{i} 6= ∅, the algorithm cycles though all feasible values for bi, as determined by the remaining

breeding budget d, beginning with zero. For each feasible value of bi, the algorithm computes UB

as described in §4.1, and the recursive call is only made when UB > LB. After processing mate

pair i, the value for bi is reset to 0, and the function returns. The algorithm never makes a recursive

call when L = ∅.

Algorithm 2 Branch and bound algorithm to solve the estimated max breeding problem.

1: Initialize: Evaluate LBi for all i ∈ P̂. Sort parent pairs by descending LBi and store list as L,
where ties are broken arbitrarily.

2: Initialize global variables: lower bound LB, the current best solution bLB as the breeding budget
that produces LB.

3: Call ENUM(L, b,0).
4: function ENUM(L, d,b)
5: choose the first free parent pair i in the list L and set L ← L \ {i}
6: if L = ∅ then
7: bi ← d
8: if E[M(b)] > LB then
9: LB ← E[M(b)] and bLB ← b

10: end if
11: else
12: for k = 0 to d do
13: bi ← k
14: calculate UB
15: if UB > LB then
16: ENUM(L, d− k,b)
17: end if
18: end for
19: end if
20: bi ← 0
21: return

Example 5. Let b = 3, |P̂| = 3, L = {1, 2, 3}, where LB1 = maxi∈{1,2,3} LBi. If none of the search

space were pruned, Algorithm 2 would evaluate feasible points in the order

{(0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (3, 0, 0)}.
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5. Implementation

To assess the optimality gap of our methods, we require a set of test problems to which we know

the solutions — both to the true max breeding problem in (1), as well the true optimal allocation

problem, Problem Q. We use simulation to obtain realistic populations for which we know the mean

and variance parameters for all of the parent pairs, and that span a wide range of quantitative trait

models. Specifically, we first randomly place loci throughout the genome and sample from an

empirically-derived distribution of allelic effects (see Buckler et al., 2009). Then, using a standard

model of meiosis, we simulate progeny to estimate the population mean and variance, which we

assume to be the fixed “true” population values. (See Appendix A of the online supplement for

additional simulation details.) Then, we conduct our experiments by generating iid normal random

variates from the “true” trait distributions of the parent pairs to simulate the progeny.

In what follows, we fix 98 randomly generated populations of r = 100 parent pairs each. The

population size r = 100 was chosen as the largest number of parent pairs for which we could

reliably run numerical experiments. Some plant breeding applications will require techniques for

larger populations, however this size is large enough to be useful (Simmonds, 1979). Appendix D.2

of the online supplement shows the 98 populations and their proposed allocations.

Ideally, we would always numerically solve the allocation Problem Q to optimality. However

some of the randomly generated populations resulted in an ill-conditioned Problem Q, likely re-

sulting from parent pairs on or near the Pareto front lying too close to each other (such that,

for example, the rate functions become shallow and the solver has difficulty estimating a valid

Hessian). Rather than eliminate such populations for being ill-conditioned, which a practitioner

would not know in advance, we implemented a series of heuristics to find better solutions to these

difficult problems. All numerical experiments presented in this section use the solver outlined in

Appendix D.2; thus in Step 4 of the sequential Algorithm 1, the estimated optimal allocation is

the best solution returned by the solver using the techniques in Appendix D.2.

5.1 Performance of the Sequential Algorithm to Estimate the Pareto Set

To find the estimated Pareto set using the sequential Algorithm 1 for each of the 98 parent pair

populations, we fixed the algorithm parameters δ0 = 100, δ = 2500, and εi = 10−10 for all i ≤ r, and
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ran one sample path for each population. Every ten thousand samples, the percent of parent pairs

misclassified, percent of Pareto parent pairs falsely excluded, and percent of non-Pareto parent

pairs falsely included were recorded. Figure 5 shows the average of each of these quantities, taken

across the 98 populations, as a function of the simulation budget n. Note that reported average

percentages are correlated across the simulation budget values. For comparison, we ran MOCBA

and equal allocation in a similar fashion. Parameters for MOCBA are N0 = 100, ∆ = 2500, and

δ = 1250 (as in Example 4).
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Figure 5: Average percent of parent pairs misclassified (MC), Pareto parent pairs falsely excluded
(FE), and non-Pareto parent pairs falsely included (FI) for equal allocation, MOCBA, and the
proposed Algorithm 1, calculated across one sample path each for 98 populations

From Figure 5(a), when considering the metric of the overall percent of parent pairs misclassified,

the proposed algorithm performs better than MOCBA, which in turn performs better than equal

allocation. However interestingly, in Figures 5(b) and 5(c), while the proposed allocation performs

better than equal allocation, MOCBA appears to perform similar to the proposed allocation in 5(b)

corresponding to false exclusions (FE) and similar to equal allocation in 5(c) corresponding to false

inclusions (FI). This behavior occurs because, unlike the proposed algorithm, MOCBA does not

allocate in a way that simultaneously controls the probability of MCE and MCI events. Instead,

MOCBA initially alternates between allocating to minimize bounds on the probability of MCE and

allocating to minimize bounds on the probability of MCI, depending on which estimated bound is

larger. At any one iteration, MOCBA allocates to minimize the largest estimated bound. Since the

estimated values of the bounds will converge to their true values, in the limit MOCBA allocates

to minimize one bound. For the parent pair populations we consider, the estimated bound for the

probability of MCE is routinely larger than the estimated bound for the probability of MCI, which
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causes the MOCBA algorithm to allocate by minimizing the bound on the probability of MCE.

We note that MOCBA is a “closed-form” allocation scheme, requiring very little time to im-

plement, while the proposed allocation scheme requires solving a convex optimization problem at

each iteration in the sequential algorithm. Thus the tradeoff of computation time required to solve

for the estimated optimal allocation versus computation time required to simulate a child may

affect a practitioner’s choice between the proposed allocation and MOCBA. The benefit of using

the proposed allocation scheme may increase as the computation time required to produce a sim-

ulated child grows. Further research is required to derive a large-population approximation to the

proposed allocation scheme like the one for constrained SO in Pasupathy et al. (2014).

5.2 Performance of the Branch and Bound Algorithm

Table 3 reports how quickly the proposed branch and bound algorithm finds the optimal solution

to Problem MB, for the 98 populations described in Appendix D.2.

Table 3: Statistics on the number of branch and bound nodes (BBN) visited by Algorithm 2
Breeding Budget b

10 20 50 100 500a 1000

Ave. # BBN 2.0 3.1 4.8 16.5 1,126.6 23.8
% of Poplns. with # BBN > 1 5.1 5.1 3.1 4.1 2.0 3.1

Ave. # BBN, given # BBN > 1 20.0 41.2 123.7 381.0 55,156.0 745.3
a The table contains statistics from 588 branch and bound problems. Of these, only one (0.2 percent)
required extensive computational time: Population 21, b = 500 visited 109,787 BBN.

From Table 3, the average number of branch and bound nodes (BBN) visited by Algorithm 2

generally increases as b increases. However Table 3 also shows that, as b increases, the percent of

populations with BBN larger than one seems to decrease, while the average number of BBN visited

given that BBN is greater than one increases. This result is expected: as b tends to infinity, giving

all the breeding budget to the parent pair with the largest variance becomes optimal. However for

populations where the “all-to-one” strategy is not immediately declared optimal, large b increases

the number of feasible solutions, making the optimal solution harder to find.
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5.3 Performance of Two-Step Procedure

Throughout the paper we have proposed a two-step procedure to solve the mating design problem,

consisting of a simulation step and an IP step. In Figure 6, we evaluate this procedure under

different simulation step policies by presenting the optimality gap of the solution to Problem M̂B

as a function of sample size for various breeding budgets. Figure 6 required solving 7,056 branch and

bound problems (in addition to the 588 solved in Table 3), of which eight (0.1 percent) required

significant computational time. Seven are still running at the time of writing. These problems

correspond to runs for populations 11, 21, 25, 49, and 73, which are excluded from the figures in

this section. Future research may result in good heuristics for these difficult-to-solve problems. The

simulation sample paths for the IP step in Figure 6 are the same as in Figure 5.
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Figure 6: Average optimality gap of the estimated breeding budget as a function of sample size

While equal allocation initially performs worst at simulation budget n = 20, 000, perhaps sur-

prisingly, equal allocation eventually becomes a competitive algorithm in Figure 6. For smaller b,

equal allocation becomes competitive by simulation budget n = 100, 000. This result emphasizes

the fact that our objective in proposing a simulation step that maximizes the rate of decay of the

P{MC} is to classify the Pareto parent pairs correctly, which happens at an exponential rate, while

the IP step requires correct estimation of the means and variances of parent pairs in the Pareto

set, which happens at rate O(1/
√
ni) for parent pair i receiving ni samples (see also Glynn and

Juneja (2004)). Easily-classified parent pairs may receive insufficient simulation budget to meet the

precision requirements of the IP step. While the proposed algorithm consistently performs well, one

may imagine further splitting the simulation step into two: a first step for Pareto set classification,

and a second step to ensure the means and variances of the Pareto set are estimated with high
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precision. This procedure will also save computational resources since the estimation step can be

conducted with naive allocations on only the estimated Pareto set.

In practice, the estimate of the expected maximum that breeding decision-makers will have is

the objective value of Problem M̂B, Ê[M(b̂∗)]. Thus we require an estimate of the predictive value

of Ê[M(b̂∗)] for E[M(b̂∗)], the expected maximum trait observed in the progeny when implementing

the estimated optimal breeding budget b̂∗. Figure 7 shows that the objective value of the estimated

max breeding problem tends to overestimate the true expected maximum. This result might be

expected since we conjecture that the first inequality of E[Ê[M(b̂∗)]] ≥ E[M(b∗)] ≥ E[M(b̂∗)] holds

(see Mak et al. (1999)). The proposed allocation often yields better predictions than MOCBA and

equal allocation, particularly for smaller sample sizes. As in Figure 6, the predictive value will be

better for more accurate mean and variance estimates.
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Figure 7: Average prediction gap of the objective of Problem M̂B as a function of sample size

The results in this section suggest that the use of the proposed algorithm can provide substantial

gains in the performance of the max breeding problem, especially for smaller sample sizes.

6. Concluding Remarks

This paper provides an example of the collaboration opportunities available between the plant

breeding and industrial engineering communities. Fruitful collaborations provide an avenue for

advances and insights in both domains. Further, our paper contributes to the literature as follows.

(i) We introduce the breeding objective of maximizing the expected trait value of the single best

individual in the progeny population, a beneficial objective for plant breeders, and we provide

implementable methods to design a breeding allocation based on this objective. (ii) We show
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that when the trait distributions are normal, only parent pairs with non-dominated means and

variances will receive nonzero sample at optimality in the max breeding problem. Thus we make

the max breeding problem tractable by exploiting its structure to reduce the search space. (iii)

We provide an implementable sequential sampling framework based on the asymptotically optimal

sample allocation that maximizes the rate of decay of the probability of misclassification. Through

numerical experiments, we show that this framework out-performs the current standard allocation

scheme, MOCBA, in our application. (iv) We provide the first known application to successfully

implement an LD-based sequential sampling scheme with non-normal rate functions.

We also re-emphasize the following practical insight from this work. A broad class of popular

efficient sampling methods, including OCBA-like methods (Chen et al., 2000; Lee et al., 2012, 2010)

and LD-based methods (Glynn and Juneja, 2004; Szechtman and Yücesan, 2008; Hunter and Pasu-

pathy, 2013; Pasupathy et al., 2014), capitalize on the fact that the probability of misclassification

decays to zero at an exponential rate as sample size increases. However, practitioners may also wish

to accurately estimate the performance measure of interest for the best systems, which happens

at a slower rate. Thus one might initially simulate using an OCBA-like or LD-based method to

quickly classify systems, but then employ naive sampling allocations on the estimated-best systems

to ensure an accurate solution to a second optimization step.

Finally, we observe that the branch and bound algorithm converges extremely fast in practice

and allows the user to assert optimality of the resulting mating design, subject to estimation errors.

Extensions of this work in plant breeding include developing analogous methods that (i) exploit a

population structure based on pedigree, and (ii) consider multiple traits, for example, maximizing

expected yield subject to fruit weight remaining in a desired range.
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A. Simulation of quantitative traits

The computational results presented in this paper are based on experiments run on simulated F2

populations derived from a bi-parental inbred cross (Simmonds, 1979). The mating design problem

in this context asks which F2 individuals to self in order to produce the best F3 individual. A

detailed description of the trait simulator can be found in McClosky and Tanksley (2013).

Our simulations used the standard maize genetic map (1350 cM; 10 chromosomes) (McMullen

et al., 2009). Maize is considered a model organism for plants (Strable and Scanlon, 2009), analogous

to mice or flies in animal breeding and genetics. This suggests that our conclusions are relevant to

other plant species as well. Here we briefly review the simulation design.

To produce a population, the simulator randomly draws the number of Quantitative Trait

Loci (QTL) uniformly between 5 and 100. The QTL can be thought of as casual genetic factors

controlling the trait. The magnitude of the single allele substitution effect of each QTL was drawn

from a gamma distribution with shape parameter 1.45, defined to be consistent with empirical

evidence in maize (Buckler et al., 2009). To simulate dominance, we sampled a random subset of

the QTL and introduced a heterozygous deviation from the midpoint of the homozygous classes.

The magnitude of the d/a deviation was drawn from a normal distribution with mean zero and

standard deviation 0.3. We scaled all genetic scores to ensure that exactly half of the trait variance

was attributable to the QTL. The remainder of the trait variance modeled environmental factors.

We implemented the simulator and the branch and bound code in C++. The SO was run using

MATLAB. Numerical integration during branch and bound was performed using the composite

Simpson’s Rule (Atkinson, 1989).

B. Proof of Theorem 1

Let b∗i for i ≤ r be the integer allocations that maximize E[M(b)]. Further, let µr = maxi≤r µi.

We consider the case of pairwise comparisons between parent pairs to derive an allocation result

that will help us reduce the set of parent pairs in contention. Considering two parent pairs (r=2)

sharing a total of b samples, Lemma B.1 states that the first parent pair will receive zero samples
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and the second parent pair will receive b samples if taking one sample away from parent pair 1 and

giving it to parent pair 2 always results in a higher expected value of the maximum.

Lemma B.1. For any two parent pairs and finite b ≥ 2, parent pair 1 will receive zero samples

and parent pair 2 will receive b samples if for all ν1 = 1, 2, . . . , b,

E[M(b1 = ν1 − 1)]− E[M(b1 = ν1)]

=
∫∞
−∞Φ

(
y−µ1
σ1

)ν1−1
Φ
(
y−µ2
σ2

)b−ν1 (
Φ
(
y−µ1
σ1

)
− Φ

(
y−µ2
σ2

))
dy > 0. (B.1)

Proof. From Proposition 1, an allocation b is superior to an allocation b′ if

E[M(b)]− E[M(b′)] =
∫∞
0 1−∏r

i=1 Φ
(
y−µi
σi

)bi
dy −

∫ 0
−∞

r∏
i=1

Φ
(
y−µi
σi

)bi
dy

−
∫ ∞

0
1−

r∏
i=1

Φ
(
y−µi
σi

)b′i
dy +

∫ 0
−∞

r∏
i=1

Φ
(
y−µi
σi

)b′i
dy

=

∫ ∞

−∞

r∏
i=1

Φ
(
y−µi
σi

)b′i −
r∏
i=1

Φ
(
y−µi
σi

)bi
dy > 0. (B.2)

Then for two parent pairs, the result follows since

E[M(b1 = ν1 − 1)]− E[M(b1 = ν1)]

=
∫∞
−∞Φ

(
y−µ1
σ1

)ν1
Φ
(
y−µ2
σ2

)b−ν1 − Φ
(
y−µ1
σ1

)ν1−1
Φ
(
y−µ2
σ2

)b−(ν1−1)
dy.

Still in the context of two parent pairs, we use Lemma B.1 to prove the following Lemma B.2,

which states that none of the breeding budget will be allocated to any parent pair dominated by

another parent pair whose trait distribution has larger mean and variance. Theorem 1 follows as

an immediate generalization of Lemma B.2.

Lemma B.2. If µi ≤ µk and σi ≤ σk with at least one inequality holding strictly for some i, k ∈
{1, . . . , r}, i 6= k, then b∗i = 0 for all b ≥ 2.

Proof. Consider the optimal allocation of a total of b children between two parent pairs, parent

pair 1 and parent pair 2. We prove the result in two parts: (i) if µ1 < µ2 and σ1 = σ2, then b∗1 = 0

for all b ≥ 2; (ii) if µ1 = µ2 and σ1 < σ2, then b∗1 = 0 for all b ≥ 2; the proof of the main result

follows from (i) and (ii). We use Lemma B.1 to show that for any allocation ν1 to parent pair 1

with lower mean in (i) or with lower variance in (ii), taking a sample away from parent pair 1 and

giving it to parent pair 2 increases the expected maximum observed characteristic in the children.

(i). Without loss of generality, let σ1 = σ2 = 1. Since µ1 < µ2, then Φ(y − µ1) > Φ(y − µ2) for

all y. Further, the cdfs Φ(y − µ1)ν1−1 and Φ(y − µ2)b−ν1 are both positive for all y. Therefore the

integrand in (B.1) is always positive, and E[M(b1 = ν1 − 1)] > E[M(b1 = ν1)].

(ii). Without loss of generality, let µ1 = µ2 = 0. Since σ1 < σ2, then Φ
(
y
σ1

)
= Φ

(
y
σ2

)
at
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y = 0, Φ
(
y
σ1

)
< Φ

(
y
σ2

)
for all y < 0, and Φ

(
y
σ1

)
> Φ

(
y
σ2

)
for all y > 0. From (B.1),

E[M(b1 = ν1 − 1)]− E[M(b1 = ν1)]

=
∫∞
0 Φ

(
y
σ1

)ν1−1
Φ
(
y
σ2

)b−ν1 (
Φ
(
y
σ1

)
− Φ

(
y
σ2

))
dy

−
∫ 0
−∞Φ

(
y
σ1

)ν1−1
Φ
(
y
σ2

)b−ν1 (
Φ
(
y
σ2

)
− Φ

(
y
σ1

))
dy. (B.3)

where each integral in (B.3) is non-negative. Let c ∈ R, c > 0. Since the normal distribution is sym-

metric about zero, then Φ (c/σ1)−Φ (c/σ2) = Φ (−c/σ2)−Φ (−c/σ1). Therefore the difference be-

tween the two integrals in (B.3), if any, will be the result of the multiplier Φ (y/σ1)
ν1−1 Φ (y/σ2)

b−ν1 .

Since Φ (y/σ1)
ν1−1 Φ (y/σ2)

b−ν1 is a cdf composed of the product of strictly-increasing cdfs,

Φ (c/σ1)
ν1−1 Φ (c/σ2)

b−ν1 > Φ (−c/σ1)ν1−1 Φ (−c/σ2)b−ν1 .

Therefore equation (B.3) is positive.

C. Derivation of the Asymptotically Optimal Sampling Allocation

In this section, we provide the technical details and proofs for the asymptotically optimal sampling

allocation, assuming all parameters of the normal distributions are known. For brevity, we refer to

the parent pairs as “systems,” consistent with the literature on SO on finite sets.

C.1 Problem Statement

Formally, we consider the following problem statement:

Given a finite set of systems i = 1, 2, . . . , r, each with unknown primary objective value µi and

secondary objective value σ2i , and each of which can be estimated as output from a Monte Carlo

simulation, we wish to identify all systems that belong to the Pareto set P,

P = {systems i : (µi > µk) ∪ (σ2i > σ2k) for all k ≤ r; k 6= i}.

That is, P is the set of systems non-dominated in terms of mean and variance, and P is characterized

by increasing means and decreasing variances.

Let α = (α1, α2, . . . , αr) be a vector denoting the portion of the total sampling budget allocated

to each system, where
∑r

i=1 αi = 1, αi ≥ 0 for all i = 1, . . . , r. Let P̂ be the estimator of the Pareto

set P after the simulation budget has been expended. If P̂ 6= P, then at least one system has

been misclassified, that is, a Pareto system has been falsely estimated as non-Pareto, or a non-

Pareto system has been falsely estimated as Pareto. As the sampling budget tends to infinity, the

probability of misclassification tends to zero. Then we ask, what sampling budget α maximizes the

rate of decay of the probability of misclassification?
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Remark 1. While we focus on allocating the sample to maximize the rate of decay of the probability

of misclassification, one could also allocate to minimize the expected number of misclassifications.

We show that these two objectives result in identical asymptotic allocations in §C.4.

C.2 MC Event Reformulation: Proof of Theorem 2

Thorem 2. Let MCph := MCE ∪MCIph. Then P{MC} = P{MCph}.

Proof. First, note that

MC = MCE ∪ (MCI ∩MCEc) and MCph = MCE ∪ (MCIph ∩MCEc).

(⇒) It is sufficient to show that MCI∩MCEc implies MCIph. Suppose MCI∩MCEc. Let j /∈ P
and j ∈ P̂ be a non-Pareto system falsely estimated as Pareto. Then for each i ∈ P, Ŷj ≥ Ŷi or

σ̂2j ≥ σ̂2i . Thus (Ŷj , σ̂
2
j ) ∈ ∩i∈P{(Ŷ , σ̂2) : (Ŷ ≥ Ŷi) ∪ (σ̂2 ≥ σ̂2i )}. Since MCEc, no Pareto systems

dominate other Pareto systems. Therefore (Ŷj , σ̂
2
j ) ∈ ∪`=0,...,p{(Ŷ , σ̂2) : (Ŷ ≥ Ŷ[`]) ∩ (σ̂2 ≥ σ̂2[`+1])},

that is, j lies in the union of the northeast quadrants defined by origins at the estimated phantom

systems. Therefore MCIph occurs.

(⇐) It is sufficient to show that MCIph ∩MCEc implies MC. Suppose MCIph ∩MCEc. Then

all Pareto systems are estimated as Pareto. From the set of all j /∈ P dominating some estimated

phantom Pareto system, there exists j∗ /∈ P such that j∗ ∈ P̂. (Otherwise, if there exists no such

j∗, then each j /∈ P is dominated by some i ∈ P, and MCIph does not occur.) Therefore P̂ 6= P,

which implies MC.

C.3 Rate Function Derivation: Proofs of Proposition 2 and Theorem 3

To efficiently identify the Pareto set, we wish to identify the sampling allocation vector that max-

imizes the rate of decay of the P{MC}. For `b = max(P{MCE}, P{MCIph}), we have `b ≤
P{MC} ≤ 2`b, which, assuming the limits exist, implies

− lim
n→∞

1

n
logP{MC} = min

(
− lim
n→∞

1

n
logP{MCE},− lim

n→∞

1

n
logP{MCIph}

)
. (C.1)

Since the rate function corresponding to the MCE term in equation (C.1) is most straightfor-

ward, we analyze it first. Since the estimated mean and estimated variance for a normal distribution

are independent, Ŷi and σ̂2i are independent for all i ≤ r. Bound the P{MCE} by noting that for

`b2 = max
i∈P

max
k≤r, k 6=i

P{Ŷi ≤ Ŷk}P{σ̂2i ≤ σ̂2k},

we have `b2 ≤ P{MCE} ≤ r2 × `b2. Thus

− lim
n→∞

1

n
logP{MCE} = min

i∈P
min
k≤r
k 6=i

(
− lim
n→∞

1

n
logP{Ŷi ≤ Ŷk} − lim

n→∞

1

n
logP{σ̂2i ≤ σ̂2k}

)
. (C.2)
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By Glynn and Juneja (2004), under Assumption 1, for all i ∈ P, k ≤ r such that µk < µi,

G(αi, αk) := − lim
n→∞

1

n
logP{Ŷi ≤ Ŷk} =

(µi − µk)2
2(σ2i /αi + σ2k/αk)

, (C.3)

where αi, αk > 0. If αi = 0 or αk = 0, then G(αi, αk) := 0. We derive an expression for the rate

function corresponding to the event σ̂2i ≤ σ̂2k in Proposition 2.

Proposition 2. Under Assumption 1, for all i ∈ P, k ≤ r such that σ2k < σ2i ,

H(αi, αk) := − lim
n→∞

1

n
logP{σ̂2i ≤ σ̂2k} =

αi
2

log

(
σ2i /αi + σ2k/αk
σ2k(1/αi + 1/αk)

)
+
αk
2

log

(
σ2i /αi + σ2k/αk
σ2i (1/αi + 1/αk)

)
,

where αi, αk > 0. If αi = 0 or αk = 0, then H(αi, αk) := 0.

Proof. Since Yim are iid normal random variables with mean µi and variance σ2i for all m =

1, 2, . . . , nαi, then

nαiσ̂
2
i =

∑nαi
m=1(Yim − 1

nαi

∑nαi
m=1 Yim)2 = σ2i

∑nαi
m=1(Zm − 1

nαi

∑nαi
m=1 Zm)2 = σ2i

∑nαi−1
m=1 U2

m,

where the Um’s arise from Helmert’s transformation (Stuart and Ord, 1994, p. 379), and are iid

normal random variables with zero mean and unit variance (here, we assume nαi is an integer).

Note that since we were able to write the scaled σ̂2i and σ̂2k as sums of iid random variables, the

rate function will be of the type specified in Glynn and Juneja (2004). To see this, consider the

joint cumulant generating function of (σ̂2i , σ̂
2
k),

Λ(σ̂2
i ,σ̂

2
k)

(ti, tk) = logE
[
e
ti
σ2i
nαi

∑nαi−1
m=1 U2

m+tk
σ2k
nαk

∑nαk−1
m=1 U2

m
]
.

By the independence systems i and k,

Λ(σ̂2
i ,σ̂

2
k)

(ti, tk) = logE
[
e
ti
σ2i
nαi

∑nαi−1
m=1 U2

m
]

+ logE
[
e
tk

σ2k
nαk

∑nαk−1
m=1 U2

m
]

= (nαi − 1) logE
[
e
ti
σ2i
nαi

U2
1
]

+ (nαk − 1) logE
[
e
tk

σ2k
nαk

U2
1
]
.

Thus noting that U2
1 is a chi-square random variable with one degree of freedom, it follows that

lim
n→∞

1

n
Λ(σ̂2

i ,σ̂
2
k)

(nti, ntk) = αi logE
[
e
σ2
i
ti
αi
U2
1
]

+ αk logE
[
e
σ2
k
tk
αk
U2
1
]

= −αi
2 log

(
1− 2σ2i

ti
αi

)
− αk

2 log
(
1− 2σ2k

tk
αk

)

for ti < αi/2σ
2
i , tk < αk/2σ

2
k. By the Gärtner-Ellis theorem (Dembo and Zeitouni, 1998), the large

5



deviations principle holds with good rate function

J(xi, xk) = sup
ti,tk

{
tixi + tkxk + αi

2 log
(
1− 2σ2i

ti
αi

)
+ αk

2 log
(
1− 2σ2k

tk
αk

)}

= αi sup
ti/αi

{
ti
αi
xi + 1

2 log
(
1− 2σ2i

ti
αi

)}
+ αk sup

tk/αk

{
tk
αk
xk + 1

2 log
(
1− 2σ2k

tk
αk

)}

= αi
2

[
xi
σ2
i
− log

(
xi
σ2
i

)
− 1
]

+ αk
2

[
xk
σ2
k
− log

(
xk
σ2
k

)
− 1
]

for xi > 0, xk > 0. By the same simplification as in Glynn and Juneja (2004), it follows that

− lim
n→∞

1

n
logP{σ̂2i ≤ σ̂2k} = inf

x

(
αi
2

[
x
σ2
i
− log

(
x
σ2
i

)
− 1
]

+ αk
2

[
x
σ2
k
− log

(
x
σ2
k

)
− 1
])
.

After some algebra,

x(αi, αk) =
αi + αk

αi/σ2i + αk/σ
2
k

=
σ2k(σ

2
i /αi) + σ2i (σ

2
k/αk)

σ2i /αi + σ2k/αk
,

which implies the result.

Combining the result of Proposition 2 with the results in equations (C.2) and (C.3), the overall

rate of decay of P{MCE} is given by the following Lemma C.1.

Lemma C.1. Let I{·} be the indicator function. Under Assumption 1, the rate function of P{MCE} is

− lim
n→∞

1

n
logP{MCE} = min

i∈P
min

k≤r, k 6=i

(
G(αi, αk)I{µk<µi} +H(αi, αk)I{σ2

k<σ
2
i }

)
.

Lemma C.1 states that the rate of decay of P{MCE} is determined by the slowest rate function

for the probability that a Pareto system is falsely dominated by some other system. For competing

systems k ∈ P, exactly one of the rate functions in Lemma C.1 will be nonzero at a time. For

competing systems k /∈ P, at least one of the rate functions will be nonzero.

Let us turn our attention to the term corresponding to MCIph in (C.1). We do not directly

derive the rate function for P{MCIph}; instead, we consider the overall rate of P{MC}, since certain

terms in the rate of decay of P{MCIph} will never be the unique minimum in the overall rate of

decay of P{MC}.
First, we require additional notation. Recall that we labeled the Pareto systems from 1, 2, . . . , p.

Let the ordered list OP = {(1, 1), (2, 2), . . . , (p, p)} denote the positions of the true Pareto set on

each objective. That is, Pareto system 1 is in “position 1” on the mean objective (smallest) and

“position 1” on the variance objective (largest), corresponding to (1, 1). Pareto system 2 is in

position 2 on the mean objective (2nd smallest) and position 2 on the variance objective (2nd

largest), corresponding to (2, 2), and so on. Let Ô[P] denote the ordered list of estimated positions

of the true Pareto set. That is, if Pareto system 1 is estimated as being in position 1 on the mean

objective and position 5 on the variance objective, the first element in the list Ô[P] will be (1, 5).
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Further, define MCIph without order statistics as

MCI∗ph := ∪
j /∈P
∪p`=0(Ŷ` ≤ Ŷj) ∩ (σ̂2`+1 ≤ σ̂2j ).

We present Lemma C.2 as an intermediary step to deriving the overall rate of decay of P{MC}.

Lemma C.2. The rate of decay of P{MC} is

− lim
n→∞

1

n
logP{MC} = min

(
− lim
n→∞

1

n
logP{MCE},− lim

n→∞

1

n
logP{MCI∗ph ∩ (Ô[P] = OP)}

)
.

(C.4)

Proof. We derive upper and lower bounds on the rate of decay of the P{MC} by considering bounds

on the rate of decay of P{MCIph}. By the law of total probability, it follows that

P{MCIph} = P{MCIph ∩ (Ô[P] = OP)}+
∑

all S6=OP P{MCIph ∩ (Ô[P] = S)},

where S is an ordered set of p elements of the form {(x1, y1), (x2, y2), . . . , (xp, yp)} where the x

coordinates and y coordinates are separately drawn without replacement from the set {1, 2, . . . , p}.
Consider the term P{MCIph ∩ (Ô[P] = OP)}. Since Ô[P] = OP occurs, we may rewrite MCIph

without order statistics so that

P{MCIph} = P{MCI∗ph ∩ (Ô[P] = OP)}+
∑
S6=OP P{MCIph ∩ (Ô[P] = S)}. (C.5)

(Lower bound on rate of decay of P{MC}.) Consider an upper bound on the P{MCIph}. From

equation (C.5), an upper bound is

P{MCIph} ≤ P{MCI∗ph ∩ (Ô[P] = OP)}+
∑
S6=OP P{Ô[P] = S}.

We now derive the rate function corresponding to the upper bound. Assuming the limits exist and

applying the principle of the slowest term (Ganesh et al., 2004, Lemma 2.1),

− lim
n→∞

1

n
log P{MCIph} ≥ − lim

n→∞

1

n
log

(
P{MCI∗ph ∩ (Ô[P] = OP)}+

∑
S6=OP P{Ô[P] = S}

)

= min

(
− lim
n→∞

1

n
logP{MCI∗ph ∩ (Ô[P] = OP)}, min

S6=OP
− lim
n→∞

1

n
logP{Ô[P] = S}

)
.

From (C.1), it follows that

− lim
n→∞

1

n
logP{MC} ≥ min

(
− lim
n→∞

1

n
logP{MCE},− lim

n→∞

1

n
logP{MCI∗ph ∩ (Ô[P] = OP)},

min
S6=OP

− lim
n→∞

1

n
logP{Ô[P] = S}

)
.
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Consider the term minS6=OP − lim
n→∞

1
n logP{Ô[P] = S}. It is clear that any value of Ô[P] that

results in an MCE event will have a rate function that is greater than or equal to the corresponding

rate function for MCE. Now consider values of Ô[P] that do not result in MCE, such that all

Pareto systems are estimated as Pareto, but may be estimated in the wrong order, e.g., Ô[P] =

{(2, 2), (1, 1), (3, 3), . . . , (p, p)}, where Pareto systems 1 and 2 have exchanged positions. In this

case, it is sufficient to consider only instances of Ô[P] that contain pairwise exchanges, and further,

it is sufficient to consider instances of Ô[P] in which there is exactly one pair exchange. For any

`1, `2 indexing the Pareto set such that `1 < `2, a pair exchange occurs if (Ŷ`1 ≥ Ŷ`2)∩ (σ̂2`1 ≤ σ̂2`2).

Let Ô(`1,`2)
[P] denote an ordering with exactly one pair exchange where `1 and `2, `1 < `2, are the

Pareto systems whose places have been exchanged. Then

− lim
n→∞

1

n
logP{Ô(`1,`2)

[P] } ≥ − lim
n→∞

1

n
logP{(Ŷ`1 ≥ Ŷ`2) ∩ (σ̂2`1 ≤ σ̂2`2)}

≥ − lim
n→∞

1

n
logP{σ̂2`1 ≤ σ̂2`2} ≥ − lim

n→∞

1

n
logP{MCE}.

Thus the rate function for min
S6=OP

− lim
n→∞

1
n logP{Ô[P] = S} will never be the unique minimum, and

− lim
n→∞

1

n
logP{MC} ≥ min

(
− lim
n→∞

1

n
logP{MCE},− lim

n→∞

1

n
logP{MCI∗ph ∩ (Ô[P] = OP)}

)
.

(Upper bound on rate of decay of P{MC}.) We now seek a lower bound on the P{MCIph}
which leads to an upper bound on the rate of decay of the P{MC}. From equation (C.5), it is

straightforward to see that P{MCIph} ≥ P{MCI∗ph ∩ (Ô[P] = OP)}, and hence

− lim
n→∞

1

n
logP{MCIph} ≤ − lim

n→∞

1

n
logP{MCI∗ph ∩ (Ô[P] = OP)}

which, together with equation (C.1), implies

− lim
n→∞

1

n
logP{MC} ≤ min

(
− lim
n→∞

1

n
logP{MCE},− lim

n→∞

1

n
logP{MCI∗ph ∩ (Ô[P] = OP)}

)
.

The rate of decay of P{MC} follows from the upper and lower bounds.

Theorem 3 states the overall rate of decay of P{MC}, where once again, we do not directly

derive the rate of decay of P{MCI∗ph∩ (Ô[P] = OP)}. Instead, we show that the rate is either equal

to the rate function in the following line (C.7), or it is greater than or equal to the rate function

corresponding to P{MCE}.

8



Theorem 3. Let α0 := 1 and αp+1 := 1. Under Assumption 1, the rate function of P{MC} is

− lim
n→∞

1

n
logP{MC} = min

(
min
i∈P

min
k≤r, k 6=i

(
G(αi, αk)I{µk<µi} +H(αi, αk)I{σ2

k<σ
2
i }

)
, (C.6)

min
j /∈P

min
`=0,...,p

(
G(α`, αj)I{µj<µ`} +H(α`+1, αj)I{σ2

j<σ
2
`+1}

))
. (C.7)

Proof. From Lemmas C.1 and C.2, the substitution in line (C.6) corresponding to the rate of decay

of P{MCE} is straightforward. From equation (C.4), we focus on the quantity corresponding to

P{MCI∗ph ∩ (Ô[P] = OP)} in line (C.7). Expanding the term corresponding to Ô[P] = OP , we have

P{MCI∗ph ∩ (Ô[P] = OP)} = P{[ ∪
j /∈P

p
∪
`=0

(Ŷ` ≤ Ŷj) ∩ (σ̂2`+1 ≤ σ̂2j )] ∩ [
p
∩
`=0

(Ŷ` ≤ Ŷ`+1) ∩ (σ̂2` ≥ σ̂2`+1)]}

= P{ ∪
j /∈P

p
∪
`=0

[
(Ŷ` ≤ Ŷj) ∩ (σ̂2`+1 ≤ σ̂2j ) ∩ [

p
∩
`′=0

(Ŷ`′ ≤ Ŷ`′+1) ∩ (σ̂2`′ ≥ σ̂2`′+1)]

]
},

which, assuming the limits exist, for

`b3 = max
j /∈P

max
`=0,...,p

P{(Ŷ` ≤ Ŷj) ∩ (σ̂2`+1 ≤ σ̂2j ) ∩ [
p
∩
`′=0

(Ŷ`′ ≤ Ŷ`′+1) ∩ (σ̂2`′ ≥ σ̂2`′+1)]},

we have `b3 ≤ P{(Ŷ` ≤ Ŷj) ∩ (σ̂2`+1 ≤ σ̂2j ) ∩ [∩p`′=0(Ŷ`′ ≤ Ŷ`′+1) ∩ (σ̂2`′ ≥ σ̂2`′+1)]} ≤ r2`b3. Then

− lim
n→∞

1

n
logP{MCI∗ph ∩ (Ô[P] = OP)}

= min
j /∈P

min
`=0,...,p

(
− lim
n→∞

1

n
logP{(Ŷ` ≤ Ŷj) ∩ (σ̂2`+1 ≤ σ̂2j ) ∩ [

p
∩
`′=0

(Ŷ`′ ≤ Ŷ`′+1) ∩ (σ̂2`′ ≥ σ̂2`′+1)]}
)
.

(C.8)

Letting α0 := 1, αp+1 := 1, σ2p+2 := 0, and

Ik(y) =
(y − µk)2

2σ2k
and Jk(z) =

1

2

[
z

σ2k
− log

(
z

σ2k

)
− 1

]
,

for any j /∈ P, ` ∈ {0, 1, . . . , p}, from equation (C.8) we have

− lim
n→∞

1

n
logP{(Ŷ` ≤ Ŷj) ∩ (σ̂2`+1 ≤ σ̂2j ) ∩ [

p
∩
`′=0

(Ŷ`′ ≤ Ŷ`′+1) ∩ (σ̂2`′ ≥ σ̂2`′+1)]}

= − lim
n→∞

1

n
logP{(Ŷ` ≤ Ŷj) ∩ [

p
∩
`′=0

(Ŷ`′ ≤ Ŷ`′+1)]} − lim
n→∞

1

n
logP{(σ̂2`+1 ≤ σ̂2j ) ∩ [

p
∩
`′=0

(σ̂2`′ ≥ σ̂2`′+1)]}

=
[

inf
y`≤yj

y1≤...≤y`≤...≤yp

αjIj(yj) + α1I1(y1) + . . .+ α`I`(y`) + . . .+ αpIp(yp)
]
I{`6=0} (C.9)

+
[

inf
z`+1≤zj

z1≥...≥z`+1≥...≥zp

αjJj(zj) + α1J1(z1) + . . .+ α`+1J`+1(z`+1) + . . .+ αpJp(zp)
]
I{`6=p}.

(C.10)
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(In line (C.9), if µ` < µj , then the infimum occurs at yj = µj , y`′ = µ`′ for all `′ ∈ {1, 2, . . . , p}, and

line (C.9) equals zero. In line (C.10), if σ2`+1 < σ2j , then the infimum occurs at zj = σ2j , z`′ = σ2`′

for all `′ ∈ {0, 1, . . . , p− 1}, and line (C.10) equals zero. However notice that µj < µ` or σ2j < σ2`+1,

since otherwise j ∈ P. Thus the rate function in lines (C.9) and (C.10) is nonzero.)

Note that at optimality in lines (C.9) and (C.10), y` = yj and z`+1 = zj ; thus we let y` = yj be

denoted as y and z`+1 = zj be denoted as z. Further, since µ1 ≤ . . . ≤ µ`−1 ≤ µ` ≤ µ`+1 ≤ . . . ≤ µp
and σ21 ≥ . . . ≥ σ2` ≥ σ2`+1 ≥ σ2`+2 ≥ . . . σ2p, and µj < µ` or σ2j < σ2`+1, it is sufficient to let

y`+1, . . . , yp equal µ`+1, . . . , µp, respectively; z1, . . . , z` equal σ21, . . . , σ
2
` , respectively; and search for

y in [µj , µ`] and z in [σ2j , σ
2
`+1]. Then from (C.9) and (C.10),

− lim
n→∞

1

n
logP{(Ŷ` ≤ Ŷj) ∩ (σ̂2`+1 ≤ σ̂2j ) ∩ [

p
∩
`′=0

(Ŷ`′ ≤ Ŷ`′+1) ∩ (σ̂2`′ ≥ σ̂2`′+1)]}

=
[

inf
µj<y<µ`

y1≤...≤y`−1≤y≤µ`

αjIj(y) + α`I`(y) +
`−1∑
i=1

αiIi(yi)
]
I{µj<µ`} (C.11)

+
[

inf
σ2
j<z<σ

2
`+1

zp≤...≤z`+2≤z≤σ2
`+1

αjJj(z) + α`+1J`+1(z) +
p∑

i=`+2

Ji(zi)
]
I{σ2

j<σ
2
`+1}

(C.12)

In (C.11) and (C.12), note that the values of y1, . . . , y`−1 and zp, . . . , z`+2 are either equal to their

respective mean values, so that the rate functions evaluate to zero, or they are equal to y or z,

respectively. (This observation follows from the KKT conditions, which are necessary and sufficient

for global optimality in this convex minimization problem.) Then each infimum in (C.11) and (C.12)

reduces to a one-dimensional problem with an unknown number of nonzero rate functions in each

of the summation terms. Let y∗ denote the arg inf in (C.11) and z∗ denote the arg inf in (C.12),

and let

y∗∗ := arg min
y
αjIj(y) + α`I`(y); z∗∗ := arg min

z
αjJj(z) + α`+1J`+1(z).

Suppose µj < µ` and consider only line (C.11), since a similar argument holds for line (C.12).

When y∗ = y∗∗, which occurs when µ`−1 < µj or when µj < µ`−1 and y∗ ∈ [µ`−1, µ`], the

rate function in (C.11) is equal to G(α`, αj)I{µj<µ`}. Now suppose that y∗ 6= y∗∗, which implies

µj < µ`−1 and y∗ ∈ [µj , µ`−1]. Then

(C.11) = inf
µj<y<µ`−1

y1≤...≤y`−2≤y≤µ`−1

αjIj(y) + α`−1I`−1(y) + α`I`(y) +
`−2∑
i=1

αiIi(yi)

≥ inf
y<µ`−1

αjIj(y) + α`−1I`−1(y) + α`I`(y) +
`−2∑
i=1

αiIi(yi)

≥ inf
y<µ`−1

α`−1I`−1(y) + α`I`(y)

≥ inf
µ`−1<y<µ`

α`−1I`−1(y) + α`I`(y)

= G(α`−1, α`)I{µ`−1<µ`} ≥ − lim
n→∞

1

n
logP{MCE}.
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Therefore if y∗ 6= y∗∗, the rate function is not the unique minimum.

As mentioned previously, a similar argument holds for the case in line (C.12), such that z∗ 6= z∗∗

implies the rate function in line (C.12) is not the unique minimum. Therefore the only rate functions

that may be the unique minimum in equation (C.4) require y∗ = y∗∗ and z∗ = z∗∗. Therefore the

result holds.

C.4 The Rate of Decay of the Expected Number of Misclassifications

Let I{·} be the indicator function, and consider that the expected number of misclassifications

(NMC) is given by

E[NMC] = E

[∑

i∈P
I{i/∈P̂} +

∑

j /∈P

I{j∈P̂}

]
=
∑

i∈P
P{i /∈ P̂}+

∑

j /∈P

P{j ∈ P̂}.

Then assuming the limits exist (see Ganesh et al., 2004, Lemma 2.1),

− lim
n→∞

1

n
log E[NMC] = min

(
min
i∈P

(
− lim
n→∞

1

n
logP{i /∈ P̂}

)
,min
j /∈P

(
− lim
n→∞

1

n
logP{j ∈ P̂}

))
.

Consider that for i ∈ P,

P{i /∈ P̂} = P{ ∪
k≤r, k 6=i

(Ŷi ≤ Ŷk) ∩ (σ̂2i ≤ σ̂2k)},

which has lower bound `b4 = max
k≤r, k 6=i

P{Ŷi ≤ Ŷk}P{σ̂2i ≤ σ̂2k} and upper bound r × `b4. Then

min
i∈P

(
− lim
n→∞

1

n
logP{i /∈ P̂}

)
= min

i∈P

(
min
k≤r
k 6=i

(
− lim
n→∞

1

n
logP{Ŷi ≤ Ŷk} − lim

n→∞

1

n
logP{σ̂2i ≤ σ̂2k}

))
,

which is equivalent to the expression for − lim
n→∞

1
n logP{MCE} in equation (C.2).

Now consider that for j /∈ P, P{j ∈ P̂} = P{∩k≤r, k 6=j(Ŷj ≥ Ŷk) ∪ (σ̂2j ≥ σ̂2k)}. Define

MC(j) := ∩
k≤r, k 6=j

(Ŷj ≥ Ŷk) ∪ (σ̂2j ≥ σ̂2k) and MCph(j) := ∪p`=0(Ŷ[`] ≤ Ŷj) ∩ (σ̂2[`+1] ≤ σ̂2j )},

where ` is the index of the phantom Pareto systems, and notice that

MC(j) = (MC(j)∩MCE)∪(MC(j)∩MCEc) and MCph(j) = (MCph(j)∩MCE)∪(MCph(j)∩MCEc).

By a proof similar to that of Theorem 2, it can be shown that P{j ∈ P̂} = P{MC(j)} =

P{MCph(j)}. Now the contribution of this probability to the overall rate of decay of E[NMC]

can be analyzed in processes similar to those in Lemma C.2 and Theorem 3.
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D. Parent Pair Populations Used in §5

In §D.2, we present 98 randomly-generated populations of 100 parent pairs that were used in the

numerical section. Originally, a total of 101 populations were generated for use in the numerical

section, all of which are presented in §D.2. The sample paths generated for three populations,

populations 16, 29, and 90, were excluded from the analyses in the numerical section for reasons

we discuss in §D.1.

D.1 Description of Solver

While we were able to numerically solve Problem Q on the first try in most populations, some

populations resulted in ill-conditioned Problems Q. If the solver struggled to find an optimal

solution, the following steps were taken: (i) adjust the tolerances of the solver if necessary; (ii) solve

a relaxed version of Problem Q with only constraints corresponding to MCE; (iii) solve a relaxed

version of Problem Q with only constraints corresponding to MCIph; (iv) evaluate the rate of decay,

z, of a “guess” allocation; (v) re-solve Problem Q using the tolerances from (i) and a warm start,

where the warm start is the allocation producing the largest z from among the guess allocation

in (iv) and any allocations for which the solver converged in steps (ii) and (iii); (vi) return the

allocation producing the largest z — equal allocation, the guess allocation in (iv), or an allocation

for which the solver converged in (ii), (iii), or (v).

The guess allocation divides parent pairs into three groups: non-Pareto parent pairs in the

bottom 70th percentile on both objectives (nP-B70), non-Pareto parent pairs in the top 30th

percentile on both objectives (nP-T30), and Pareto parent pairs. Within each group, the allocation

is distributed equally, however the guess allocation gives parent pairs in nP-T30 ten times more

sample than those in nP-B70, and Pareto parent pairs receive four times more sample than parent

pairs in nP-T30. The guess allocation proved routinely superior to equal allocation, and at times

better than solutions to the relaxed versions of Problem Q. Indeed, sometimes equal allocation was

a better solution than a relaxed version of Problems Q. All populations that were not solved on

the first try have a note in the title of the graph. Graphs labeled “Warm start” indicate that the

best solution is the result of solving Problem Q in step (v). A graph labeled “MCE only,” “MCI

only,” or “Guess” indicates that the best solution is the result of step (ii), (iii), or (iv), respectively.

During implementation of the sequential algorithm, steps (i)–(vi) were conducted as previously

described, except that a time limit of ten minutes was placed on finding a solution in any step (most

solutions were found in seconds). In MATLAB, implementing the time limit required evaluating

the objective function, which, on occasion, did not occur for very long periods of time as the solver

searched for new directions. The sample paths for populations 16, 29, and 90 stalled in this fashion,

and thus were not included in the analysis. We view this as a weakness of the solver we used and

not as a weakness of the proposed algorithm — a heuristic allocation, such as the Guess allocation

or equal allocation, should be applied if no solution is found in a desired time limit.
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D.2 Parent Pair Populations and Allocations

There are two graphs for each population. The first, for example labeled as (1-E), shows the amount

of sample given to each parent pair under equal allocation. The second, for example (1-P), shows

the amount of sample given to each parent pair under the proposed allocation, using the solver

described in §D.1 and assuming the true µ and σ values are known (we solve Problem Q). In each

case, the size of the circle is proportional to the amount of sampling budget n allocated to that

parent pair. The rate z indicated in the title gives the true rate of decay of the probability of

misclassification at the allocation presented in the graph, subject to solver tolerance.

These graphical representations of the optimal allocations provide interesting insights into the

nature of optimal allocations in a bi-objective context. Loosely speaking, we notice that systems

in the Pareto set tend to receive more sample than systems that are “close” to the Pareto frontier,

who in turn, receive more sample than systems that are “far away” from the Pareto frontier. These

results are intuitive since the variances among the parent pair trait distributions are similar, and

thus the relative locations of the parent pairs’ mean values primarily affect their likelihood of being

falsely included in or excluded from the Pareto set.

We further note that in some problem instances, such as 14-P, the sample allocation is focused

on a few systems, while in other problem instances, the sample allocation is more spread out across

the Pareto frontier, as in 12-P. Again loosely speaking, the problem instances in which much of the

sample is concentrated on a few systems are problem instances in which there are several systems

very close together requiring a large proportion of sample to determine which systems are in the

Pareto set and which are not. If the systems in the Pareto set are more evenly distributed, and

they have some reasonable separation from the systems they dominate, then the sample tends to

be more evenly distributed.
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