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The bi-objective ranking and selection (R&S) problem is a special case of the multi-objective simulation

optimization problem in which two conflicting objectives are known only through dependent Monte Carlo

estimators, the decision space or number of systems is finite, and each system can be sampled to some extent.

The solution to the bi-objective R&S problem is a set of systems with non-dominated objective vectors, called

the set of Pareto systems. We exploit the special structure of the bi-objective problem to characterize the

asymptotically optimal simulation budget allocation, which accounts for dependence between the objectives

and balances the probabilities associated with two types of misclassification error. Like much of the R&S

literature, our focus is on the case in which the simulation observations are bivariate normal. Assuming

normality, we then use a certain asymptotic limit to derive an easily-implementable SCORE (Sampling Criteria

for Optimization using Rate Estimators) sampling framework that approximates the optimal allocation and

accounts for correlation between the objectives. Perhaps surprisingly, the limiting SCORE allocation exclusively

controls for misclassification-by-inclusion events, in which non-Pareto systems are falsely estimated as Pareto.

We also provide an iterative algorithm for implementation. Our numerical experience with the resulting

SCORE framework indicates that it is fast and accurate for problems having up to ten thousand systems.
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1 INTRODUCTION
The simulation optimization (SO) problem is a nonlinear optimization problem in which the ob-

jective and constraint functions can only be observed with error as output from a Monte Carlo

simulation. Such problems tend to arise when computer models are used to design complex systems

under uncertainty — an increasingly popular practice [Powers et al. 2012]. Since the SO formulation

is quite general, SO problems arise frequently in a variety of application areas, including agricul-

ture [Hunter and McClosky 2016], energy [Marmidis et al. 2008; Subramanyan et al. 2011], and

transportation [Osorio and Bierlaire 2013]. For additional examples and a library of SO problems,

see the simopt.org website [Henderson and Pasupathy 2017].

Methods to solve the SO problem are often categorized by whether the feasible set contains

categorical, integer-ordered, or continuous decision variables [Pasupathy and Henderson 2006].

Further, solution methods can be categorized by the number of performance measures posed as

objectives and constraints. In the presence of a single objective and deterministic constraints, mature
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solution methods are available for all types of feasible sets. For an overview of these methods

and entry points into this literature, see Pasupathy and Ghosh [2013] and Fu [2015]. Recently,

solution methods for a single objective with stochastic constraints have been proposed in the case

of categorical variables [Andradóttir and Kim 2010; Lee et al. 2012; Pasupathy et al. 2015] and

integer-ordered variables [Luo and Lim 2013; Nagaraj and Pasupathy 2016; Park and Kim 2015]. For

methods with continuous variables, see, e.g., Ruszczyński and Shapiro [2003], Homem-de-Mello

and Bayraksan [2015], and references therein. However, despite its mature development in the

analogous deterministic context [Miettinen 1999, for example], few papers in the SO literature

provide solution methods in the presence of multiple simultaneous objectives — a problem we call

the multi-objective simulation optimization (MOSO) problem.

We formulate the MOSO problem as

ProblemM : minimizex∈X (IE[G1(x, ξ )], . . . , IE[Gd (x, ξ )]),

where X ⊆ Rq is a known feasible set, ξ represents a random quantity, and each objective can be

estimated as output from a Monte Carlo simulation. Since there may not exist a single point x ∈ X

that minimizes all objectives simultaneously, the solution to ProblemM is called the efficient set or

the Pareto set. We let the efficient set be the set of decision points x ∈ X for which no other point

x′ ∈ X, x , x′ has objective values that are at least as good on all objectives, and strictly better on

at least one objective. We refer to the image of the efficient set as the Pareto set.
We consider the context of solving ProblemM when the goal is to identify the entire efficient

set, the feasible set X is finite or comprised of categorical variables, and there are two objectives.

Methods to solve SO problems in which X is finite are often called ranking and selection (R&S)

methods (see Kim and Nelson 2006 for an overview). Such methods require the feasible set to be

small enough to permit simulation of each decision point; the decision points are usually indexed

by their objective values and called systems. Henceforth, we refer to systems with objective vectors

in the Pareto set as Pareto systems (see §2.2 for terminology). R&S methods can be divided into

two types: methods that provide a fixed-precision guarantee on the optimality gap of the returned

systems, and methods that allocate a fixed simulation budget in a way that guarantees sampling

efficiency [Hunter and Nelson 2017; Pasupathy and Ghosh 2013]. We fall in the latter category of

fixed simulation budget methods; as such, we do not provide a fixed-precision guarantee on the

optimality gap of the returned systems.

1.1 Questions Answered
To explore what we mean by allocating a fixed simulation budget in a way that guarantees sampling

efficiency, consider a simple algorithm to solve ProblemM : (a) allocate some non-zero proportion

of a total sampling budget to each system, (b) sample and construct estimators of the objective

vectors for each system, (c) return the indices of systems corresponding to the estimated Pareto set.

Ideally, the estimated Pareto systems at the end of this procedure will correspond to the true Pareto

systems; if not, a misclassification occurs. Under mild regularity conditions, as the total sampling

budget tends to infinity, the probability of a misclassification decays to zero. Then we ask, what
proportion of the total sampling budget should be allocated to each system to maximize the rate of
decay of the probability of misclassification, as the sampling budget tends to infinity?
As may be expected given prior work in other SO contexts, notably, Glynn and Juneja [2004],

Szechtman and Yücesan [2008], Hunter and Pasupathy [2013], and Pasupathy et al. [2015], we

characterize the asymptotically optimal sampling allocation as the solution to a bi-level optimization

problem where the “outer” problem is concave maximization, and the “inner” problems are convex

minimization. Importantly, our allocation accounts for dependence between the objectives and

balances the probabilities associated with two types of misclassification error: misclassification

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0. Publication date: 201X.



SCORE Allocations for Bi-objective Ranking and Selection 0:3

by exclusion (MCE), in which a Pareto system is falsely excluded from the set of estimated Pareto

systems, andmisclassification by inclusion (MCI), in which a non-Pareto system is falsely included in

the set of estimated Pareto systems. Since solving for the optimal allocation may be computationally

burdensome, then we ask, what is the asymptotically optimal sampling allocation when the number
of non-Pareto systems is large?
As the number of non-Pareto systems tends to infinity in a certain rigorous sense, the Pareto

systems receive a larger proportion of the sampling budget than the non-Pareto systems, and the

optimal allocations for non-Pareto systems are inversely proportional to an intuitive measure called

the score. When the random vectors corresponding to the objectives are bivariate normal, which is

our focus, the score of a non-Pareto system is its squared standardized “distance” from the Pareto

frontier in the objective function space. As in Pasupathy et al. [2015], we determine the relative

allocations to the suboptimal systems by their scores. The sampling allocation we propose based

on the scores is called the bi-objective Sampling Criteria for Optimization using Rate Estimators

(SCORE) allocation.

We also highlight a key insight from this work that may be surprising: when the number of
non-Pareto systems is large relative to the number of Pareto systems, the optimal allocation exclusively
controls for the probability of an MCI event. To understand why this is true, for now, let MCE be the

event that a Pareto system is falsely excluded by another Pareto system, while MCI is the event

that a non-Pareto system is falsely included among the estimated Pareto systems, whether it is

estimated as excluding a Pareto system or not. Further, assume we are in a theoretical framework

in which we have access to all information about the systems, including their classifications as

Pareto and non-Pareto. Then loosely speaking, as the number of non-Pareto systems tends to

infinity, the Pareto systems each compete with more and more non-Pareto systems. Thus the Pareto

systems receive a larger proportion of the total sampling budget than the non-Pareto systems.

Indeed, they receive so many more samples that the probability of a Pareto system falsely excluding

another Pareto system is small relative to the probability of a non-Pareto system being falsely

included among the estimated Pareto systems. Thus the Pareto set appears “known” relative to the

non-Pareto set, and the optimal allocation exclusively controls for MCI events.

Since the SCORE allocation requires knowing the true system performances on both objectives,

which are unknown, we include a sequential sampling framework for implementation. We numeri-

cally compare the performance of the SCORE allocation and the sequential sampling framework

with other popular allocations in the literature. We find that our implementation of the SCORE

allocation performs well numerically. SCORE appears to be a fast and accurate heuristic allocation

scheme for bi-objective R&S with 20 to 10, 000 systems, inspired by theoretical allocations that

have limiting optimality guarantees on efficiency.

1.2 Other Relevant Work
When the goal of solving ProblemM is to identify the entire efficient or Pareto set, few solution

methods have been proposed in the SO literature. Arguably, the most well-known and popular

method is the Multi-objective Optimal Computing Budget Allocation (MOCBA) [Lee et al. 2010],

which is a multi-objective version of the popular Optimal Computing Budget Allocation [Chen et al.

2000] for a finite feasible set. Other recent work includes (a) M-MOBA [Branke and Zhang 2015;

Branke et al. 2016], a multi-objective version of the small-sample expected value of information

(EVI) procedures in Chick et al. [2010] for a finite feasible set; (b) MO-COMPASS [Li et al. 2015],

which is a multi-objective version of COMPASS [Xu et al. 2010] for integer-ordered feasible sets;

(c) Huang and Zabinsky [2014], who provide a branch-and-bound algorithm for integer-ordered

or continuous feasible sets; and (d) Kim and Ryu [2011], Fliege and Xu [2011], and Bonnel and

Collonge [2014], who provide methods for continuous feasible sets. We note that Butler et al. 2001
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provide a utility function approach to multi-objective R&S and refer the reader to Hunter et al.

[2017] for an overview of the existing MOSO literature.

Given our context of finite feasible sets, the most appropriate competitors for our proposed

sequential algorithm are MOCBA and M-MOBA. We compare the performance of our sequential

algorithm with these methods in Section 8.

Remark 1. A preliminary version of this work appears in Hunter and Feldman [2015]. Also,

Hunter and McClosky [2016] contains an asymptotically optimal allocation for the case of two

independent objectives in the context of a plant breeding application. This paper is a significant

outgrowth of Hunter and Feldman [2015] and subsumes the allocation provided in Hunter and

McClosky [2016] for independent objectives. Neither Hunter and Feldman [2015] nor Hunter and

McClosky [2016] provides a limiting SCORE framework. Feldman et al. [2015] provides analogous

MOSO methods on finite sets for more than two objectives. Since the methods in Feldman et al.

[2015] are more computationally burdensome than those we propose, we do not advocate using the

methods of Feldman et al. [2015] in the bi-objective case. Thus we do not include these methods in

numerical comparisons. Table 1 categorizes these papers according to some of their differences.

Table 1. The table provides a categorization of existing papers on multi-objective R&S by howmany objectives
they consider and whether they account for dependence between the objectives.

Dependence? Exactly Two Objectives Two or More Objectives

No Hunter and McClosky [2016] and M-MOBA

[Branke and Zhang 2015]

MOCBA [Lee et al. 2010]

Yes This paper and its preliminary version,

Hunter and Feldman [2015]

Feldman et al. [2015]

Remark 2. There is also work on the multi-objective multi-armed bandit problem, for example

Yahyaa et al. [2014a], Yahyaa et al. [2014b], and Yahyaa et al. [2014c].

2 PROBLEM SETTING AND FORMULATION
We now provide a formal problem statement, describe terminology and notational conventions,

and outline our assumptions. Due to space constraints, unless otherwise noted in the text, proofs

for all results appear in the Online Appendix.

2.1 Problem Statement
We consider the MOSO problem with two objectives on a finite set. That is, we solve

Problem B : Find argmink ∈S (IE[G(xk , ξ )], IE[H (xk , ξ )]),

where S := {1, 2, . . . , r } is a finite set of system indices and ξ is a random quantity. Further, define

дk := IE[G(xk , ξ )] and hk := IE[H (xk , ξ )] for all k ∈ S. The objective vectors (дk ,hk ) ∈ R2
are

unknown, but may be estimated by sample means. The solution to Problem B is the set of Pareto

systems (see §2.2), P := {systems i : ∄ system k ∈ S such that (дk ,hk ) ⪯ (дi ,hi )}, where a vector
(дk ,hk ) dominates (дi ,hi ), written as (дk ,hk ) ⪯ (дi ,hi ), if дk ≤ дi and hk < hi , or дk < дi and
hk ≤ hi .

Now consider a method to solve Problem B in which we allocate a proportion αk > 0 of the total

sampling budget to each system k , where
∑r

k=1
αk = 1. Once the total sampling budget has been

expended, we return the set of estimated Pareto systems,
ˆP, constructed as follows. Let the vector
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of sample means after n samples be (Ḡk (n), H̄k (n)) := ( 1

n
∑n

j=1
Gk j ,

1

n
∑n

j=1
Hk j ) for all k ∈ S, and

define (Ĝk , Ĥk ) := (Ḡ(αkn), H̄ (αkn)) as the estimators of дk and hk after scaling the total sample

size n by the proportional allocation to system k , αk > 0. Then the set of estimated Pareto systems

is
ˆP := {systems i : ∄ system k ∈ S such that (Ĝk , Ĥk ) ⪯ (Ĝi , Ĥi )}.

If
ˆP , P, then at least one system has been misclassified, that is, a Pareto system has been

falsely estimated as non-Pareto, or a non-Pareto system has been falsely estimated as Pareto. As

the sampling budget tends to infinity, the probability of misclassification tends to zero. Then we

ask, what sampling budget α = (α1,α2, . . . ,αr ) maximizes the rate of decay of the probability of

misclassification?

Remark 3. While we focus on allocating the sample to maximize the rate of decay of the probabil-

ity of misclassification, one could also allocate tominimize the expected number of misclassifications.

Hunter and McClosky [2016] show that these two objectives result in identical asymptotic alloca-

tions when the objective estimators are independent. We anticipate that a similar result holds in

the context of this paper.

2.2 Terminology and Notational Conventions
In general, we prefer to call the solution to Problem M “the efficient set” and call its image “the

Pareto set” (see Ehrgott 2012 for a historical perspective on these terms). However, since R&S

methods assume no structure in the decision space, we may work almost entirely in the objective

space. Since we work in the objective space and index the systems by their objective function

values in §3, we omit the term “efficient” in favor of the term “Pareto” throughout the paper.

When it is reasonable to do so, uppercase letters denote random variables or matrices, lowercase

letters denote fixed quantities, script letters denote sets, and vectors are written in bold. For a set C,

the cardinality of C is denoted |C|. For a function f , let ∇f (x) be the gradient of f with respect

to x ∈ Rq , and f ′(x) the derivative of f with respect to x ∈ R. For any 2-by-2 matrix A, let the
eigenvalues of A be λmin(A) and λmax(A). For any n-by-n matrices A and B, let A ◦ B denote their

element-wise, or Hadamard, product. For a sequence of real numbers {an}, we say that an = o(1) if
limn→∞{an} = 0 and an = O(1) if {an} is bounded, that is, if there exists c > 0 with |an | < c for all
n. Further, an = Θ(1) if 0 < lim inf an ≤ lim supan < ∞. We use iff for “if and only if.” Solutions

to optimization problems are usually denoted with an asterisk, e.g., x∗. We use I[·] to denote the

indicator function. Let f + : R→ R ∪ {∞} be a function such that f +(x) = x if x ∈ {x ∈ R : x > 0}

and f +(x) = ∞ if x ≤ 0. For a,b ∈ R, define min
+[a,b] := min(f +(a), f +(b)).

2.3 Assumptions
In what follows, we assume that the set of non-Pareto systems is nonempty. To estimate the

unknown quantities дk and hk , we assume we obtain replicates of the random vector (Gk ,Hk ) from

each system. We also assume the following.

Assumption 1. Random vectors (Gk ,Hk ) are mutually independent for all k ∈ S.

That is, we develop a model to guide sampling that does not specifically account for correlation

between systems, such as the correlation that would arise with the use of common random numbers

(CRN). However, our model does not preclude the use of CRN during implementation. We also

require the following technical assumption which is standard in optimal allocation literature, since

it ensures all Pareto systems are distinguishable on each objective with a finite sample size.

Assumption 2. We assume дi , дk and hi , hk for all i ∈ P, k ∈ S such that k , i .

Since we employ a large deviations analysis in Section 3, we require the following Assumptions 3

and 4, included here for completeness. We refer the reader to Dembo and Zeitouni [1998] for
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further explanation. Let ⟨·, ·⟩ denote the dot product, and let Λ(n)
(Gk ,Hk )

(θ ) = log IE[e ⟨θ,(Ḡk (n),H̄k (n))⟩],

Λ(n)
Gk

(θ ) = log IE[eθ Ḡk (n)], and Λ(n)
Hk

(θ ) = log IE[eθ H̄k (n)], be the cumulant generating functions of

(Ḡk (n), H̄k (n)), Ḡk (n), and H̄k (n), respectively, where θ ∈ R2
and θ ∈ R. Let the effective domain of

f (·) be Df = {x : f (x) < ∞}, and its interior D◦
f . We make the following standard assumption.

Assumption 3. For each system k ∈ S,

(1) the limit Λ(Gk ,Hk )(θ ) = lim

n→∞

1

nΛ
(n)
(Gk ,Hk )

(nθ ) exists as an extended real number for all θ ∈ R2,

where ΛGk (θ ) = lim

n→∞

1

nΛ
(n)
Gk

(nθ ) and ΛHk (θ ) = lim

n→∞

1

nΛ
(n)
Hk

(nθ ) for all θ ∈ R;

(2) the origin belongs to the interior of DΛ(Gk ,Hk )
;

(3) Λ(Gk ,Hk )(θ ) is strictly convex and C∞ on D◦
Λ(Gk ,Hk )

;
(4) Λ(Gk ,Hk )(θ ) is steep, that is, for any sequence {θn} ∈ DΛ(Gk ,Hk )

converging to a boundary point
of DΛ(Gk ,Hk )

, lim

n→∞
|∇Λ(Gk ,Hk )(θn)| = ∞.

Assumption 3 implies that by the Gärtner-Ellis theorem, the probability measure governing

(Ḡk (n), H̄k (n)) obeys the large deviations principle (LDP) with good, strictly convex rate function

Ik (x ,y) = supθ ∈R2 {⟨θ , (x ,y)⟩ − Λ(Gk ,Hk )(θ )} [Dembo and Zeitouni 1998, p. 44]. Further, Ḡk (n)
and H̄k (n) obey the LDP with good, strictly convex rate functions Jk (x) = supθ ∈R{θx − ΛGk (θ )},
Kk (y) = supθ ∈R{θy − ΛHk (θ )}. Let (x ,y) ∈ F◦

(Gk ,Hk )
= int{∇Λ(Gk ,Hk )(θ ) : θ ∈ D◦

Λ(Gk ,Hk )
}, and let

Fc
d denote the closure of the convex hull of the set {(дk ,hk ) : (дk ,hk ) ∈ R

2,k ∈ S}.

Assumption 4. The closure of the convex hull of all points (дk ,hk ) ∈ R2 is a subset of the intersection
of the interiors of the effective domains of the rate functions Ik (x ,y) for all k ∈ S, that is, Fc

d ⊂

∩r
k=1

F◦
(Gk ,Hk )

.

3 CHARACTERIZATION OF THE OPTIMAL BUDGET ALLOCATION
Given that our goal is to determine the sample allocation α that maximizes the rate of decay of

the probability of misclassification, we first formulate the misclassification event in a way that

facilitates analysis. We then analyze the rate of decay of the probability of misclassification as a

function of α , and provide a characterization of the optimal budget allocation as the solution to a

bi-level optimization problem. To avoid mathematical complications, we assume nαk > 1 for all

k ∈ S in this section.

3.1 Formulation of the Misclassification Event
Recall that a misclassification event occurs if, after expending a total of n samples, the set of

estimated Pareto systems,
ˆP, is not equal to the true set of Pareto systems, P. If ˆP , P, then at least

one of two events occurs: a Pareto system was falsely excluded from the set of estimated Pareto

systems (MCE), or a non-Pareto system was falsely included in the set of estimated Pareto systems

(MCI). Therefore we can formulate the misclassification event as MC := MCE ∪MCI, where

MCE := ∪
i ∈P

∪
k ∈S,k,i

(Ĝk ≤ Ĝi ) ∩ (Ĥk ≤ Ĥi )︸                                       ︷︷                                       ︸
∃ i ∈ P dominated by some k ∈ S

; MCI := ∪
j ∈Pc

∩
k ∈S,k,j

(Ĝ j ≤ Ĝk ) ∪ (Ĥj ≤ Ĥk ).︸                                         ︷︷                                         ︸
∃ j ∈ Pc not dominated by any k ∈ S

As the union of pairwise exclusion events, the MCE event is easy to analyze. However, the MCI

event requires a non-Pareto system j to be falsely estimated as better than every system k on at

least one objective. This event contains dependence that is difficult to analyze. In this section, we

reformulate the MC event for easier analysis. First, we simplify the MCE event to consider only
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exclusion events between Pareto systems,

MCEP := ∪
i ∈P

∪
i′∈P, i′,i

(Ĝi′ ≤ Ĝi ) ∩ (Ĥi′ ≤ Ĥi ).

Then, we reformulate the MCI event so that it also appears as a union of pairwise exclusion events.

We combine these results into the statement of Theorem 3.1, which states the equivalence of the

MC and reformulated events.

To reformulate the MCI event as a union of pairwise exclusion events, first, we define new

systems called phantom Pareto systems. To define these systems, reserve the indices 1, . . . ,p
for the Pareto systems, such that P = {1, . . . ,p}, |P| = p. Then label the true Pareto systems

by their ordered objective values, д1 < д2 < . . . < дp−1 < дp < дp+1 and h0 > h1 >
h2 > . . . > hp−1 > hp , where дp+1

:= ∞, and h0
:= ∞. Thus the objective values for the true

Pareto systems are (дi ,hi ) for all i ∈ P, where henceforth, we use i as an ordered index when

we wish to refer to the ordered Pareto systems. An example of this labeling appears in Figure 1.

gi−1 gi gi+1

hi+1

hi

hi−1

(gi, hi)

(gi+1, hi+1)

(gi−1, hi−1)

(gℓ, hℓ)

(gℓ−1, hℓ−1)

(gj , hj)

Fig. 1. Pareto systems i − 1, i, i + 1 are
solid black dots, i ∈ {2, . . . ,p−1}. Phantom
Pareto systems are solid gray dots, ℓ = i . If
the Pareto set were known, an MCE or MCI
event would result from the non-Pareto sys-
tem j being falsely estimated in the dark or
light gray region, respectively.

Now construct the objective value corresponding to the

ℓth phantom Pareto system as the coordinates (дi+1,hi )
for i = 0, 1, . . . ,p, where we also place phantom Pareto

systems at (д1,∞) and (∞,hp ) for a total of p+1 phantom

Pareto systems. Henceforth, we use Pph
:= {0, 1, . . . ,p}

as the set of indices corresponding to the phantom Pareto

systems, and we use ℓ as an ordered index when we wish

to emphasize the ordered phantom Pareto systems; notice
our labeling is such that ℓ = i (see Figure 1). For the
remainder of the paper, the indices ℓ and i are linked in
this way.
To rewrite the MCI event using the phantom Pareto

systems, we must estimate the objective values of the

phantom Pareto systems. For the true Pareto systems,

define Ĝ[i] as the ith largest estimated first objective value

and Ĥ[i] as the ith smallest estimated second objective

value. Thus Ĝ[1] < . . . < Ĝ[p−1] < Ĝ[p] < Ĝ[p+1] and

Ĥ[0] > Ĥ[1] > Ĥ[2] > . . . > Ĥ[p], where Ĝ[p+1] := ∞ and

Ĥ[0] := ∞ for all n. Now the estimated performances of the phantom Pareto systems are (Ĝ[i+1], Ĥ[i])

for i = 0, 1, . . . ,p. Define misclassification by dominating an estimated phantom Pareto system as

MCIph := ∪
j ∈Pc

∪
ℓ∈Pph, ℓ=i

(Ĝ j ≤ Ĝ[i+1]) ∩ (Ĥj ≤ Ĥ[i]),

and rewrite the misclassification event as MCph := MCEP ∪MCIph. Theorem 3.1 states the equiva-

lence of the probability of an MC event and the probability of an MCph event. A similar theorem

was stated and proved in Hunter and McClosky [2016] under more restrictive assumptions.

Theorem 3.1. IP{MC} = IP{MCph}.

Henceforth, we use the notation IP{MC} without loss of clarity.

3.2 The Rate of Decay of the Probability of a Misclassification Event
Now that we have formulated the MC event into the union of two MCE-like events, we are ready

to analyze the rate of decay of IP{MC} as a function of the sampling allocation vector α . Notice

that for b = max(IP{MCEP}, IP{MCIph}), we have b ≤ IP{MC} ≤ 2b, which, assuming the limits
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0:8 G. Feldman and S. R. Hunter

exist, implies

− lim

n→∞

1

n log IP{MC} = min

(
− lim

n→∞

1

n log IP{MCEP},− lim

n→∞

1

n log IP{MCIph}
)
. (1)

In what follows, we analyze the rate of decay of IP{MCEP} and IP{MCIph} separately.

First, consider the rate of decay of IP{MCEP} in equation (1), since it is the most straightforward.

For brevity, for all i, i ′ ∈ P, i ′ , i , define the rate function

Ri (αi ,αi′) := inf

xi′ ≤xi , yi′ ≤yi
αi Ii (xi ,yi ) + αi′Ik (xi′,yi′).

The following Lemma 3.2 states the rate of decay of IP{MCEP} in terms of the pairwise rates

Ri (αi ,αi′) corresponding to a Pareto system i ′ dominating another Pareto system i . We do not

provide a proof for Lemma 3.2; it follows from an analysis similar to those in Glynn and Juneja

[2004], Hunter [2011], Li [2012], Feldman [2017].

Lemma 3.2. The rate of decay of IP{MCEP} is

− lim

n→∞

1

n log IP{MCEP} = min

i ∈P
min

i′∈P,i′,i
Ri (αi ,αi′).

Lemma 3.2 states that the rate of decay of IP{MCEP} is the slowest among the pairwise rates

corresponding to one Pareto system falsely dominating another.

Now let us turn our attention to the term corresponding to MCIph in (1). The analysis for the rate

of decay of the probability of an MCIph event is a bit more involved: in addition to the possibility

that a non-Pareto system j is estimated as dominating a phantom Pareto system, the Pareto systems

themselves may be estimated as “out of order.” In what follows, we do not directly state the rate

of decay of IP{MCIph}. Instead, we show that the probability of events corresponding to MCIph in

which the Pareto systems are also estimated as out of order have rates of decay greater than or

equal to the rate of decay of IP{MCEP}, and thus can never be the unique minimum rate in (1).

To explicitly denote the ordering of the Pareto systems, we require the following notation. First,

recall that the Pareto systems are labeled “in order” from 1, 2 . . . ,p. Then we define the ordered list

O := {(1, 1), (2, 2), . . . , (p,p)} as the positions of the true Pareto systems on each objective, where

the first objective is labeled from smallest to largest, and the second objective is labeled from largest

to smallest. Now define
ˆO as the ordered list of estimated positions of the true Pareto systems. Thus

the event that the Pareto systems are estimated in the correct order is
ˆO = O. Define MCIph without

order statistics as MCI
∗
ph

:= ∪j ∈Pc ∪ℓ∈Pph, ℓ=i (Ĝ j ≤ Ĝi+1) ∩ (Ĥj ≤ Ĥi ), where Ĝp+1
:= ∞, Ĥ0

:= ∞

for all n. Then the event MCI
∗
ph

∩ ˆO = O is the event that the Pareto systems are estimated in order,

and a non-Pareto system is falsely included in the set of estimated Pareto systems. The following

lemma states that only the rate of decay of the probability of this event can be a binding minimum

in the overall rate of decay of IP{MC} in (1).

Lemma 3.3. The rate of decay of IP{MC} is

− lim

n→∞

1

n log IP{MC} = min

(
− lim

n→∞

1

n log IP{MCEP},− lim

n→∞

1

n log IP{MCI
∗
ph

∩ ˆO = O}
)
.

Again, because the Pareto systems being estimated out of order has a rate of decay that is greater

than or equal to the rate of decay of IP{MCEP}, the rate of decay of IP{MC} can be simplified to a

rate involving only pairs of non-Pareto systems and phantom Pareto systems. For all non-Pareto

systems j ∈ Pc
and all phantom Pareto systems ℓ ∈ Pph = {0, 1, . . . ,p}, recall that ℓ = i and define
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the rate function

R jℓ(α j ,αi ,αi+1)

:=


inf

x j ≤x1

α j Ij (x j ,yj ) + α1 J1(x1) if ℓ = 0,

inf

x j ≤xi+1, yj ≤yi
α j Ij (x j ,yj ) + αiKi (yi ) + αi+1 Ji+1(xi+1) if ℓ ∈ {1, . . . ,p − 1},

inf

yj ≤yp
α j Ij (x j ,yj ) + αpKp (yp ) if ℓ = p,

=


inf

x
α j Jj (x) + α1 J1(x) if ℓ = 0,

inf

x j ≤xi+1, yj ≤yi
α j Ij (x j ,yj ) + αiKi (yi ) + αi+1 Ji+1(xi+1) if ℓ ∈ {1, . . . ,p − 1},

inf

y
α jKj (y) + αpKp (y) if ℓ = p,

where α0 := 1, αp+1 := 1, and equality of these two rates is explained in Online Appendix C. The

following Theorem 3.4 states the rate of decay of the probability of misclassification, IP{MC}.

Theorem 3.4. The rate of decay of the probability of misclassification is

− lim

n→∞

1

n log IP{MC} = min

(
min

i ∈P
min

i′∈P,i′,i
Ri (αi ,αi′),min

j ∈Pc
min

ℓ∈Pph, ℓ=i
R jℓ(α j ,αi ,αi+1)

)
.

According to Theorem 3.4, we can retrieve the overall rate of decay of the probability of mis-

classification by calculating (a) the slowest among all pairwise false exclusion rates between the

Pareto systems i, i ′ ∈ P, i , i ′, and (b) the slowest among the pairwise false inclusion rates between

non-Pareto systems j ∈ Pc
and phantom Pareto systems ℓ ∈ Pph. Therefore the rate of decay of

IP{MC} is determined by the most likely misclassification event between two Pareto systems or

between a non-Pareto system and a phantom Pareto system. We remind the reader that the rate in

Theorem 3.4 accounts for dependence between the objectives.

3.3 Optimal Allocation Strategy
To determine the asymptotically optimal sampling allocation that maximizes the rate of decay of

the probability of misclassification, IP{MC}, we consider the rate of decay of IP{MC} in Theorem 3.4

as a function of the sampling allocation α . To determine the best value of α , we maximize the rate

of decay of IP{MC} by solving the following Problem Q , defined as

Problem Q : maximize z s.t.

Ri (αi ,αi′) ≥ z for all i, i ′ ∈ P such that i ′ , i,

R jℓ(α j ,αi ,αi+1) ≥ z for all j ∈ Pc , ℓ ∈ Pph, ℓ = i,∑r
k=1

αk = 1, αk ≥ 0 for all k ∈ S.

Thus at optimality in Problem Q , α ∗
is the sampling allocation that maximizes the rate of decay of

the probability of misclassification. The optimal rate is represented by z∗. Given a value of (αi ,αi′),
the value of Ri (αi ,αi′) is obtained by solving

Problem RMCE

ii′ : minimize αi Ii (xi ,yi ) + αi′Ii′(xi′,yi′) s.t. xi′ ≤ xi , yi′ ≤ yi ,

and given a value of (α j ,αi ,αi+1), the value of R jℓ(α j ,αi ,αi+1) is obtained by solving

Problem RMCI

jℓ : minimize α j Ij (x j ,yj ) + αiKi (yi )I[ℓ,0] + αi+1 Ji+1(xi+1)I[ℓ,p]

s.t. (x j − xi+1)I[ℓ,p] ≤ 0, (yj − yi )I[ℓ,0] ≤ 0,
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0:10 G. Feldman and S. R. Hunter

where, for ease of notation, we write Problem RMCI

jℓ in its unsimplified form.We distinguish Problems

RMCE

ii′ and RMCI

jℓ as strictly convex optimization problems in (xi ,yi ,xi′,yi′) and (x j ,yj ,yi ,xi+1), respec-

tively, while Ri (αi ,αi′) and R jℓ(α j ,αi ,αi+1) are their respective objective values at optimality. In

the sections that follow, Problem RMCI

jℓ plays a prominent role. Thus we briefly discuss the properties

of Problem Q . Then, we provide a more in-depth look at the properties of Problem RMCI

jℓ .

3.3.1 Properties of ProblemQ . ProblemQ has p×(p−1) constraints corresponding to controlling

the rate of decay of IP{MCEP} and (r −p) × (p + 1) constraints corresponding to controlling the rate

of decay of IP{MCIph}. Also, each Ri (αi ,αi′) and R jℓ(α j ,αi ,αi+1) are concave functions of (αi ,αi′)
and (α j ,αi ,αi+1), respectively [Boyd and Vandenberghe 2004, p. 81]. Thus Problem Q is a concave

maximization problem. We emphasize the following important property of the rate z as a function
of the allocationα : If αk = 0 for any system k in ProblemQ , then the rate z = 0. Since equal allocation
is feasible and results in a rate z > 0, at optimality in Problem Q , we have z∗ > 0 and α∗

k > 0 for all

systems k ∈ S.

3.3.2 Properties of Problem RMCI

jℓ . Along with primal feasibility, the following KKT conditions are

necessary and sufficient for global optimality in the strictly convex ProblemRMCI

jℓ . Let (x∗j ,y
∗
j ,y

∗
i ,x

∗
i+1

)

be the solution to ProblemRMCI

jℓ , wherey∗
0

:= 0, x∗p+1
:= 0. Letting λx ≥ 0 and λy ≥ 0 be dual variables,

we have complementary slackness conditions λx (x
∗
j − x∗i+1

) = 0 if ℓ , p, λy (y
∗
j − y∗i ) = 0 if ℓ , 0,

and stationarity conditions

α j
∂Ij (x ∗

j ,y
∗
j )

∂x j
+ λx I[ℓ,p] = 0, α j

∂Ij (x ∗
j ,y

∗
j )

∂yj
+ λy I[ℓ,0] = 0, (2)

αi+1

∂ Ji+1(x ∗
i+1

)

∂xi+1

− λx = 0 if ℓ , p, αi
∂Ki (y∗

i )

∂yi
− λy = 0 if ℓ , 0. (3)

In the solution to Problem RMCI

jℓ , the variables x∗j ,y
∗
j ,y

∗
i , and x∗i+1

are each functions of the

proportional allocations to non-Pareto system j and Pareto systems i and i + 1, (α j ,αi ,αi+1). When

this dependence must explicitly be denoted, for brevity, define

z∗j (α j ,αi ,αi+1) := (x∗j (α j ,αi ,αi+1),y
∗
j (α j ,αi ,αi+1)).

Now notice that under Assumptions 2–4, from the KKT conditions for Problem RMCI

jℓ , the value of

the rate function Ij (z
∗
j (α j ,αi ,αi+1)) > 0 at optimality in Problem RMCI

jℓ . This result is stated formally

in Lemma 3.5; we omit the proof.

Lemma 3.5. If α j > 0,αi > 0,αi+1 > 0, then Ij (z
∗
j (α j ,αi ,αi+1)) > 0 in Problem RMCI

jℓ for all
non-Pareto systems j ∈ Pc and all phantom Pareto systems ℓ ∈ Pph, ℓ = i .

A lemma regarding the locations of the solutions to Problem RMCI

jℓ appears in Online Appendix D.

4 LIMITING APPROXIMATION TO THE OPTIMAL ALLOCATION
Since Problem Q is a bi-level optimization problem, it may take some time to solve for the optimal

allocation when the number of systems is large. While the computational time could be reduced by

solving the inner problems in parallel, we believe it is useful to see if the optimal allocation can be

simplified for large problem instances. In this section, we send the number of non-Pareto systems

to infinity while keeping the number of Pareto systems finite and equal to p. This limiting regime

enables us to write the relative allocations between the non-Pareto systems in closed form.

Before proceeding, we emphasize two key points about our limiting regime. First, we do not

intend that the SCORE framework be implemented as-written when the number of systems is

infinite. We are, after all, providing optimal allocations for R&S problems in which the number of

systems is finite. We seek only a simplifying framework that would be a good approximation to the
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asymptotically optimal allocation when the number of non-Pareto systems is large relative to the

number of Pareto systems. Further, it may seem natural that if the number of non-Pareto systems

tends to infinity, the number of Pareto systems should also tend to infinity, but perhaps at a slower

rate. While such a regime may be intuitively appealing, it is not clear how the Pareto systems

should be added to achieve a meaningful limiting allocation framework in a large deviations regime.

Thus in what follows, we keep the number of Pareto systems finite and equal to p. We also remind

the reader that, like much of the R&S literature, our emphasis is on the case in which the underlying

distributions are normal. Thus we make a normality assumption in §4.1. This assumption simplifies

the proofs and assists our intuition regarding dependence by allowing us to model the dependence

between the objectives as correlation.

4.1 Preliminaries for the Limiting Allocation
Recall that r = |S| = p + |Pc | is the total number of systems, and in what follows, only |Pc | will

tend to infinity while p remains constant.

4.1.1 Assumptions. We make four assumptions on the way non-Pareto systems are added to

ensure a meaningful limiting allocation.

Assumption 5. There exists a compact set C1 ⊂ R2 such that (дk ,hk ) ∈ C1 for all k ∈ S, and such
that C1 ⊂ Fc

d . (See Assumption 4 for notation.)

Since all rate functions are strictly convex with a unique minimum at the location of the mean,

there exists another compact set C ⊇ C1 that contains the locations of the solutions to all Prob-

lems RMCI

jℓ . Let β be the diameter of a circle that covers C; β appears in the Online Appendix.

Assumption 6. For all k ∈ S, the rate functions Ik (x ,y) have the quadratic form Ik (x ,y) =

1

2

[ дk−x
hk−y

]⊺
Σ−1

k

[ дk−x
hk−y

]
for all (x ,y) ∈ R2, where Σk :=

[
σ 2

дk
ρkσдk σhk

ρkσдk σhk σ 2

hk

]
. Further, there exist

constants ca < 1 and cb > 1 such that the eigenvalues of Σk are bounded as 0 < ca ≤ λmin(Σk ) ≤
λmax(Σk ) ≤ cb < ∞ for all k ∈ S.

Assumption 6 implies Jk (x) = (x − дk )
2/(2σ 2

дk ), Kk (y) = (y − hk )
2/(2σ 2

hk
) for all k ∈ S.

Assumption 7. There exists ϵ > 0 such that (дj ,hj ) satisfies (a) inf{|hj − hi | : i ∈ P} > ϵ ,
inf{|дj − дi | : i ∈ P} > ϵ , and (b) inf{|(hj − hi )/σhj − ρ j (дj − дi+1)/σдj | : i ∈ P} > ϵ, inf{|(дj −
дi+1)/σдj − ρ j (hj − hi )/σhj | : i ∈ P} > ϵ for all j ∈ Pc .

Assumption 8. For all Pareto systems i ∈ P, there exists a non-Pareto system j ∈ Pc such that
hj ≤ hi−1 or дj ≤ дi+1.

Assumption 5 ensures that the systems that are added continue to compete with the Pareto

systems and do not become irrelevant in the limit. Assumption 7 ensures the non-Pareto systems

j ∈ Pc
are added to C1 so that they do not systematically approach the Pareto front, and so that they

do not approach the lines y = hi + ρ j (σhj /σдj )(x − дi+1) and y = hi + (1/ρ j )(σhj /σдj )(x − дi+1) for

all i ∈ P. Notice that Assumption 7(b) follows from Assumption 7(a) and Assumption 6 when the

correlation ρ j = 0. Assumptions 5 and 7 are analogous to assumptions in Pasupathy et al. [2015].

We differ from Pasupathy et al. [2015] in Assumptions 6 and 8. While Pasupathy et al. [2015]

assume the rate functions have upper and lower bounding quadratics on a compact set (a mild

assumption), we simplify the analysis by assuming the rate functions are quadratic. Sufficient

conditions to ensure we have appropriate quadratic rate functions are (a) we obtain i.i.d. replicates

of the bivariate normal random vector (Gk ,Hk ) with parameters (дk ,hk ,σ
2

дk ,σ
2

hk
, ρk ) for all k ∈ S

where σ 2

дk ,σ
2

hk
denote variance, ρk denotes correlation between the objectives, and (b) the variance
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and correlation values are uniformly bounded as 0 < σ 2

a ≤ σ 2

дk ≤ σ 2

b < ∞, 0 < σ 2

a ≤ σ 2

hk
≤ σ 2

b < ∞

for σ 2

a < 1, σ 2

b > 1, and |ρk | ≤ ρb for ρb ∈ (0.5, 1). (Note that the existence of such bounds follows

from the condition on the eigenvalues of Σk . The independence of the replicates can be relaxed

under the conditions in Assumption 3.) Thus we require that the systems be added to C1 in such a

way that their corresponding rate functions cannot become too shallow (less than σ 2

a ) or too steep

(larger than σ 2

b ), and so that they cannot degenerate to a single dimension (|ρk | approaching 1). We

conjecture that our analysis holds in the case of bounding quadratics, but we do not show it.

gi−1 gi gi+1

hi+1

hi

hi−1

(gi, hi)

(gi+1, hi+1)

(gi−1, hi−1)

(gℓ, hℓ)

(gℓ−1, hℓ−1)

(gj , hj)

Fig. 2. Under Assumption 8, for each Pareto
system i ∈ {2, . . . ,p − 1}, there exists at
least one non-Pareto system j outside the
shaded region.

Finally, Assumption 8 implies that there does not exist a

Pareto system i ∈ {2, . . . ,p − 1} such that Pareto systems

i − 1, i, and i + 1 dominate all of the non-Pareto systems

(see Figure 2); note that the assumption always holds

for i ∈ {1,p}. Assumption 8 ensures that when we relax

Problem Q to contain only constraints corresponding to

MCI in §4.2, Pareto system i receives a positive sample

allocation at optimality for all i ∈ P. To see why, suppose

there are three Pareto systems i − 1, i, and i + 1, and

suppose all non-Pareto systems are in the shaded region

of Figure 2. Further, suppose all variances associated with

Pareto systems i − 1, i + 1 and the non-Pareto systems

are relatively small, while the variances associated with

Pareto system i are relatively large. Then it is expedient

for Pareto systems i − 1 and i + 1 to do all the work of

excluding the non-Pareto systems. If there exists a non-

Pareto system j outside the shaded region, then Pareto systems i − 1 and i + 1 can no longer do

all the work of excluding the non-Pareto systems; hence Pareto system i receives positive sample

allocation. We view Assumption 8 as mild for two reasons. First, in §4.2, we send the cardinality of

non-Pareto systems to infinity in an “even” way under Assumption 9. Thus we view Assumption 8

as requiring an initial level of evenness among the non-Pareto systems. Second, at optimality in

Problem Q , all Pareto systems receive positive allocation due to the constraints corresponding to

MCE, regardless of the system configuration. Since the SCORE framework in §5 includes the MCE

constraints, this assumption does not impact implementation.

4.1.2 Rate Functions Under the Normality Assumption. We write R jℓ(α j ,αi ,αi+1) under Assump-

tion 6 in the following Proposition 4.1. For brevity, define the indicators I
д
jℓ := I[λx >0, ℓ,p] and

Ihjℓ := I[λy>0, ℓ,0] at optimality in Problem RMCI

jℓ . Recalling that ℓ = i , intuitively, I
д
jℓ > 0 means that

non-Pareto system j “competes” with Pareto system i + 1 on the д objective via the phantom Pareto

system ℓ, and Ihjℓ > 0 means that non-Pareto system j “competes” with Pareto system i on the h

objective via phantom Pareto system ℓ (see Figure 2). To further simplify the rate function, when

α j > 0,αi > 0,αi+1 > 0, for all j ∈ Pc
and phantom Pareto systems ℓ ∈ Pph, ℓ = i , define

wд(α j ,αi+1) :=
σ 2

дj /α j
σ 2

дj /α j+σ
2

дi+1
/αi+1

if ℓ , p and wh(α j ,αi ) :=
σ 2

hj
/α j

σ 2

hj
/α j+σ 2

hi
/αi

if ℓ , 0,

where 0 < wд(α j ,αi+1) < 1 and 0 < wh(α j ,αi ) < 1 can be interpreted as weights. For readability

and compactness, we often denote these weights aswд andwh , respectively, where the appropriate

dependencies can be deduced from context.

Notice that the expression for R jℓ(α j ,αi ,αi+1) in Proposition 4.1 simplifies to one of three cases:

the one-dimensional rate corresponding to system j being estimated as better than Pareto system i+1

on objective д, the one-dimensional rate corresponding to system j being estimated as better than
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Pareto system i on objective h, or a bivariate rate of j dominating the phantom Pareto system ℓ.

Since Ĝi+1 and Ĥi are independent, only ρ j appears in the rate. Further, in the expressions that

follow, onlywд andwh are functions of (α j ,αi ,αi+1).

Proposition 4.1. Under Assumption 6, for each non-Pareto system j ∈ Pc and phantom Pareto
system ℓ ∈ Pph, ℓ = i , if α j > 0,αi > 0,αi+1 > 0, then

(1) the rate function R jℓ(α j ,αi ,αi+1) is

R jℓ(α j ,αi ,αi+1) =
α j

2

[
(дj−дi+1)I

д
jℓ

(hj−hi )Ihjℓ

]⊺ [
σ 2

дj /wд ρ jσдj σhj I
д
jℓ I

h
jℓ

ρ jσдj σhj I
д
jℓ I

h
jℓ σ 2

hj
/wh

]−1
[
(дj−дi+1)I

д
jℓ

(hj−hi )Ihjℓ

]
=

α j
2(1−ρ2

jwдwh I
д
jℓ I

h
jℓ )

( (дj−дi+1)
2

σ 2

дj
wдI

д
jℓ −

2ρ j (дj−дi+1)(hj−hi )
σдj σhj

wдwhI
д
jℓI

h
jℓ +

(hj−hi )2

σ 2

hj

whI
h
jℓ

)
,

where Iдjℓ > 0, Ihjℓ = 0 iff ℓ , p,дj > дi+1,
(hj−hi )
σhj

≤ ρ j
(дj−дi+1)

σдj
wд ,

I
д
jℓ = 0, Ihjℓ > 0 iff ℓ , 0,hj > hi ,

(дj−дi+1)

σдj
≤ ρ j

(hj−hi )
σhj

wh , and

I
д
jℓI

h
jℓ > 0 iff ℓ < {0,p}, (дj−дi+1)

σдj
> ρ j

(hj−hi )
σhj

wh ,
(hj−hi )
σhj

> ρ j
(дj−дi+1)

σдj
wд ;

(2) the rate functions in R jℓ(α j ,αi ,αi+1) corresponding to systems j, i , and i + 1 are

Ij (z
∗
j (α j ,αi ,αi+1)) =

(1−ρ2

jwh (2−wh )I
h
jℓ )

2(1−ρ2

jwдwh I
д
jℓ I

h
jℓ )

2

(дj−дi+1)
2

σ 2

дj
w2

дI
д
jℓ +

(1−ρ2

jwд (2−wд )I
д
jℓ )

2(1−ρ2

jwдwh I
д
jℓ I

h
jℓ )

2

(hj−hi )2

σ 2

hj

w2

hI
h
jℓ

− ρ j
[(1−ρ2

j )wдwh−(1−wд )(1−wh )]

(1−ρ2

jwдwh I
д
jℓ I

h
jℓ )

2

(дj−дi+1)(hj−hi )
σдj σhj

wдwhI
д
jℓI

h
jℓ,

Ki (y
∗
i (α j ,αi ,αi+1)) = I

h
jℓ

(1−wh )
2

2[1−ρ2

jwдwh I
д
jℓ ]

2

σ 2

hj

σ 2

hi

[ (hj−hi )
σhj

− I
д
jℓρ j

(дj−дi+1)

σдj
wд

]
2

,

Ji+1(x
∗
i+1

(α j ,αi ,αi+1)) = I
д
jℓ

(1−wд )
2

2[1−ρ2

jwдwh I
h
jℓ ]

2

σ 2

дj

σ 2

дi+1

[ (дj−дi+1)

σдj
− Ihjℓρ j

(hj−hi )
σhj

wh
]

2

.

In what follows, we work with α directly, instead of working with wд and wh . However, we

preview the result of our limiting regime here: by sending the number of non-Pareto systems to

infinity,wд → 1 andwh → 1 in R jℓ(α j ,αi ,αi+1) for all j ∈ Pc
, ℓ ∈ Pph, ℓ = i .

While the value of Ij (z
∗
j (α j ,αi ,αi+1)) is always strictly positive at optimality by Lemma 3.5, it may

be that Ki (y
∗
i (α j ,αi ,αi+1)) = 0 or Ji+1(x

∗
i+1

(α j ,αi ,αi+1)) = 0, in which case either Pareto system i
or Pareto system i + 1 does not appear in the rate function in Problem RMCI

jℓ , respectively. This

fact raises the possibility that a particular Pareto system i does not appear in the rate function for

Problem RMCI

jℓ−1
or Problem RMCI

jℓ , in which case the non-Pareto system j does not compete with the

Pareto system i at all (see Figure 2). The following Lemma 4.2 states that such a case is impossible.

Lemma 4.2. Under Assumption 6, if the allocations α j > 0, αi−1 > 0, αi > 0, and αi+1 > 0, then
max

(
Ji (x

∗
i (α j ,αi−1,αi )),Ki (y

∗
i (α j ,αi ,αi+1))

)
> 0 for all j ∈ Pc , i ∈ P.

4.2 Allocation to Non-Pareto Systems
Since we send the number of non-Pareto systems to infinity, we relax the constraints in Problem Q
that pertain only to Pareto systems and MCE events. Thus in this section, we concern ourselves
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0:14 G. Feldman and S. R. Hunter

not with Problem Q , but with its relaxation:

Problem Q̃ : maximize z̃ s.t.

R jℓ(α̃ j , α̃i , α̃i+1) ≥ z̃ for all j ∈ Pc , ℓ ∈ Pph, ℓ = i,∑r
k=1

α̃k = 1, α̃k ≥ 0 for all k ∈ S.

Under our assumptions, the KKT conditions are necessary and sufficient for global optimality in

Problem Q̃ . We first use Problem Q̃ to derive insights on the optimal allocation as the number of

non-Pareto systems tends to infinity. In §4.4, we show that under mild conditions, for a large enough

set of non-Pareto systems, the solutions to ProblemsQ and Q̃ are equal. Since they play a prominent

role in the results that follow, we present the KKT conditions for Problem Q̃ in Theorem 4.3.

Theorem 4.3. Let λjℓ ≥ 0 for all j ∈ Pc and all ℓ ∈ {0, 1, . . . ,p} be dual variables associated with
Problem Q̃ , and recall that the phantom Pareto labels are ℓ = i for all i ∈ P. Under Assumptions 6
and 8, at optimality in Problem Q̃ , α̃∗

k > 0 for all k ∈ S and

(1) for each non-Pareto system j ∈ Pc , there exists a phantom Pareto system ℓ∗ ∈ Pph, ℓ∗ = i∗ such
that λjℓ∗ > 0, which implies that the rate z̃∗ = R jℓ∗ (α̃

∗
j , α̃

∗
i∗ , α̃

∗
i∗+1

) > 0;

(2) for each Pareto system i ∈ P, there exists a non-Pareto system j∗ ∈ Pc such that the quantities
λj∗ℓ−1 Ji (x

∗
i (α̃

∗
j∗ , α̃

∗
i−1
, α̃∗

i )) > 0 or λj∗ℓKi (y
∗
i (α̃

∗
j∗ , α̃

∗
i , α̃

∗
i+1

)) > 0, which implies that the rate
z̃∗ = min

(
R j∗ℓ−1(α̃

∗
j∗ , α̃

∗
i−1
, α̃∗

i ), R j∗ℓ(α̃
∗
j∗ , α̃

∗
i , α̃

∗
i+1

)
)
> 0;

(3) for all non-Pareto systems j, j ′ ∈ Pc ,∑
ℓ∈Pph, ℓ=i λjℓIj (z

∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

))∑
ℓ∈Pph, ℓ=i λj′ℓIj′(z

∗
j′(α̃

∗
j′, α̃

∗
i , α̃

∗
i+1

))
= 1; (4)

(4) for all Pareto systems i, i ′ ∈ P, letting the phantom Pareto label for i ′ be ℓ′,∑
j ∈Pc λjℓ−1 Ji (x

∗
i (α̃

∗
j , α̃

∗
i−1
, α̃∗

i )) + λjℓKi (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

))∑
j ∈Pc λjℓ′−1 Ji′(x

∗
i′(α̃

∗
j , α̃

∗
i′−1
, α̃∗

i′)) + λjℓ′Ki′(y
∗
i′(α̃

∗
j , α̃

∗
i′, α̃

∗
i′+1

))
= 1; (5)

(5) for all Pareto systems i ∈ P,∑
j ∈Pc

λjℓ−1 Ji (x
∗
i (α̃

∗
j , α̃

∗
i−1
, α̃∗

i )) + λjℓKi (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

))∑
ℓ′∈Pph, ℓ′=i′ λjℓ′Ij (z

∗
j (α̃

∗
j , α̃

∗
i′, α̃

∗
i′+1

))
= 1. (6)

Proof. Let ν and λjℓ ≥ 0 for all j ∈ Pc , ℓ ∈ Pph
be dual variables. Then we have the comple-

mentary slackness conditions λjℓ(R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) − z̃∗) = 0 for all j ∈ Pc , ℓ ∈ Pph, ℓ = i, and the

(simplified) stationarity conditions∑
j ∈Pc [λjℓ−1 Ji (x

∗
i (α̃

∗
j , α̃

∗
i−1
, α̃∗

i )) + λjℓKi (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

))] = ν ∀i ∈ P; (7)∑
ℓ∈Pph, ℓ=i λjℓIj (z

∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) = ν ∀j ∈ Pc
; (8)∑

j ∈Pc
∑

ℓ∈Pph λjℓ = 1. (9)

See Online Appendix G for a complete proof. □

In Theorem 4.3, Parts (1) and (2) ensure the existence of a binding constraint in Problem Q̃ for

each non-Pareto system j and Pareto system i , respectively. Parts (3) and (4) determine the relative

allocations between the non-Pareto systems and between the Pareto systems, respectively. Part (5)

determines the relative allocation between a Pareto system i and the non-Pareto systems j that
compete with it.
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Observe that as the number of non-Pareto systems added according to Assumptions 5–8 grows,

the overall rate of decay of IP{MCIph} in Problem Q̃ will decrease. If this fact is not intuitive, it

can be seen by noticing that adding non-Pareto systems that compete with the Pareto systems in

a non-trivial way implies that we are adding binding constraints to Problem Q̃ that decrease its

optimal value. Thus under our assumptions, as |Pc | → ∞, z̃∗ → 0. (Notice that now, we consider a

sequence of Problems Q̃(r ) that are indexed by r , and quantities such as z̃∗, λjℓ for all j ∈ Pc
and

ℓ ∈ Pph
, and α̃∗

k for all k ∈ S are functions of r and could be denoted as z̃∗(r ), λjℓ(r ) and α̃∗
k (r ),

respectively. We often suppress this notation unless it is helpful for clarity.) Proposition 4.5 states

the rate at which z̃∗ → 0. Before we state the proposition, we present Lemma 4.4, which provides

bounds on R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) and the rate functions that comprise it; these bounds are useful in

the proofs of several subsequent results. The constants used in Lemma 4.4 are defined in Online

Appendix H.

Lemma 4.4. Let κL

R ,κ
U

R be positive, finite constants that do not depend on the system indices, and
let min

+ be an operator that returns the smallest positive element in a list (see §2.2 for a definition).
Under Assumptions 5–8, for each j ∈ Pc and ℓ ∈ Pph, ℓ = i ,

α̃∗
j κ

L

R min
+[

I
д
jℓ

1+α̃ ∗
j /α̃

∗
i
,

Ihjℓ
1+α̃ ∗

j /α̃
∗
i+1

] ≤ R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) ≤ α̃∗
j κ

U

R[
Ihjℓ

1+α̃ ∗
j /α̃

∗
i
+

I
д
jℓ

1+α̃ ∗
j /α̃

∗
i+1

] (10)

κL

R min
+[

I
д
jℓ

(1+α̃ ∗
j /α̃

∗
i )

2
,

Ihjℓ
(1+α̃ ∗

j /α̃
∗
i+1

)2
]≤ Ij (z

∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

))≤κU

R[
Ihjℓ

(1+α̃ ∗
j /α̃

∗
i )

2
+

I
д
jℓ

(1+α̃ ∗
j /α̃

∗
i+1

)2
] (11)

κL

R

Ihjℓ
(1+α̃ ∗

i /α̃
∗
j )

2
≤ Ki (y

∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) ≤ κU

R

Ihjℓ
(1+α̃ ∗

i /α̃
∗
j )

2
(12)

κL

R

I
д
jℓ

(1+α̃ ∗
i+1

/α̃ ∗
j )

2
≤ Ji+1(x

∗
i+1

(α̃∗
j , α̃

∗
i , α̃

∗
i+1

)) ≤ κU

R

I
д
jℓ

(1+α̃ ∗
i+1

/α̃ ∗
j )

2
. (13)

Proposition 4.5. Under Assumptions 5–8, as |Pc | → ∞, z̃∗ = O(1/|Pc |).

Thus by Proposition 4.5, as the number of non-Pareto systems grows, the asymptotically optimal

rate of decay of the probability of MC decreases to zero as O(1/|Pc |).

For each Pareto system i ∈ P and for each value of the total number of systems r , let Pc (i, r )
denote the set of non-Pareto systems j that have a binding constraint with Pareto system i in

Problem Q̃(r ); here, we explicitly denote the dependence of Problem Q̃ on r . That is, for all Pareto
systems i ∈ P and all r , define

Pc (i, r ) := {j ∈ Pc
: λjℓ−1(r )Ji (x

∗
i (α̃

∗
j , α̃

∗
i−1
, α̃∗

i )) + λjℓ(r )Ki (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) > 0}.

In Problem Q̃(r ), we say that non-Pareto system j and Pareto system i bind with each other if

j ∈ Pc (i, r ), and we say that non-Pareto system j and phantom Pareto system ℓ bind with each other

if λjℓ(r ) > 0. Notice that the interior expression in the definition of Pc (i, r ) equals the expression
in the numerator of equation (6). Equation (6) determines the relative allocation between a Pareto

system i and the non-Pareto systems j that bind with it via phantom Pareto system ℓ − 1 or ℓ. By
Theorem 4.3, at least one non-Pareto system binds with each Pareto system, so that |Pc (i, r )| ≥ 1

for all i ∈ P and all r . Also by Theorem 4.3, each non-Pareto system binds with at least one Pareto

system, so that each j ∈ Pc
belongs to at least one set Pc (i, r ) for all r .

We make the following additional observations about the set Pc (i, r ). First, since α̃∗
k > 0 for

all k ∈ S by Theorem 4.3, then for all j ∈ Pc , i ∈ P, a rate function term corresponding to

Pareto system i must appear in one of R jℓ−1(α̃
∗
j , α̃

∗
i−1
, α̃∗

i ) or R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) by Lemma 4.2. Thus

Ji (x
∗
i (α̃

∗
j , α̃

∗
i−1
, α̃∗

i ))+Ki (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) > 0, which implies I
д
jℓ−1

(r ) + Ihjℓ(r ) > 0, for all i ∈ P, j ∈ Pc
,

and all r . If we also have non-Pareto system j ∈ Pc (i, r ), then λjℓ−1(r )I
д
jℓ−1

(r ) + λjℓ(r )I
h
jℓ(r ) > 0.
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This result follows because for a non-Pareto system j to bind with a Pareto system i , we require a

rate function corresponding to system i to appear in the binding constraint in Problem Q̃(r ).
To make statements about the limiting relative allocations as |Pc | → ∞, we require notions of the

limiting allegiances between non-Pareto systems and Pareto systems. (In what follows, the reader

may find it helpful to consult Figure 1 or 2.) First, notice that when a new non-Pareto system j

enters Problem Q̃(r ), it will bind with one or more Pareto systems i via its phantom Pareto systems

ℓ− 1 or ℓ. Among these phantom Pareto systems, we require that there exists one primary phantom

Pareto system for each non-Pareto system j, defined as follows.

Definition 4.6. Let non-Pareto system j ∈ Pc
enter Problem Q̃(r ) at r = r j0 < ∞. The phantom

Pareto system ℓ∗ ∈ Pph
is the primary phantom Pareto system for j if λjℓ∗ (r ) > 0 for all r ≥ r j0, and

λjℓ(r ) = o(λjℓ∗ (r )) for all other phantom Pareto systems ℓ ∈ Pph, ℓ , ℓ∗.

The first condition ensures that the non-Pareto system j binds with the phantom Pareto system ℓ∗

for all r ≥ r j0, so that j ∈ Pc (i∗, r ) or j ∈ Pc (i∗ + 1, r ) for all r ≥ r j0. Using the shadow price

interpretation of λjℓ ’s in Problem Q̃ , the second condition implies that the greatest gain to the rate

z̃∗ will be achieved by perturbing the MCI rate constraint associated with system j and phantom ℓ∗,
by more than a constant. Since the primary phantom Pareto system ℓ∗ is a function of the non-

Pareto system j ∈ Pc
, we denote it as ℓ∗(j) whenever this notation is helpful for clarity. Otherwise,

the dependency on system j is implied.

While the assumption that each non-Pareto j has a primary phantom Pareto ℓ∗ may feel somewhat

artificial, we believe that it will arise naturally, for example, when non-Pareto systems are added

according to a uniform distribution (provided our assumptions are maintained). To understand why,

consider what it means for one non-Pareto system j to bind with more than one phantom Pareto

system ℓ. In a scenario with multiple Pareto systems (p ≥ 2) and only one non-Pareto system j1,
the non-Pareto system j1 will bind with all of the Pareto systems i ∈ P via at least one of their

phantoms ℓ − 1, ℓ, due to Theorem 4.3. However, as new non-Pareto systems are added uniformly

across the set C1, the new non-Pareto systems bind with the Pareto systems “closest” to them, and

j1 will cease to bind with Pareto systems that are “far away” from it — those Pareto systems will

bind with other, closer, non-Pareto systems. Therefore intuitively, non-Pareto systems binding with

multiple Pareto systems, and thus multiple phantom Pareto systems, may arise when (a) there are

not very many non-Pareto systems, or (b) when the non-Pareto systems are not “evenly distributed,”

as might arise when all non-Pareto systems are uniquely dominated by the same Pareto system.

Therefore we anticipate that the number of non-Pareto systems binding with multiple phantom

Pareto systems ℓ decreases as non-Pareto systems are added “evenly.”

In addition to assuming each non-Pareto system has a primary phantom Pareto system, we also

require that the number of non-Pareto systems binding with each Pareto system increase to infinity.

Specifically, for all Pareto systems i ∈ P, define Pc (i) as

Pc (i) := {j ∈ Pc
: j ∈ Pc (i, r ) for all r ≥ r j0 and ℓ

∗(j) ∈ {ℓ − 1, ℓ}}.

The set Pc (i) contains the non-Pareto systems j ∈ Pc
that bind with Pareto system i ∈ P, via

phantom Pareto ℓ∗(j) ∈ {ℓ − 1, ℓ}, in every Problem Q̃(r ) after r j0. For each Pareto system i ∈

{2, . . . ,p − 1}, we further require that there exists at least one j∗ ∈ Pc (i) such that (дj∗ ,hj∗ ) is
non-dominated by Pareto systems i − 1 and i + 1 for all r ; that is, j∗ is outside the shaded region in

Figure 2.

In what follows, we send |Pc (i)| → ∞ for all i ∈ P. This condition ensures that the number of

non-Pareto systems binding with each Pareto system i in Problem Q̃(r ) goes to infinity with r . To
ensure evenness of the non-Pareto systems in C1, the cardinality of each set Pc (i) must remain

within a constant of the total number of non-Pareto systems. We formalize these assumptions in
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Assumption 9, where {r } denotes the sequence of the total number of competing systems. We

numerically evaluate such a regime in §4.5.

Assumption 9. We assume that (a) for each non-Pareto system j ∈ Pc , there exists a primary
phantom Pareto system ℓ∗(j) ∈ Pph, (b) for each Pareto system i ∈ P, there exists a non-Pareto system
j∗ ∈ Pc (i) such that hj∗ ≤ hi−1 or дj∗ ≤ дi+1 for all r , and (c) there exists κ ∈ (0,∞) such that
|Pc (i)| ≥ κ |Pc | for all Pareto systems i ∈ P and all r .

Under the regularity conditions in Assumption 9, we ensure that each system receives nonzero

sample in the limit. Theorem 4.7 provides results on the limiting allocations.

Theorem 4.7. Under Assumptions 5–9, as |Pc (i)| → ∞ for all Pareto systems i ∈ P:
(1) There exists κ1 > 0 such that Ij (z∗j (α̃

∗
j , α̃

∗
i∗(j), α̃

∗
i∗(j)+1

)) ≥ κ1 for all j ∈ Pc with primary phantom
Pareto system ℓ∗(j) ∈ Pph, ℓ∗(j) = i∗(j), and all r ≥ r j0.

(2) The allocation α̃∗
j = Θ(z̃∗) for all j ∈ Pc .

(3) The dual variables ν = Θ(1/|Pc |) and λjℓ∗(j) = Θ(1/|Pc |) for all j ∈ Pc with primary phantom
Pareto system ℓ∗(j) ∈ Pph.

(4) There exists κ4 ∈ (0,∞) such that α̃∗
i /α̃

∗
j∗ > κ4 for all i ∈ P, j∗ ∈ Pc (i) such that hj∗ ≤ hi−1 or

дj∗ ≤ дi+1, and all r ≥ r j∗0.
(5) There exists κ2 < ∞ such that κ1/z̃

∗ ≤ 1/α̃∗
j + 1/α̃∗

i ≤ κ2/z̃
∗ for all i ∈ P, j ∈ Pc , r ≥ r j0.

(6) There exists κ6 ∈ (0,∞) such that α̃∗
i /α̃

∗
i′ < κ6 for all i, i ′ ∈ P, and all r .

(7) For all i ∈ P, j ∈ Pc , the ratio of squared allocations α̃∗2

j /α̃∗2

i = Θ(1/|Pc |).
(8) The rate z̃∗ = Θ(1/|Pc |) and the allocations α̃∗

j = Θ(1/|Pc |) for all j ∈ Pc .
(9) In R jℓ(α̃

∗
j , α̃

∗
i , α̃

∗
i+1

), the rate function Ki (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) = Θ(1/|Pc |) and the rate function
Ji+1(x

∗
i+1

(α̃∗
j , α̃

∗
i , α̃

∗
i+1

)) = Θ(1/|Pc |) for all j ∈ Pc , ℓ ∈ Pph, ℓ = i .
(10) In Problem RMCI

jℓ , y∗i → hi if ℓ , 0 and x∗i+1
→ дi+1 if ℓ , p for all j ∈ Pc , ℓ ∈ Pph, ℓ = i .

The primary results in Theorem 4.7 appear in Parts (7)–(10). Because each Pareto system is

competing with an increasingly large number of non-Pareto systems, Parts (7) and (8) state that

in the limit, each Pareto system i will receive many more samples than the non-Pareto systems j.
Parts (9) and (10) state that in the limit in Problem RMCI

jℓ , the rate functions corresponding to both

Pareto systems i and i + 1 tend to zero, while we know the rate function corresponding to system j
remains positive by Part (1). Thus in the limit, the rate function corresponding to j is evaluated
over the region in which non-Pareto system j would dominate the phantom Pareto system ℓ,
x j ≤ дi+1,yj ≤ hi . Loosely speaking, in this asymptotic regime, the Pareto systems receive so many

samples that, relative to the non-Pareto systems, the Pareto systems appear known.

This last result leads us directly to the main result of the paper, presented in Theorem 4.8. We do

not provide a proof; notice that it follows by applying Theorem 4.7.

Theorem 4.8. Under Assumptions 5–9, as |Pc (i)| → ∞ for all i ∈ P,

R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

)/α̃∗
j = infx j ≤дi+1, yj ≤hi Ij (x j ,yj ) for all j ∈ Pc , ℓ ∈ Pph, ℓ = i .

To see the implications of Theorem 4.8, define the score Sj as

Sj := minℓ∈Pph, ℓ=i
(
infx j ≤дi+1, yj ≤hi Ij (x j ,yj )

)
for all j ∈ Pc .

Then it follows that in the limit, z̃∗ = minℓ∈Pph, ℓ=i R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) for all j ∈ Pc
, and we have

z̃∗/α̃∗
j = minℓ∈Pph, ℓ=i (infx j ≤дi+1, yj ≤hi Ij (x j ,yj )) for all j ∈ Pc . Therefore the relative allocations

between the non-Pareto systems are determined by the score, which is written formally in the

following Theorem 4.9.
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Theorem 4.9. Under Assumptions 5–9, as |Pc (i)| → ∞ for all i ∈ P, then

α̃∗
j′

α̃∗
j
=
Sj

Sj′
=

minℓ∈Pph, ℓ=i
(
infx j ≤дi+1, yj ≤hi Ij (x j ,yj )

)
minℓ∈Pph, ℓ=i

(
infx j′ ≤дi+1, yj′ ≤hi Ij (x j ,yj )

) for all j, j ′ ∈ Pc .

Under Assumption 6, finding each infx j ≤дi+1, yj ≤hi Ij (x j ,yj ) is a quadratic program with box

constraints. The following proposition presents its closed form solution. We do not provide a proof

of this result since it is a special case of previous results.

Proposition 4.10. Under Assumption 6, for all non-Pareto systems j ∈ Pc , the score is calculated
as Sj = minℓ∈Pph Sj (ℓ), where recalling that ℓ = i ,

Sj (ℓ) :=


Jj (дi+1) iff ℓ , p, (дj−дi+1)

σj
> 0,

(hj−hi )
σhj

≤ ρ j
(дj−дi+1)

σдj
;

Kj (hi ) iff ℓ , 0,
(hj−hi )
σhj

> 0,
(дj−дi+1)

σдj
≤ ρ j

(hj−hi )
σhj

;

Ij (дi+1,hi ) iff ℓ < {0,p}, (дj−дi+1)

σдj
> ρ j

(hj−hi )
σhj
,

(hj−hi )
σhj

> ρ j
(дj−дi+1)

σдj
.

Thus in our asymptotic regime, the relative allocations between the non-Pareto systems can

be expressed in closed form, where the allocation to a particular non-Pareto system is inversely

proportional to its scaled distance from the Pareto frontier in the objective function space. Notice that

the value of Sj (ℓ) in Proposition 4.10 is identical to the value of R jℓ(α j ,αi ,αi+1) in Proposition 4.1

whenwд = 1 andwh = 1.

4.3 Allocation to Pareto Systems
While we express the relative allocations between the non-Pareto systems in closed form, we also

require a sense of how much sample to allocate to the Pareto systems. The following Theorem 4.11

states that as the number of non-Pareto systems tends to infinity, the allocations to the Pareto

systems also tend to zero, but at a much slower rate than the allocations to the non-Pareto systems.

Theorem 4.11. Under Assumptions 5–9, as |Pc (i)| → ∞ for all i ∈ P, α̃∗
i = Θ(1/

√
|Pc |) for all

Pareto systems i ∈ P.

Theorem 4.11 only gives us a sense of the allocation to the Pareto systems in the limit. To solve

for a specific allocation to each of the Pareto systems, we require heuristics, discussed in §5.

4.4 Equivalence of Allocations When the Number of Non-Pareto Systems is Large
Recall that all results presented in §4.2 and §4.3 pertain to Problem Q̃ and not to the original

characterization of the optimal allocation as the solution to ProblemQ . The following Theorem 4.12

states that as the number of non-Pareto systems grows, the optimal allocation provided by Problem Q̃
is equal to that provided by Problem Q .

Theorem 4.12. Under Assumptions 5–9, for large enough |Pc |, α̃ ∗ = α ∗.

Intuitively, Theorem 4.12 holds because in the limiting regime, the Pareto systems receive so

many more samples than the non-Pareto systems that MCE events between Pareto systems cannot

be the unique minimum in the rate of decay of the IP{MC}.

4.5 Numerical Evaluation of the Limiting Regime
We have shown that under some conditions, as the number of non-Pareto systems tends to infinity,

the rate of decay of IP{MCEP} becomes non-binding in Problem Q . Now, we numerically evaluate

this effect on a set of randomly-generated test problems.
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To create the test problems, first, we place five Pareto systems at equally spaced angles on a

circle of radius six. This spacing guarantees the minimum separation between Pareto systems on

both objectives is greater than 0.5, so that |дi − дi′ | > 0.5, |hi − hi′ | > 0.5 for all i, i ′ ∈ P. Then we

generate non-Pareto systems by one of two methods: uniform or normal. In the uniform method,

non-Pareto systems are generated uniformly in a circle centered at (100,100) with radius six. In the

normal method, non-Pareto systems are generated according to an independent bivariate normal

distribution with both means equal to 100 and both standard deviations equal to three. Thus the

majority of systems are within six units of the mean. In both methods, non-Pareto systems less

than 0.25 units away from the Pareto frontier are rejected. This condition ensures Assumption 7 is

satisfied, and that the rate is large enough for us to obtain the optimal allocation numerically from

Problem Q . Figures 3 and 6 show example problem instances in which 445 non-Pareto systems

are added according to the uniform and normal methods, respectively. All systems have bivariate

normal rate functions under Assumption 6 with independent objectives and unit variance.

As non-Pareto systems are added to fifty problem instances of each type, uniform and normal,

we solve Problem Q for the optimal allocation. We then create two types of plots: Figures 4

and 7, which show the percent of problem instances with binding MCE constraints, and Figures 5

and 8, which show box plots of the percent of the dual variable values associated with MCE

constraints at optimality in Problem Q . To better understand what we mean by the percent of dual

variable values associated with MCE constraints, in Problem Q , let λPii′ for all i, i
′ ∈ P be the dual
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Fig. 3. The figure shows an ex-
ample uniform problem with
445 non-Paretos generated uni-
formly in a circle of radius six.

100 200 300 400

Number of Systems

20

40

60

80

100

%
 w

it
h

 M
C

E
 B

in
d

in
g

Fig. 4. The percent of 50 uniform
problems with MCE constraints
binding in Problem Q decreases as
systems increase.
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Fig. 5. The percent of dual vari-
able value associated with MCE con-
straints, across 50 uniform problems,
decreases as systems increase.
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Fig. 6. The figure shows an ex-
ample normal problem with 445
non-Paretos generated via a bi-
variate normal.
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problems with MCE constraints
binding in Problem Q decreases as
systems increase.
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able value associated with MCE con-
straints, across 50 normal problems,
decreases as systems increase.
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variables corresponding to MCE constraints and λP
c

jℓ for all j ∈ Pc , ℓ ∈ Pph
be the dual variables

corresponding to MCI constraints. Then the percent of dual variable values associated with MCE

constraints is

∑
i ∈P

∑
i′∈P,i′,i λ

P
ik/(

∑
i ∈P

∑
i′∈P,i′,i λ

P
ii′ +

∑
ℓ∈Pph

∑
j ∈Pc λP

c

jℓ ) at optimality.

While one could argue that our problems are somewhat artificial, given the nicely spaced Pareto

frontier and its buffer away from the non-Pareto systems, we believe there is an important message

in Figures 3–8. If the systems can be viewed as coming from a distribution, the distribution will

affect the rate at which the limiting regime kicks in. When the systems are generated according to

the normal method, they cluster together near the mean at (100,100). Thus many of the non-Pareto

systems are some distance away from the Pareto frontier, and the limit kicks in slower. When the

systems are generated according to the uniform method, the systems are more dispersed in their

“allegiances” to Pareto systems and closer to the Pareto frontier, and the limit kicks in faster.

5 THE SCORE ALLOCATION
In this section, we describe a heuristic allocation for implementation based on the theory in §4

called the SCORE allocation. As in Pasupathy et al. [2015], we use Theorem 4.9 to determine the

relative allocations among the non-Pareto systems. We now describe the method by which we

determine the remainder of the allocations.

First, notice that if we let the rate of decay of IP{MCIph} be determined by the limiting rates in The-

orem 4.8, and let the primary phantom Pareto be determined by the scores as ℓ∗ = argminℓ∈Pph Sj (ℓ),

then there exists a version of Problem Q̃ in which there is exactly one binding constraint corre-

sponding to MCI for each non-Pareto system j ∈ Pc
. Thus the dual variables λjℓ = 0 for all ℓ ∈ Pph

such that ℓ , ℓ∗. Then for all non-Pareto systems j, j ′ ∈ Pc
, the KKT condition in (4) implies that as

|Pc (i)| → ∞, for all Pareto systems i ∈ P, λjℓ∗/λj′ℓ′∗ = Ij′(z
∗
j′(α

∗
j′,α

∗
i′∗ ,α

∗
i′∗+1

))/Ij (z
∗
j (α

∗
j ,α

∗
i∗ ,α

∗
i∗+1

)) =

Sj′/Sj = α∗
j /α

∗
j′, so that λ

S
j := α∗

j /
∑

j′∈Pc α∗
j′ = S

−1

j /
∑

j′∈Pc S−1

j′ is the proportion of the “non-Pareto

simulation budget” allocated to system j for all non-Pareto systems j ∈ Pc
. Then we write the

allocation to a non-Pareto system j as α∗
j = λSj (1 −

∑p
i=1

α∗
i ).

It is tempting to create a heuristic allocation by solving a reduced version of Problem Q̃ that only

includes one constraint for each non-Pareto system j and its primary phantom Pareto ℓ∗. However,
there are some drawbacks of this approach. First, the assumptions of the limiting score regime may

not be satisfied, and some Pareto systems may receive a falsely low allocation by not including

constraints corresponding to MCE. Since constraints corresponding to MCE involve only Pareto

systems, including these constraints in the allocation heuristic may yield better allocations without

adding much computational complexity. Second, while such a version of Problem Q̃ has reduced

complexity, when the number of Pareto systems is large, the number of constraints still grows with

the number of non-Pareto systems. We avoid these issues by creating a new reduced version of

Problem Q , called Problem QS, that includes at least one constraint corresponding to MCI for each

Pareto system and includes all constraints corresponding to MCE, as follows.

For each phantom Pareto system ℓ ∈ Pph, ℓ = i , find the “closest” non-Pareto systems

j∗i (ℓ) := argminj ∈Pc {Sj (ℓ) : Sj (ℓ) ∈ {Kj (hi ), Ij (дi+1,hi )}} if ℓ , 0,

j∗i+1
(ℓ) := argminj ∈Pc {Sj (ℓ) : Sj (ℓ) ∈ {Jj (дi+1), Ij (дi+1,hi )}} if ℓ , p,

and let J∗(ℓ) := {j∗i (ℓ)} ∪ {j∗i+1
(ℓ)}, where {j∗

0
(0)} := ∅ and {j∗p+1

(p)} := ∅. The set J∗(ℓ) contains

up to two of the “closest” non-Pareto systems to phantom Pareto system ℓ, as determined by the

scores. Because it is possible for a non-Pareto system j to bind with only one of the Pareto systems i
or i + 1 through the phantom Pareto system ℓ, we ensure that we retain at least one non-Pareto

system that binds with each Pareto system i and i+1 in the set J∗(ℓ). Then the SCORE allocation we
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recommend results from solving the following reduced problem for the Pareto system allocations:

Problem QS : maximize z s.t.

Ri (αi ,αi′) ≥ z for all i, i ′ ∈ P such that i ′ , i,

R j∗ℓ(λ
S
j∗ (1 −

∑p
i=1

αi ),αi ,αi+1) ≥ z for all j∗ ∈ J∗(ℓ), ℓ ∈ Pph, ℓ = i,∑p
i=1

αi ≤ 1, αi ≥ 0 for all i ∈ P.

Since we have at most two constraints corresponding to MCI for each phantom Pareto system, the

complexity of Problem QS depends only on the number of Pareto systems.

To speed up the computation in ProblemQS, we use closed form expressions of the rate functions

corresponding to MCI, presented in Proposition 4.1. The following Proposition 5.1 provides corre-

sponding closed form expressions for the rate functions corresponding to MCE, written without

weights. Notice that the correlations for both systems, ρi and ρi′ , appear in the rate.

Proposition 5.1. Under Assumption 6, the rate function corresponding to the MCEP event for
systems i, i ′ ∈ P is

Ri (αi ,αi′) =



(дi′−дi )2

2(σ 2

дi /αi+σ
2

дi′
/αi′ )

iff дi′ > дi , hi′ ≤ hi + (дi′ − дi )
( ρiσдi σhi /αi+ρi′σдi′ σhi′ /αi′

σ 2

дi /αi+σ
2

дi′
/αi′

)
(hi′−hi )2

2(σ 2

hi
/αi+σ 2

hi′
/αi′ )

iff hi′ > hi , дi′ ≤ дi + (hi′ − hi )
( ρiσдi σhi /αi+ρi′σдi′ σhi′ /αi′

σ 2

hi
/αi+σ 2

hi′
/αi′

)
[ σ 2

дi
αi
+
σ 2

дi′
αi′

]
(hi′−hi )2−2

[ ρi′σдi′ σhi′
αi′

+
ρi σдi σhi

αi

]
(дi′−дi )(hi′−hi )+

[ σ 2

hi
αi
+
σ 2

hi′
αi′

]
(дi′−дi )2

2

[
(σ 2

дi /αi+σ
2

дi′
/αi′ )(σ 2

hi
/αi+σ 2

hi′
/αi′ )−(ρiσдi σhi /αi+ρi′σдi′ σhi′ /αi′ )

2

]
otherwise.

6 TIME TO SOLVE FOR THE SCORE ALLOCATION VERSUS OPTIMALITY GAP
In practice, a decision-maker’s choice of simulation budget allocation method is influenced by the

amount of time it takes to solve for the allocation, as well as how close that allocation is to the

optimal allocation. We now give a sense of how our proposed allocations perform on these metrics

as the number of systems increases. (In this section, we assume all rate functions are known.)

For a population of ten problems generated according to the uniform method from §4.5, the

following Table 2 reports the average wall-clock time to solve for each allocation, the average

rate z achieved by the resulting allocation, and the average optimality gap. We keep the same

Pareto systems as in §4.5, but instead of rejecting non-Pareto systems that are less than 0.25 units

away, we reject non-Pareto systems that are less than 0.05 units away. Thus the problems are

more realistic while keeping the full Problem Q solvable for up to a thousand systems. We also

let all systems have bivariate normal rate functions with correlated objectives and unit variances.

Within each of the 10 problem instances, all systems share the same correlation between the

objectives. The correlations between the objectives for the ten problems, rounded to the second digit,

are −0.81,−0.51,−0.36,−0.21,−0.08, 0.23, 0.26, 0.46, 0.55, 0.80. The specified allocation models in

Table 2 are BVN True, in which we solve the full ProblemQ for the asymptotically optimal allocation

α ∗
; BVN Independent, in which we solve the full Problem Q , except we model the correlation

between the objectives for all systems as ρk = 0 for all k ∈ S; SCORE; the non-sequential MOCBA

allocations [Lee et al. 2010, p. 661, Lemmas 4 and 5]; M-MOBA; and equal allocation.

The timings reported in Table 2 approximate how long it takes to perform one sample allocation

update in the sequential algorithm (see §7, Algorithm 1, Step 3). Note that M-MOBA is a myopic

procedure for which asymptotic allocations are not provided, so we are unable to report its rate.

Further, the MOCBA allocations in Lee et al. [2010, p. 661, Lemmas 4 and 5] do not always ensure
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Table 2. For ten problems randomly generated via the uniform method of §4.5, the table reports the aver-
age wall-clock time to solve for each allocation, as well as the average rate of decay of the probability of
misclassification, z, and the average optimality gap, z(α ∗) − z(α ), for α specified by each allocation.

r Metric BVN True BVN Indep. SCORE MOCBA
†

M-MOBA
‡

Equal

20 Time 0.07 sec 0.06 sec 0.04 sec 0.01 sec 0.06 sec 0 sec

Rate z × 10
4

54.96 44.63 52.52 0.04 13.43

Opt. Gap ×10
4

0
a

10.33 2.44 54.92 41.53

100 Time 0.53 sec 0.47 sec 0.06 sec 0.02 sec 0.25 sec 0 sec

Rate z × 10
4

12.97 11.83 11.31 2.47 0.66

Opt. Gap ×10
4

0 1.14 1.66 10.50 12.31

500 Time 43.16 sec 25.06 sec 0.08 sec 0.42 sec 1.30 sec 0 sec

Rate z × 10
4

1.65 1.37 1.46 0.13 0.021

Opt. Gap ×10
4

0 0.28 0.19 1.52 1.63

1,000 Time 18.09 min 12.31 min 0.13 sec 1.67 sec 2.64 sec 0 sec

Rate z × 10
4

0.95 0.81 0.82 0.02 0.009

Opt. Gap ×10
4

0 0.14 0.13 0.93 0.94

2,000 Time > 6 hr > 6 hr 0.22 sec 6.71 sec 5.46 sec 0 sec

Rate z × 10
4

—
b

— 0.45 0.005 0.004

Opt. Gap ×10
4

0 — — — —

5,000 Time > 6 hr > 6 hr 0.48 sec 42.49 sec 14.80 sec 0 sec

Rate z × 10
4

— — 0.22 0.0004 0.001

Opt. Gap ×10
4

0 — — — —

10,000 Time > 6 hr > 6 hr 0.92 sec 2.90 min 33.68 sec 0 sec

Rate z × 10
4

— — 0.11 0.0002 0.0006

Opt. Gap ×10
4

0 — — — —

Note: We perform all computing on a 2.5 GHz Intel Core i7 processor with 16GB 1600MHz DDR3 memory. The algorithms

for BVN True, BVN Independent, SCORE, and M-MOBA are written in MATLAB and run in MATLAB R2015b. The algorithm

that calculates MOCBA is written in C++.

†
We compare with Lee et al. [2010, p. 661, Lemmas 4 and 5], which may allocate αk = 0 for some k ∈ S, implying z = 0.

‡
We do not report a rate for M-MOBA, since it is a myopic procedure.

a
The optimality gap is to the precision of the solver.

b
The symbol ‘—’ indicates that data is unavailable due to the large computational time.

the allocations to all systems are positive. If there exists a system k such that αk = 0, the rate is

z = 0. This fact may be responsible for its relatively large theoretical optimality gap.

Interestingly, from Table 2, the BVN Independent allocation is much slower to calculate than

SCORE. Further, it often yields an average optimality gap larger than SCORE, which emphasizes

the usefulness of incorporating correlation into the allocation model. Since the BVN Independent

allocation is not a competitive allocation relative to the others, we do not include the BVN Inde-

pendent allocation in further numerical experiments. Table 2 also seems to show that SCORE is

an extremely competitive allocation scheme whether the number of systems is small, e.g. on the

order of 20 systems, or very large, e.g. on the order of 10, 000 systems. Further, SCORE is fast — on

average, it takes less than a second to solve for the SCORE allocation in a problem with 10, 000

systems.

7 A SEQUENTIAL ALGORITHM FOR IMPLEMENTATION
Since the SCORE allocation framework requires knowledge of rate functions that we do not know

in advance, we present sequential Algorithm 1 for implementation. The broad idea of Algorithm 1 is:
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(a) obtain an initial sample of size δ0 ≥ 2 from each system to estimate the SCORE allocation; (b) use

the estimated SCORE allocation as a probability distribution from which to obtain the next δ ≥ 1

samples; (c) update the estimated optimal allocation and return to step (b). The minimum-sample

proportion αε > 0, which should be small relative to 1/r , ensures that each system is sampled

infinitely often as the sequential algorithm progresses. This algorithm proceeds until some total

sampling budget specified by the user has been expended. Since implementing such a stopping rule

is trivial, we write the sequential algorithm as non-terminating.

ALGORITHM 1: A sequential algorithm to sample from systems using the proposed allocations

Require: Initial sample size δ0 ≥ 2; sample size between allocation vector updates δ ≥ 1; and a

minimum-sample proportion 0 < αε < 1/r that is small relative to 1/r .
1: Initialize: collect δ0 simulation replications from each system k ∈ S; set n = r × δ0, nk = δ0 for all k ∈ S.

2: Estimate: Update the parameter estimators Ĥk , Ĝk , σ̂
2

дk , σ̂
2

hk
, and ρ̂k for all k ∈ S; use these estimators to

construct estimated rate functions Îk (xk ,yk ) for all k ∈ S;

3: Calculate: Solve an estimated version of Problem Q or QS using Step 2 estimators to obtain estimated

optimal or SCORE allocations, α̂ ∗
n .

4: form = 1, 2, . . . ,δ do
5: Sample: Select a system Km from which to obtain the next simulation replication, where each Km is an

i.i.d. random variable with probability mass function α̂ ∗
n and support S.

6: Simulate: Collect one simulation replication from system Km and set nKm = nKm + 1.

7: end for
8: Set n = n + δ and update ᾱn = {n1/n,n2/n, . . . ,nr /n}. Set δ

+ = 0.

9: for k = 1, 2, . . . , r do
10: If nk/n < αε , collect one simulation replication from system k . Then set nk = nk + 1 and δ+ = δ+ + 1.

11: end for
12: Set n = n + δ+ and go to Step 2.

8 NUMERICAL PERFORMANCE OF SEQUENTIAL ALLOCATIONS
In this section, we evaluate the performance of sequential versions of the proposed allocations on

several test problems.

8.1 Test Problems
We construct six problems to test our algorithm. First, we generate two problem instances, 1 and 2,

of true system performances by uniformly generating 100 systems in a circle of radius six, centered

at (100, 100). A listing of the (дk ,hk ) values for all k ∈ S is provided in Online Appendix N. We

create sub-problems A, B, and C by setting the variances to one and the correlations to ρk = −0.8,
ρk = 0, and ρk = 0.8 for all k ∈ S, respectively. The system objective values in the first test problem

set correspond to the circle centers in Figures 9–11. This test problem set has a high percent of dual

variable values associated with MCE constraints. The second test problem set has a low percent of

dual variable values associated with MCE constraints. Due to space constraints, the second test

problem set and results appear in Online Appendix O.

Note that in Figures 9–11, the asymptotically optimal allocations are proportional to the size

of the circle. While there is no obvious visible difference in the optimal allocations with different

correlations, the allocations do differ slightly.
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Fig. 9. Test 1A: r = 100, |P| = 9,
ρk = −0.8 for all k ∈ S, % dual to
MCE = 74.5, z∗ = 3.46 × 10

−4.
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Fig. 10. Test 1B: r = 100, |P| = 9,
ρk = 0 for all k ∈ S, % dual to
MCE = 74.0, z∗ = 3.44 × 10

−4.
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Fig. 11. Test 1C: r = 100, |P| = 9,
ρk = 0.8 for all k ∈ S, % dual to
MCE = 73.4, z∗ = 3.42 × 10

−4.

8.2 Estimated Expected Number of Misclassifications
For each algorithm BVN True, SCORE, MOCBA, M-MOBA, and equal allocation, we run 10, 000

independent sample paths on each of the test problems 1A, 1B, and 1C. For each algorithm, we

calculate the average number of misclassifications, false exclusions, and false inclusions across the

sample paths, as a function of sample size. For a particular sample path, the sequence containing

the number of misclassifications as a function of the sample size n is autocorrelated.

In all implementations of Algorithm 1, which include all sample paths of the BVN True and

SCORE allocations, we use parameter settings δ0 = 5, δ = 20, and αε = 10
−8
. In our implementation

of MOCBA [Lee et al. 2010], we use parameter settings N0 = δ0 = 5, ∆ = δ = 20, and τ = ∆/2 = 10,

where τ is the maximum number of samples one system can receive in a given iteration. In our

implementation of M-MOBA [Branke and Zhang 2015], we set n0 = δ0 = 5 and τ = δ = 20, where

here, τ is the amount of sample given to the alternative with the largest probability of changing

the set of Pareto systems. Our stopping rule in M-MOBA is the sampling budget rule. We have

chosen δ = 20 as a reasonable sampling update schedule that is computationally feasible for all

algorithms. M-MOBA, however, is designed for δ = 1, since all of the samples between updates are

allocated to a single system. Ideally we would run all algorithms with δ = 1, unfortunately, doing

so would require significant computational resources. The resulting performances are reported in

Figures 12–14.

Considering the overall percent of systems misclassified, all algorithms exhibit close performance

in Figures 12–14. (They exhibit even closer performance on the second test problem set in Figures 20–

22 of Online Appendix O.) We notice that MOCBA seems to perform particularly well at preventing

false exclusions of Pareto systems, but performs less well at preventing false inclusions of non-Pareto

systems.

Since the optimality guarantees on the BVN True allocation are asymptotic, it is not clear that

allocating according to BVN True will perform better than other allocation schemes for finite

n. However, BVN True seems to perform about as well as its peers, and the performance of the

SCORE allocation tracks the BVN True allocation closely. Importantly, since Test Problems 1A–

1C have a high percent of dual constraints to MCE — implying the assumptions required in the

limiting SCORE framework may not hold — we do not notice a loss of quality in the SCORE

allocation relative to BVN True in Figures 12–14. We remind the reader that these test problems

were randomly-generated; performance of the algorithms on other problems may vary.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0. Publication date: 201X.



SCORE Allocations for Bi-objective Ranking and Selection 0:25

500 1000 1500 2000 2500

0

2

4

6

500 1000 1500 2000 2500

0

10

20

30

40

500 1000 1500 2000 2500
0

1

2

3

Equal

M-MOBA

MOCBA

SCORE

BVN True

Fig. 12. Test 1A: For 10,000 sample paths per algorithm, the graphs show the average % of systemsmisclassified
(MC), % of Paretos falsely excluded (FE), and % of non-Paretos falsely included (FI), respectively.
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Fig. 13. Test 1B: For 10,000 sample paths per algorithm, the graphs show the average % of systemsmisclassified
(MC), % of Paretos falsely excluded (FE), and % of non-Paretos falsely included (FI), respectively.
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Fig. 14. Test 1C: For 10,000 sample paths per algorithm, the graphs show the average % of systemsmisclassified
(MC), % of Paretos falsely excluded (FE), and % of non-Paretos falsely included (FI), respectively.

9 CONCLUDING REMARKS
SCORE is a fast, approximately optimal allocation for bi-objective R&S that accounts for correlation

between the objectives and is derived from an asymptotically optimal allocation framework. We are

aware of issues with estimating rate functions in a general context [Glynn and Juneja 2015, 2011].

However, our numerical experience in the case of normal rate functions has been overwhelmingly

positive [Hunter and McClosky 2016; Pasupathy et al. 2015]. Finally, it remains to be seen whether

our methods for bi-objective R&S extend cleanly to multi-objective R&S. We rely heavily on the

phantom Pareto systems, which are easily constructed only in two objectives. Feldman et al. [2015]

and Feldman [2017] provide further insights to the multi-objective case.

SUPPLEMENTARY MATERIALS
Our supplementary materials include the following Online Appendices A–O.
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A PROOF OF THEOREM 3.1
For use in the proof, we expand the MC and MCph events. First, expand the MCE event, so that

MCE = MCEP ∪MCEPc , where

MCEPc := ∪
i ∈P

∪
j ∈Pc

(Ĝ j ≤ Ĝi ) ∩ (Ĥj ≤ Ĥi ).

Then we can write the MC event as

MC = MCEP ∪MCEPc ∪MCI

= MCEP ∪ [(MCI ∪MCEPc ) ∩MCE
c
P]

= MCEP ∪ [(MCI ∩MCE
c
P) ∪ (MCEPc ∩MCE

c
P)].

Then, notice that the MCph event can be written as

MCph = MCEP ∪MCIph = MCEP ∪ (MCIph ∩MCE
c
P).

(MC impliesMCph). We showMC implies MCph in two parts. First, we showMCI∩MCE
c
P
implies

MCIph, then we show MCEPc ∩MCE
c
P
implies MCIph.

Suppose MCI ∩MCE
c
P
occurs. Since MCI occurs, let j ∈ Pc

and j ∈ ˆP be a non-Pareto system

falsely estimated as Pareto. Then for each i ∈ P, Ĝ j ≤ Ĝi or Ĥj ≤ Ĥi . Thus (Ĝ j , Ĥj ) ∈ ∩i ∈P{(Ĝ, Ĥ ) :

(Ĝ ≤ Ĝi ) ∪ (Ĥ ≤ Ĥi )}. Since MCE
c
P
occurs, no Pareto systems dominate other Pareto systems, and

we have p + 1 estimated phantom Pareto systems, indexed by ℓ ∈ Pph, ℓ = i . Therefore

(Ĝ j , Ĥj ) ∈ ∪
ℓ∈Pph, ℓ=i

{(Ĝ, Ĥ ) : (Ĝ ≤ Ĝ[i+1]) ∩ (Ĥ ≤ Ĥ[i])},

that is, j lies in the union of the southwest quadrants defined by origins at the estimated phantom

systems. Therefore MCIph occurs.

Now we show MCEPc ∩MCE
c
P
implies MCIph. Suppose MCEPc ∩MCE

c
P
occurs. Since MCEPc

occurs, there exists a non-Pareto system j ∈ Pc
such that for some Pareto system i ∈ P, (Ĝ j ≤

Ĝi ) ∩ (Ĥj ≤ Ĥi ). Suppose that, among the Pareto systems, i ∈ P is estimated as being in the

(i ′ + 1)th place on the д objective for some i ′ ∈ {0, 1, . . . ,p}, so that Ĝ j ≤ Ĝ[i′+1]. Since MCE
c
P

occurs, system i is also in the (i ′ + 1)th place on the h objective, thus Ĥj ≤ Ĥ[i′+1] ≤ Ĥ[i′]. Therefore

MCIph occurs.

(MCph impliesMC). We showMCIph∩MCE
c
P
implies MC. Suppose MCIph∩MCE

c
P
occurs. Then

no Pareto systems are estimated as dominating other Pareto systems, and at least one non-Pareto

system is estimated as dominating one of the p + 1 phantom Pareto systems. From the set of all

j ∈ Pc
dominating some estimated phantom Pareto system, there exists j∗ ∈ Pc

such that j∗ ∈ ˆP.

(Otherwise, if there exists no such j∗, then each j ∈ Pc
is dominated by some i ∈ P, and MCIph

does not occur.) Therefore
ˆP , P, which implies MC.

B PROOF OF LEMMA 3.3
Let S be an ordered set of p elements of the form {(x1,y1), (x2,y2), . . . , (xp ,yp )} where the x and y
coordinates are separately drawn without replacement from the set of Pareto indices {1, 2, . . . ,p}.

The set S corresponds to a (fixed) realized instance of
ˆO.

By the law of total probability,

IP{MCIph} = IP{MCIph ∩ ˆO = O} +
∑

all S,O IP{MCIph ∩ ˆO = S}.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0. Publication date: 201X.



SCORE Allocations for Bi-objective Ranking and Selection 0:27

Consider the first term on the right hand side, IP{MCIph ∩ ˆO = O}. Since ˆO = O occurs, we may

write MCIph without order statistics so that

IP{MCIph} = IP{MCI
∗
ph

∩ ˆO = O} +
∑

S,O IP{MCIph ∩ ˆO = S}.

Assuming the limits exist, by the principle of the slowest term [Ganesh et al. 2004, Lemma 2.1],

− lim

n→∞

1

n log IP{MCIph}

= − lim

n→∞

1

n log

(
IP{MCI

∗
ph

∩ ˆO = O} +
∑

S,O IP{MCIph ∩ ˆO = S}
)

= min

(
− lim

n→∞

1

n log IP{MCI
∗
ph

∩ ˆO = O},min

S,O
− lim

n→∞

1

n log IP{MCIph ∩ ˆO = S}
)
.

Then from equation (1),

− lim

n→∞

1

n log IP{MC} = min

(
− lim

n→∞

1

n log IP{MCEP},− lim

n→∞

1

n log IP{MCI
∗
ph

∩ ˆO = O},

min

S,O
− lim

n→∞

1

n log IP{MCIph ∩ ˆO = S}
)
. (14)

We now show that minS,O − limn→∞
1

n log IP{MCIph ∩ ˆO = S} is never the binding minimum in

equation (14). First, it is clear that any value of S that results in an MCEP event will have a rate

function that is greater than or equal to the corresponding rate function for MCEP. Now consider

values of S that do not result in MCEP, such that all Pareto systems are estimated as Pareto, but may

be estimated in the wrong order, e.g., S = {(2, 2), (1, 1), (3, 3), . . . , (p,p)}, where Pareto systems 1

and 2 have exchanged positions. In this case, it is sufficient to consider only instances of S that

contain pairwise exchanges, and further, it is sufficient to consider instances of S in which there

is exactly one “pair exchange.” For any i1, i2 indexing the Pareto systems such that i1 < i2, a pair
exchange occurs if (Ĝi2 ≤ Ĝi1 ) ∩ (Ĥi1 ≤ Ĥi2 ). Let S(i1,i2) denote an ordering with exactly one pair

exchange where i1 and i2, i1 < i2, are the Pareto systems whose places have been exchanged. Thus

min

S,O
− lim

n→∞

1

n log IP{MCIph ∩ ˆO = S}

≥ min

(
− lim

n→∞

1

n log IP{MCEP},− lim

n→∞

1

n log IP{MCIph ∩ ˆO = S(i1,i2)}
)

≥ min

(
− lim

n→∞

1

n log IP{MCEP},− lim

n→∞

1

n log IP{ ˆO = S(i1,i2)}
)
.

Now notice that

− lim

n→∞

1

n log IP{ ˆO = S(i1,i2)} ≥ min

i1,i2∈P
− lim

n→∞

1

n log IP{(Ĝi2 ≤ Ĝi1 ) ∩ (Ĥi1 ≤ Ĥi2 )}

= min

i1,i2∈P
inf

xi
2
≤xi

1
, yi

1
≤yi

2

αi1 Ii1 (xi1 ,yi1 ) + αi2 Ii2 (xi2 ,yi2 ). (15)

Since the infimum in equation (15) is a strictly convex minimization problem with a nonempty

interior, the KKT conditions [Boyd and Vandenberghe 2004] are necessary and sufficient for global

optimality. In addition to primary feasibility conditions, for λx ≥ 0 and λy ≥ 0 we have the

complementary slackness conditions λx (x
∗
i2 − x∗i1 ) = 0 and λy (y

∗
i1 − y∗i2 ) = 0, and the stationarity

conditions

αi1
∂Ii

1
(x ∗
i
1

,y∗
i
1

)

∂xi
1

− λx = 0, αi1
∂Ii

1
(x ∗
i
1

,y∗
i
1

)

∂yi
1

+ λy = 0,

αi2
∂Ii

2
(x ∗
i
2

,y∗
i
2

)

∂xi
2

+ λx = 0, αi2
∂Ii

2
(x ∗
i
2

,y∗
i
2

)

∂yi
2

− λy = 0.

Since λx = λy = 0 implies that (x∗i1 ,y
∗
i1 ) = (дi1 ,hi1 ) and (x∗i2 ,y

∗
i2 ) = (дi2 ,hi2 ), which is infeasible,

then it must be the case that λx > 0 or λy > 0. Recall that both i1 and i2 are Pareto systems. First,
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suppose that λy > 0 so that y∗i1 = y
∗
i2 . Then continuing from line (15),

(15) = min

i1,i2∈P
inf

xi
2
≤xi

1
, yi

1
=yi

2

αi1 Ii1 (xi1 ,yi1 ) + αi2 Ii2 (xi2 ,yi2 )

≥ min

i1,i2∈P
inf

xi
2
≤xi

1
, yi

2
≤yi

1

αi1 Ii1 (xi1 ,yi1 ) + αi2 Ii2 (xi2 ,yi2 ) ≥ − lim

n→∞

1

n log IP{MCEP},

and the result follows. A similar proof holds for the case in which λx > 0.

C PROOF OF THEOREM 3.4
Starting from Lemma 3.3, we now show that

− lim

n→∞

1

n log IP{MCI
∗
ph

∩ ˆO = O}

≥ min

(
− lim

n→∞

1

n log IP{MCEP},min

j ∈Pc
min

ℓ∈Pph, ℓ=i
R j (α j ,αi ,αi+1)

)
,

which, together with Lemma 3.2, implies the result. Recall that, without loss of generality, we

reserve the indices 1, . . . ,p for the Pareto systems, and the indices p + 1, . . . , r for the non-Pareto
systems.

First, notice that we may write the rate function for IP{MCI
∗
ph

∩ ˆO = O} as

− lim

n→∞

1

n log IP{MCI
∗
ph

∩ ˆO = O} = min

j ∈Pc
min

ℓ∈Pph, ℓ=i

(
− lim

n→∞

1

n log IP{(Ĝ j ≤ Ĝi+1) ∩ (Ĥj ≤ Ĥi )︸                          ︷︷                          ︸
j ∈ Pc

dom. a phantom

∩ [∩
p−1

i′=1
(Ĝi′ ≤ Ĝi′+1) ∩ (Ĥi′+1 ≤ Ĥi′)︸                                      ︷︷                                      ︸

all Paretos estimated “in order”

]}
)
. (16)

Let j ∈ Pc
, ℓ ∈ Pph, ℓ = i , and consider the inner rate function from line (16),

− lim

n→∞

1

n log IP{(Ĝ j ≤ Ĝi+1) ∩ (Ĥj ≤ Ĥi ) ∩ [∩
p−1

i′=1
(Ĝi′ ≤ Ĝi′+1) ∩ (Ĥi′+1 ≤ Ĥi′)]}. (17)

Then it can be shown that

(17) =



inf

x j ≤x1

x1≤...≤xp, yp ≤...≤y1

α j Ij (x j ,yj ) +
∑p

i′=1
αi′Ii′(xi′,yi′) if ℓ = 0

inf

x j ≤xi+1, yj ≤yi
x1≤...≤xp, yp ≤...≤y1

α j Ij (x j ,yj ) +
∑p

i′=1
αi′Ii′(xi′,yi′) if ℓ ∈ {1, . . . ,p − 1}

inf

yj ≤yp
x1≤...≤xp, yp ≤...≤y1

α j Ij (x j ,yj ) +
∑p

i′=1
αi′Ii′(xi′,yi′) if ℓ = p.

(18)

Since all problems in (18) are convex minimization problems where Slater’s condition holds [Boyd

and Vandenberghe 2004], the KKT conditions are necessary and sufficient for global optimality.

Then from (18), for λx j ≥ 0; λyj ≥ 0; λxi′ ≥ 0 for all i ′ = 1, . . . ,p−1; and λyi′ ≥ 0 for all i ′ = 2, . . . ,p,
the KKT conditions for complementary slackness are

λx j (x
∗
j − x∗i+1

) = 0 if ℓ , p; λyj (y
∗
j − y∗i ) = 0 if ℓ , 0;

λxi′ (x
∗
i′ − x∗i′+1

) = 0 ∀i ′ = 1, . . . ,p − 1; λyi′+1
(y∗i′+1

− y∗i′) = 0 ∀i ′ = 1, . . . ,p − 1.
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Let λx0
:= 0, λxp := 0, λy1

:= 0, λyp+1
:= 0. For all i ′ ∈ {2, . . . ,p − 1}, the stationarity conditions are

α j
∂Ij (x ∗

j ,y
∗
j )

∂x j
+ λx j I[ℓ,p] = 0, α j

∂Ij (x ∗
j ,y

∗
j )

∂yj
+ λyj I[ℓ,0] = 0,

if ℓ , p, αi+1

∂Ii+1(x ∗
i+1

,y∗
i+1

)

∂xi+1

− λx j − λxi + λxi+1
= 0, if ℓ , 0, αi

∂Ii (x ∗
i ,y

∗
i )

∂yi
− λyj − λyi+1

+ λyi = 0,

if ℓ , 0, α1

∂I1(x ∗
1
,y∗

1
)

∂x1

+ λx1
= 0, if ℓ , 1, α1

∂I1(x ∗
1
,y∗

1
)

∂y1

− λy2
= 0,

if i ′ , i + 1, αi′
∂Ii′ (x ∗

i′,y
∗
i′ )

∂xi′
− λxi′−1

+ λxi′ = 0, if i ′ , i, αi′
∂Ii′ (x ∗

i′,y
∗
i′ )

∂yi′
− λyi′+1

+ λyi′ = 0,

if ℓ , p − 1, αp
∂Ip (x ∗

p,y
∗
p )

∂xp
− λxp−1

= 0, if ℓ , p, αp
∂Ip (x ∗

p,y
∗
p )

∂yp
+ λyp = 0.

Now suppose that at optimality in (18), there exists i ′ ∈ {1, . . . ,p − 1} such that x∗i′ = x∗i′+1
. Then

removing constraints in (18),

(18) ≥ inf

x ∗
i′=x

∗
i′+1

, yi′+1
≤yi′

αi′Ii′(x
∗
i′,yi′) + αi′+1Ii′+1(x

∗
i′+1
,yi′+1)

≥ inf

xi′ ≥xi′+1
, yi′+1

≤yi′
αi′Ii′(xi′,yi′) + αi′+1Ii′+1(xi′+1,yi′+1) ≥ − lim

n→∞

1

n log IP{MCEP}.

By a similar argument, it also can be shown that if there exists i ′ ∈ {2, . . . ,p} such that y∗i′ = y
∗
i′−1

,

then the rate in (18) is bounded below by the rate of decay of IP{MCEP}. Therefore it is sufficient

to consider only λxi′ = 0 for all i ′ = 1, . . . ,p − 1 and λyi′ = 0 for all i ′ = 2, . . . ,p; otherwise, the
rate would never be the unique minimum in the overall rate of decay of IP{MC}.

Using this information in the KKT conditions, we consider only the case (x∗i′,y
∗
i′) = (hi′,дi′) for

all i ′ = 1, . . . ,p, i ′ , i, i ′ , i + 1. Then it is sufficient to simplify (18) and consider only

inf

x j ≤x1

x1<д2, h2<y1

α j Ij (x j ,yj ) + α1I1(x1,y1) if ℓ = 0

inf

x j ≤xi+1, yj ≤yi
дi−1<xi<xi+1<дi+2,
hi+2<yi+1<yi<hi−1

α j Ij (x j ,yj ) +
∑i+1

i′=i αi′Ii′(xi′,yi′) if ℓ ∈ {1, . . . ,p − 1}

inf

yj ≤yp
дp−1<xp, yp<hp−1

α j Ij (x j ,yj ) + αp Ip (xp ,yp ) if ℓ = p.

(19)

As before, if any of the constraints that ensure the Pareto systems are estimated in order are violated,

then rate is bounded below by the rate of decay of IP{MCEP}. Then we further simplify the rate in

(19) to consider only
inf

x j ≤x1

α j Ij (x j ,yj ) + α1I1(x1,y1) if ℓ = 0

inf

x j ≤xi+1, yj ≤yi
α j Ij (x j ,yj ) +

∑i+1

i′=i αi′Ii′(xi′,yi′) if ℓ ∈ {1, . . . ,p − 1}

inf

yj ≤yp
α j Ij (x j ,yj ) + αp Ip (xp ,yp ) if ℓ = p

=


inf

x j ≤x1

α j inf

yj
Ij (x j ,yj ) + α1 inf

y1

I1(x1,y1) if ℓ = 0

inf

x j ≤xi+1,
yj ≤yi

α j Ij (x j ,yj ) + αi inf

xi
Ii (xi ,yi ) + αi+1 inf

yi+1

Ii+1(xi+1,yi+1) if ℓ ∈ {1, . . . ,p − 1}

inf

yj ≤yp
α j inf

x j
Ij (x j ,yj ) + αp inf

xp
Ip (xp ,yp ) if ℓ = p

(20)

=


inf

x j ≤x1

α j Jj (x j ) + α1 J1(x1) if ℓ = 0

inf

x j ≤xi+1, yj ≤yi
α j Ij (x j ,yj ) + αiKi (yi ) + αi+1 Ji+1(xi+1) if ℓ ∈ {1, . . . ,p − 1}

inf

yj ≤yp
α jKj (yj ) + αpKp (yp ) if ℓ = p

(21)
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=


inf

x
α j Jj (x) + α1 J1(x) if ℓ = 0

inf

x j ≤xi+1, yj ≤yi
α j Ij (x j ,yj ) + αiKi (yi ) + αi+1 Ji+1(xi+1) if ℓ ∈ {1, . . . ,p − 1}

inf

y
α jKj (y) + αpKp (y) if ℓ = p

(22)

= R jℓ(α j ,αi ,αi+1),

where equality in (20) holds by Boyd and Vandenberghe [2004, p. 133]. Since Ik (x ,y) is a good,
strictly convex rate function for all systems k ∈ S, equality in (21) holds by letting x = f (x ,y) in
the contraction principle [Dembo and Zeitouni 1998, p. 126]. Equality in (22) follows from Glynn

and Juneja [2004].

D STATEMENT OF LEMMA D.1 WITH PROOF
Lemma D.1. Suppose α j > 0,αi > 0,αi+1 > 0. At optimality in Problem RMCI

jℓ , if ℓ ∈ {1, . . . ,p − 1},

then дi+1 ≤ x∗i+1
, hi ≤ y∗i , and x

∗
j ≤ дj or y∗j ≤ hj . Further, if λx = 0, then y∗j ≤ hj , and if λy = 0, then

x∗j ≤ дj .

Proof. Since Ji+1(·) is convex, (
∂ Ji+1(дi+1)

∂xi+1

−
∂ Ji+1(x ∗

i+1
)

∂xi+1

)(дi+1 − x∗i+1
) ≥ 0, which, together with

the KKT conditions, implies −
∂ Ji+1(x ∗

i+1
)

∂xi+1

(дi+1 − x∗i+1
) ≥ 0. Thus дi+1 ≤ x∗i+1

. A similar proof shows

that −
∂Ki (y∗

i )

∂yi
(hi − y∗i ) ≥ 0. Thus hi ≤ y∗i . Using similar logic, by the convexity of Ij (·), we have

−
∂Ij (x ∗

j ,y
∗
j )

∂x j
(дj −x∗j ) −

∂Ij (x ∗
j ,y

∗
j )

∂yj
(hj −y

∗
j ) ≥ 0. Since the KKT conditions imply both partial derivatives

are non-positive, then x∗j ≤ дj or y
∗
j ≤ hj , and the implications when λx = 0 or λy = 0 follow. □

E PROOF OF PROPOSITION 4.1
First, recall that

Problem RMCI

jℓ : minimize α j Ij (x j ,yj ) + αiKi (yi )I[ℓ,0] + αi+1 Ji+1(xi+1)I[ℓ,p]

s.t. (x j − xi+1)I[ℓ,p] ≤ 0, (yj − yi )I[ℓ,0] ≤ 0.

Under Assumption 6, the stationarity conditions from lines (2)–(3) are

α j
(1−ρ2

j )

[
(x ∗
j −дj )

σ 2

дj
− ρ j

(y∗
j −hj )

σдj σhj

]
+ λx I[ℓ,p] = 0,

α j
(1−ρ2

j )

[
(y∗
j −hj )

σ 2

hj

− ρ j
(x ∗
j −дj )

σдj σhj

]
+ λy I[ℓ,0] = 0,

if ℓ , p, αi+1

[
(x ∗
i+1

−дi+1)

σ 2

дi+1

]
− λx = 0, if ℓ , 0, αi

[
(y∗
i −hi )
σ 2

hi

]
− λy = 0,

and complementary slackness implies λx (x
∗
j − x∗i+1

) = 0 if ℓ , p, λy (y
∗
j − y∗i ) = 0 if ℓ , 0. Notice

that if λx I[ℓ,p] = λy I[ℓ,0] = 0, then we have primal infeasibility.

In the sections that follow, we provide forward and backward proofs by considering each case.

E.1 Proof of Proposition 4.1: Forward
We consider the each possible value of λx and λy as follows.

E.1.1 Problem RMCI

jℓ : λx I[ℓ,p] > 0 and λy I[ℓ,0] = 0. Suppose λx I[ℓ,p] > 0 and λy I[ℓ,0] = 0.

x∗j = x∗i+1
= (1 −wд)дj +wддi+1, y∗j = hj + ρ j

σhj
σдj

(дi+1 − дj )wд , y∗i = hi ,

which implies the results in Parts (1) and (2) in this case. Primal feasibility of y∗j implies hj ≤

hi + ρ j
σhj
σдj

(дj − дi+1)wд , and x
∗
i+1
> дi+1 implies дj > дi+1.
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E.1.2 Problem RMCI

jℓ : λx I[ℓ,p] = 0 and λy I[ℓ,0] > 0. Suppose λx I[ℓ,p] = 0 and λy I[ℓ,0] > 0.

x∗i+1
= дi+1, x∗j = дj + ρ j

σдj
σhj

(hi − hj )wh , y∗j = y
∗
i = (1 −wh)hj +whhi ,

which implies the results in Parts (1) and (2) in this case. Primal feasibility of x∗j implies дj ≤

дi+1 + ρ j
σдj
σhj

(hj − hi )wh , and y
∗
i > hi implies hj > hi .

E.1.3 Problem RMCI

jℓ : λx I[ℓ,p] > 0 and λy I[ℓ,0] > 0. Suppose λx I[ℓ,p] > 0 and λy I[ℓ,0] > 0.

x∗j = x∗i+1
= 1

1−ρ2

jwдwh

[
(1 −wд)(дj + ρ j

σдj
σhj

(hi − hj )wh) +wд(1 − ρ2

jwh)дi+1

]
,

y∗j = y
∗
i =

1

1−ρ2

jwдwh

[
(1 −wh)(hj + ρ j

σhj
σдj

(дi+1 − дj )wд) +wh(1 − ρ2

jwд)hi
]
,

which implies the results in Parts (1) and (2) in this case. Algebra reveals that x∗i+1
> дi+1 and

y∗i > hi imply дj > дi+1 + ρ j
σдj
σhj

(hj − hi )wh and hj > hi + ρ j
σhj
σдj

(дj − дi+1)wд .

E.2 Proof of Proposition 4.1: Backward
We consider each possible system location, as follows.

E.2.1 Problem RMCI

jℓ : ℓ , p,дj > дi+1,hj ≤ hi +ρ j
σhj
σдj

(дj −дi+1)wд . Suppose ℓ , p,дj > дi+1,hj ≤

hi + ρ j
σhj
σдj

(дj − дi+1)wд . First, since ℓ , p,дj > дi+1, it follows that x
∗
j = дj , x

∗
i+1
= дi+1 is infeasible.

If we nonetheless have x∗i+1
= дi+1, then λx I[ℓ,p] = 0, λy I[ℓ,0] > 0. However, from §E.1.2, this

implies дj ≤ дi+1 + ρ j
σдj
σhj

(hj − hi )wh and hj > hi , which provides a contradiction. Therefore it must

hold that x∗i+1
> дi+1, and λx I[ℓ,p] > 0. From §E.1.3, if λy I[ℓ,0] > 0, we also have a contradiction.

Therefore λx I[ℓ,p] > 0 and λy I[ℓ,0] = 0.

E.2.2 Problem RMCI

jℓ : ℓ , 0,hj > hi ,дj ≤ дi+1 + ρ j
σдj
σhj

(hj − hi )wh . Suppose ℓ , 0,hj > hi ,дj ≤

дi+1 + ρ j
σдj
σhj

(hj − hi )wh . First, since ℓ , 0,hj > hi , then y∗j = hj ,y
∗
i = hi is infeasible. If we

nonetheless have y∗i = hi , then λx I[ℓ,p] > 0 and λy I[ℓ,0] = 0. However, the results of §E.1.1 provide
a contradiction. Therefore it must be the case that y∗i > hi , and hence λy I[ℓ,0] > 0. Since the results
of §E.1.3 also provide a contradiction, we have λx I[ℓ,p] = 0 and λy I[ℓ,0] > 0.

E.2.3 Problem RMCI

jℓ : ℓ < {0,p},дj > дi+1 + ρ j
σдj
σhj

(hj − hi )wh , hj > hi + ρ j
σhj
σдj

(дj − дi+1)wд .

Suppose ℓ < {0,p},дj > дi+1+ρ j
σдj
σhj

(hj −hi )wh , andhj > hi +ρ j
σhj
σдj

(дj − дi+1)wд . After considering

the combined results above, the only remaining possibility is that λx I[ℓ,p] > 0 and λy I[ℓ,0] > 0.

E.3 Problem RMCI

jℓ : Values of the Dual Variables λx , λy

Finally, the values of the dual variables in Problem RMCI

jℓ are λx = −α j
∂Ij (x ∗

j ,y
∗
j )

∂x j
= αi+1

∂ Ji+1(x ∗
i+1

)

∂xi+1

and

λy = −α j
∂Ij (x ∗

j ,y
∗
j )

∂yj
= αi

∂Ki (y∗
i )

∂yi
, where

ϵ
σ 2

b
wдI

д
jℓ ≤

−∂Ij (x ∗
j ,y

∗
j )

∂x j
=

(1/σдj )wд I
д
jℓ

(1−ρ2

jwдwh I
д
jℓ I

h
jℓ )

[
(дj−дi+1)

σдj
− ρ j

(hj−hi )
σhj

whI
h
jℓ

]
≤

β (1+ρb )
σ 2

a (1−ρb )
wдI

д
jℓ,

ϵ
σ 2

b
whI

h
jℓ ≤

−∂Ij (x ∗
j ,y

∗
j )

∂yj
=

(1/σhj )wh I
h
jℓ

(1−ρ2

jwдwh I
д
jℓ I

h
jℓ )

[
(hj−hi )
σhj

− ρ j
(дi−дi+1)

σдj
wдI

д
jℓ

]
≤

β (1+ρb )
σ 2

a (1−ρb )
whI

h
jℓ .
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F PROOF OF LEMMA 4.2
We do not provide a proof when i ∈ {1,p}. To prove the result when i ∈ {2, . . . ,p − 1}, for a

contradiction, suppose that Ji (x
∗
i (α j ,αi−1,αi )) = 0 andKi (y

∗
i (α j ,αi ,αi+1)) = 0. Let λx (ℓ−1), λy (ℓ−1)

be the dual variables for Problem RMCI

jℓ−1
and let λx (ℓ), λy (ℓ) be the dual variables for Problem RMCI

jℓ ;

recall that ℓ = i .
In Problem RMCI

jℓ−1
, x∗i (α j ,αi−1,αi ) = дi and λx (ℓ − 1) = 0, λy (ℓ − 1) > 0. Thus

x∗j (α j ,αi−1,αi ) ≤ дi , hi < hi−1 ≤ y∗j (α j ,αi−1,αi ) = y
∗
i−1

(α j ,αi−1,αi ) ≤ hj . (23)

In Problem RMCI

jℓ , y
∗
i (α j ,αi ,αi+1) = hi , and λx (ℓ) > 0, λy (ℓ) = 0. Thus

дi < дi+1 ≤ x∗j (α j ,αi ,αi+1) = x∗i+1
(α j ,αi ,αi+1) ≤ дj , y∗j (α j ,αi ,αi+1) ≤ hi . (24)

Putting (23) and (24) together, along with Assumption 2, we have that дi−1 < дi < дi+1 < дj and
hi+1 < hi < hi−1 < hj , which implies Pareto systems i − 1, i , and i + 1 dominate non-Pareto system j
(see Figure 2).

From Proposition 4.1, I
д
jℓ−1
= 0 in ProblemRMCI

jℓ−1
, Ihjℓ = 0 in ProblemRMCI

jℓ , and under Assumption 6,

we have

(дj−дi )
σдj

≤ ρ j
(hj−hi−1)wh (α j ,αi−1)

σhj
≤ ρ j

(hj−hi−1)

σhj
,

(hj−hi )
σhj

≤ ρ j
(дj−дi+1)wд (αi ,αi+1)

σдj
≤ ρ j

(дj−дi+1)

σдj
;

simplifying these inequalities with the fact that дi−1 < дi < дi+1 < дj and hi+1 < hi < hi−1 < hj
yields

(дj−дi+1)

(hj−hi−1)

σhj
σдj
<

(дj−дi )
(hj−hi )

σhj
σдj

≤ ρ j and
(hj−hi−1)

(дj−дi+1)

σдj
σhj
<

(hj−hi )
(дj−дi+1)

σдj
σhj

≤ ρ j . (25)

Combining the two inequalities in (25) implies

1 ≤ max

(
(дj−дi+1)

(hj−hi−1)

σhj
σдj
,
(hj−hi−1)

(дj−дi+1)

σдj
σhj

)
≤ ρ j ,

which cannot hold. Thus we have a contradiction.

G PROOF OF THEOREM 4.3
We prove the theorem in parts.

G.1 Proof that All Allocations are Strictly Positive at Optimality
Proof that z̃∗ > 0 and α̃∗

j > 0 for all j ∈ Pc . First, notice that α̃k = 1/r for all k ∈ S is a feasible

solution for Problem Q̃ that results in

rz̃ = min

j ∈Pc , ℓ∈Pph, ℓ=i
( inf

(x j−xi+1)I[ℓ,p]≤0

(yj−yi )I[ℓ,0]≤0

Ij (x j ,yj ) + Ki (yi )I[ℓ,0] + Ji+1(xi+1)I[ℓ,p]) > 0

under Lemma 3.5; therefore z̃∗ > 0. Further, notice that if α̃∗
j = 0 for some j ∈ Pc

in Problem Q̃ ,
then z̃ = 0. Thus it must be the case that α̃∗

j > 0 for all j ∈ Pc
.

Proof that α̃∗
1
> 0, α̃∗

p > 0, and max{α̃∗
i , α̃

∗
i+1

} > 0 for all i ∈ {1, . . . ,p − 1}. Now let j ∈ Pc
, and

consider R j (α̃
∗
j , α̃i , α̃i+1). If ℓ = 0 and α̃1 = 0, then z̃ = 0. If ℓ = p and α̃p = 0, then z̃ = 0. Further,

if there exists i ∈ {1, . . . ,p − 1} such that max{α̃i , α̃i+1} = 0, then z̃ = 0. Since z̃∗ > 0, the result

holds.
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Proof that for all i ∈ {2, . . . ,p − 1}, if there exists j ∈ Pc such that hj ≤ hi−1 or дj ≤ дi+1, then
α̃∗
i > 0. Suppose p ≥ 3 and there exists i ∈ {2, . . . ,p − 1} such that α̃∗

i = 0. Then α̃∗
i−1
> 0, α̃∗

i+1
> 0,

and α̃∗
j > 0 for all j ∈ Pc

. Thus

z̃∗ ≤ min

j ∈Pc
min(R j (α̃

∗
j , α̃

∗
i−1
, α̃∗

i ),R j (α̃
∗
j , α̃

∗
i , α̃

∗
i+1

))

= min

j ∈Pc
min( inf

x j ≤xi
yj ≤yi−1

α̃∗
j Ij (x j ,yj ) + α̃

∗
i−1

Ki−1(yi−1), inf

x j ≤xi+1

yj ≤yi

α̃∗
j Ij (x j ,yj ) + α̃

∗
i+1

Ji+1(xi+1))

= min

j ∈Pc
min( inf

yj ≤yi−1

α̃∗
j Kj (yj ) + α̃

∗
i−1

Ki−1(yi−1), inf

x j ≤xi+1

α̃∗
j Jj (x j ) + α̃

∗
i+1

Ji+1(xi+1)).

≤ min

j ∈Pc
min( inf

yj ≤hi−1

α̃∗
j Kj (yj ), inf

x j ≤дi+1

α̃∗
j Jj (x j )). (26)

The expression in line (26) equals zero if there exists j ∈ Pc
such that hj ≤ hi−1 or дj ≤ дi+1. Since

z̃∗ > 0, we have a contradiction, and the result follows.

Proof that α̃∗
i > 0 for all i ∈ {2, . . . ,p − 1}. This result holds under Assumption 8.

G.2 KKT Conditions for Problem Q̃

Let ν , λjℓ ≥ 0 for all j ∈ Pc , ℓ ∈ Pph
be dual variables. Then the complementary slackness conditions

are λjℓ(R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) − z̃∗) = 0 for all j ∈ Pc , ℓ ∈ Pph, ℓ = i; and the stationarity conditions are∑
j ∈Pc

(
λjℓ−1

∂Rjℓ (α̃ ∗
j , α̃

∗
i−1

, α̃ ∗
i )

∂α̃i
+ λjℓ

∂Rjℓ (α̃ ∗
j , α̃

∗
i , α̃

∗
i+1

)

∂α̃i

)
= ν ∀i ∈ P; (27)∑

ℓ∈Pph, ℓ=i λjℓ
∂Rjℓ (α̃ ∗

j , α̃
∗
i , α̃

∗
i+1

)

∂α̃ j
= ν ∀j ∈ Pc

; (28)∑
j ∈Pc

∑
ℓ∈Pph λjℓ = 1. (29)

G.3 Proof that the dual variable ν > 0

Proof that
∂Rjℓ (α̃ ∗

j , α̃
∗
i , α̃

∗
i+1

)

∂α̃ j
> 0 for all j ∈ Pc and all ℓ ∈ Pph, ℓ = i in (28). First, let j ∈ Pc

and ℓ ∈ Pph, ℓ = i , and recall α̃∗
j > 0, α̃∗

i > 0, and α̃∗
i+1
> 0. Then using the KKT conditions for

Problem RMCI

jℓ ,

∂Rjℓ (α̃ ∗
j , α̃

∗
i , α̃

∗
i+1

)

∂α̃ j
= Ij (x

∗
j ,y

∗
j ) + α̃

∗
j

(
∂Ij (x ∗

j ,y
∗
j )

∂x ∗
j

∂x ∗
j

∂α̃ j
+

∂Ij (x ∗
j ,y

∗
j )

∂y∗
j

∂y∗
j

∂α̃ j

)
+ α̃∗

i

(
∂Ki (y∗

i )

∂y∗
i

∂y∗
i

∂α̃ j

)
I[ℓ,0] + α̃

∗
i+1

(
∂ Ji+1(x ∗

i+1
)

∂x ∗
i+1

∂x ∗
i+1

∂α̃ j

)
I[ℓ,p]

= Ij (x
∗
j ,y

∗
j ) + λy I[ℓ,0]

(
∂y∗

i
∂α̃ j

−
∂y∗

j
∂α̃ j

)
+ λx I[ℓ,p]

(
∂x ∗

i+1

∂α̃ j
−

∂x ∗
j

∂α̃ j

)
(30)

= Ij (x
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

),y∗j (α̃
∗
j , α̃

∗
i , α̃

∗
i+1

)) = Ij (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)), (31)

where the equality from (30) to (31) holds because if λx I[ℓ,p] > 0, then x∗i+1
= x∗j , implying

∂x ∗
i+1

∂α̃ j
=

∂x ∗
j

∂α̃ j
. Likewise, if λy I[ℓ,0] > 0, then y∗i = y∗j , implying

∂y∗
i

∂α̃ j
=

∂y∗
j

∂α̃ j
. By Lemma 3.5, ∀j ∈

Pc , ℓ ∈ Pph, ℓ = i , we have Ij (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) > 0, implying the result.

Proof that ν > 0. From (29), at least one of the dual variables λjℓ in the sum must be strictly

positive. Combining this fact and the previous result, we have ν > 0.

G.4 Proof of Theorem 4.3 Parts (1)–(5)

Note that previously, we showed

∂Rjℓ (α̃ ∗
j , α̃

∗
i , α̃

∗
i+1

)

∂α̃ j
= Ij (z

∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) > 0 for all j ∈ Pc
, ℓ ∈ Pph, ℓ = i ,

which we use in the sequel.
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Proof of Part (1). Since ν > 0, in (28) we have

∑
ℓ∈Pph, ℓ=i λjℓIj (z

∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) > 0 for all j ∈ Pc
.

Thus for every j ∈ Pc
, there exists a phantom Pareto system ℓ∗ ∈ Pph

, ℓ∗ dependent on j , such that

λjℓ∗ > 0, and Part (1) of the Theorem holds.

Proof of Part (2). In line (27), using the KKT conditions for Problem RMCI

jℓ−1
, we have

∂Rjℓ (α̃ j , α̃i−1, α̃i )
∂α̃i

= Ji (x
∗
i ) + α̃i

(
∂ Ji (x ∗

i )

∂x ∗
i

∂x ∗
i

∂α̃i

)
+ α̃i−1

(
∂Ki−1(y∗

i−1
)

∂y∗
i−1

∂y∗
i−1

∂α̃i

)
I[ℓ,1]

+ α̃ j
(
∂Ij (x ∗

j ,y
∗
j )

∂x ∗
j

∂x ∗
j

∂α̃i
+

∂Ij (x ∗
j ,y

∗
j )

∂y∗
j

∂y∗
j

∂α̃i

)
= Ji (x

∗
i ) + λx

(
∂x ∗

i
∂α̃i

−
∂x ∗

j
∂α̃i

)
+ λy I[ℓ,1]

(
∂y∗

i−1

∂α̃i
−

∂y∗
j

∂α̃i

)
= Ji (x

∗
i (α̃ j , α̃i−1, α̃i )),

where the penultimate equality holds by noticing that if λx > 0, then x∗j = x∗i , implying

∂x ∗
i

∂α̃i
=

∂x ∗
j

∂α̃i
.

Likewise, if λy > 0, then y∗j = y
∗
i−1

, implying

∂y∗
i−1

∂α̃i
=

∂y∗
j

∂α̃i
.

Using similar logic, from the KKT conditions for Problem RMCI

jℓ , we have

∂Rjℓ (α̃ j , α̃i , α̃i+1)

∂α̃i
= Ki (y

∗
i ) + α̃i

(
∂Ki (y∗

i )

∂y∗
i

∂y∗
i

∂α̃i

)
+ α̃i+1

(
∂ Ji+1(x ∗

i+1
)

∂x ∗
i+1

∂x ∗
i+1

∂α̃i

)
I[ℓ,p]

+ α̃ j
(
∂Ij (x ∗

j ,y
∗
j )

∂x ∗
j

∂x ∗
j

∂α̃i
+

∂Ij (x ∗
j ,y

∗
j )

∂y∗
j

∂y∗
j

∂α̃i

)
= Ki (y

∗
i ) + λy

(
∂y∗

i
∂α̃i

−
∂y∗

j
∂α̃i

)
+ λx I[ℓ,p]

(
∂x ∗

i+1

∂α̃i
−

∂x ∗
j

∂α̃i

)
= Ki (y

∗
i (α̃ j , α̃i , α̃i+1)).

Then since ν > 0, from (27), for each Pareto system i ∈ P,∑
j ∈Pc [λjℓ−1 Ji (x

∗
i (α̃

∗
j , α̃

∗
i−1
, α̃∗

i )) + λjℓKi (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

))] > 0.

Thus at least one constraint is binding for each Pareto system at optimality, and the result in Part (2)

follows.

Proof of Parts (3)–(5). Updating the stationarity conditions in (27)–(29) yields the KKT conditions

in equations (7)–(9). Substituting equation (8) into equation (7) yields equation (6); dividing yields

equations (4) and (5).

H PROOF OF LEMMA 4.4
We prove the lemma in parts, using the following notation. Under Assumptions 7–8,

if ℓ , p, w̃L

д :=
σ 2

a
σ 2

b

1

1+α̃ ∗
j /α̃

∗
i+1

≤ wд(α̃
∗
j , α̃

∗
i+1

) =
σ 2

дj /α̃
∗
j

σ 2

дj /α̃
∗
j +σ

2

дi+1
/α̃ ∗

i+1

≤ w̃U

д :=
σ 2

b
σ 2

a

1

1+α̃ ∗
j /α̃

∗
i+1

,

if ℓ , 0, w̃L

h :=
σ 2

a
σ 2

b

1

1+α̃ ∗
j /α̃

∗
i

≤ wh(α̃
∗
j , α̃

∗
i ) =

σ 2

hj
/α̃ ∗

j

σ 2

hj
/α̃ ∗

j +σ
2

hi
/α̃ ∗

i
≤ w̃U

h :=
σ 2

b
σ 2

a

1

1+α̃ ∗
j /α̃

∗
i
.

For compactness, we denotewд(α̃
∗
j , α̃

∗
i+1

) andwh(α̃
∗
j , α̃

∗
i ) as w̃

∗
д and w̃∗

h , respectively. The values of

κL

R and κU

R are

κL

R = min{κL

R1,κ
L

R2,κ
L

R3,κ
L

R4} and κU

R = max{κU

R1,κ
U

R2,κ
U

R3,κ
U

R4},

where the values of κL

R1,κ
L

R2,κ
L

R3,κ
L

R4 and κ
U

R1,κ
U

R2,κ
U

R3,κ
U

R4 are defined in each subsection.

H.1 Proof of the Bounds in Equation (10)

We prove the result in cases, where κL

R1 =
ϵ 2σ 2

a
2cbσ 4

b
and κU

R1 =
β 2σ 2

b
caσ 4

a
.
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H.1.1 I
д
jℓ > 0, Ihjℓ = 0 in R jℓ(α̃∗

j , α̃
∗
i , α̃

∗
i+1

). In this case,

lower: R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) =
α̃ ∗
j

2

( (дj−дi+1)
2

σ 2

дj
w̃∗
д
)
≥

α̃ ∗
j

2

ϵ 2

σ 2

b
w̃L

д = α̃∗
j
ϵ 2σ 2

a
2σ 4

b

1

1+α̃ ∗
j /α̃

∗
i+1

;

upper: R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) =
α̃ ∗
j

2

( (дj−дi+1)
2

σ 2

дj
w̃∗
д
)
≤

α̃ ∗
j

2

β 2

σ 2

a
w̃U

д = α̃∗
j
β 2σ 2

b
2σ 4

a

1

1+α̃ ∗
j /α̃

∗
i+1

.

H.1.2 I
д
jℓ = 0, Ihjℓ > 0 in R jℓ(α̃∗

j , α̃
∗
i , α̃

∗
i+1

). In this case,

lower: R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) =
α̃ ∗
j

2

( (hj−hi )2
σ 2

hj

w̃∗
h

)
≥

α̃ ∗
j

2

ϵ 2

σ 2

b
w̃L

h = α̃∗
j
ϵ 2σ 2

a
2σ 4

b

1

1+α̃ ∗
j /α̃

∗
i
;

upper: R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) =
α̃ ∗
j

2

( (hj−hi )2
σ 2

hj

w̃∗
h

)
≤

α̃ ∗
j

2

β 2

σ 2

a
w̃U

h = α̃∗
j
β 2σ 2

b
2σ 4

a

1

1+α̃ ∗
j /α̃

∗
i
.

H.1.3 I
д
jℓ > 0, Ihjℓ > 0 in R jℓ(α̃∗

j , α̃
∗
i , α̃

∗
i+1

). In this case, recall that

R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) =
α̃∗
j

2

[
дj − дi+1

hj − hi

]⊺ [
σ 2

дj /w̃
∗
д ρ jσдjσhj

ρ jσдjσhj σ 2

hj
/w̃∗

h

]−1 [
дj − дi+1

hj − hi

]
.

We bound this rate using standard bounds for quadratics. First, define the matrices

Σjℓ :=

[
σ 2

дj /w̃
∗
д ρ jσдjσhj

ρ jσдjσhj σ 2

hj
/w̃∗

h

]
and Wjℓ :=

[
1/w̃∗

д 1

1 1/w̃∗
h

]
,

so that Σjℓ is the element-wise (Hadamard) product of thematrices Σj andWjℓ , that is, Σjℓ =Wjℓ◦Σj .
Since σ 2

дj /w̃
∗
д > 0 and σ 2

дjσ
2

hj
[(1/w̃∗

д)(1/w̃
∗
h) − ρ2

j ] > 0, then Σjℓ is positive definite [Strang 1988, p.

330]; likewise,Wjℓ is also positive definite. By Assumption 6, Σj is positive definite.
Then using Schur’s theorems [Horn 1990, p. 95], it follows that

min{ 1

w̃∗
д
, 1

w̃∗
h
}λmin(Σj ) ≤ λmin(Σjℓ) ≤ λmax(Σjℓ) ≤ max{ 1

w̃∗
д
, 1

w̃∗
h
}λmax(Σj ). (32)

We find the eigenvalues of Σ−1

jℓ as λmax(Σ
−1

jℓ ) = 1/λmin(Σjℓ) and λmin(Σ
−1

jℓ ) = 1/λmax(Σjℓ) [Strang

1988, p. 258]. From line (32) and using Assumption 6, we have

min{w̃L

д,w̃
L

h }

cb
≤

min{w̃∗
д,w̃

∗
h }

λmax(Σj )
≤ λmin(Σ

−1

jℓ ) ≤ λmax(Σ
−1

jℓ ) ≤
max{w̃∗

д,w̃
∗
h }

λmin(Σj )
≤

max{w̃U

д ,w̃
U

h }

ca
.

Then using bounds on quadratic forms [Boyd and Vandenberghe 2004, p. 647], we have

α̃ ∗
j

2

min{w̃L

д,w̃
L

h }

cb

[
дj−дi+1

hj−hi

]⊺ [
дj−дi+1

hj−hi

]
≤ R jℓ(α̃

∗
j , α̃

∗
i , α̃

∗
i+1

) ≤
α̃ ∗
j

2

max{w̃U

д ,w̃
U

h }

ca

[
дj−дi+1

hj−hi

]⊺ [
дj−дi+1

hj−hi

]
,

which implies

lower: R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) ≥
α̃ ∗
j

2

min{w̃L

д,w̃
L

h }

cb
ϵ2 ≥ α̃∗

j
ϵ 2σ 2

a
2cbσ 2

b
min{ 1

1+α̃ ∗
j /α̃

∗
i+1

, 1

1+α̃ ∗
j /α̃

∗
i
},

upper: R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) ≤
α̃ ∗
j

2

max{w̃U

д ,w̃
U

h }

ca
2β2 ≤ α̃∗

j
β 2σ 2

b
caσ 2

a
max{ 1

1+α̃ ∗
j /α̃

∗
i+1

, 1

1+α̃ ∗
j /α̃

∗
i
}.

H.2 Proof of the Bounds in Equation (11)

We prove the result in cases, where κL

R2 =
ϵ 2(1−ρ2

b )σ
4

a

2cbσ 6

b
and κU

R2 =
β 2σ 4

b
caσ 6

a
.
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H.2.1 I
д
jℓ > 0, Ihjℓ = 0 in Ij (z∗j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)). In this case,

lower: Ij (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) =
(дj−дi+1)

2

2σ 2

дj
(w̃∗

д)
2 ≥ ϵ 2

2σ 2

b
(w̃L

д)
2 =

ϵ 2σ 4

a
2σ 6

b

(
1

1+α̃ ∗
j /α̃

∗
i+1

)
2

;

upper: Ij (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) =
(дj−дi+1)

2

2σ 2

дj
(w̃∗

д)
2 ≤

β 2

2σ 2

a
(w̃U

д )
2 =

β 2σ 4

b
2σ 6

a

(
1

1+α̃ ∗
j /α̃

∗
i+1

)
2

.

H.2.2 I
д
jℓ = 0, Ihjℓ > 0 in Ij (z∗j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)). In this case,

lower: Ij (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) =
(hj−hi )2

2σ 2

hj

(w̃∗
h)

2 ≥ ϵ 2

2σ 2

b
(w̃L

h)
2 =

ϵ 2σ 4

a
2σ 6

b

(
1

1+α̃ ∗
j /α̃

∗
i

)
2

;

upper: Ij (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) =
(hj−hi )2

2σ 2

hj

(w̃∗
h)

2 ≤
β 2

2σ 2

a
(w̃U

h)
2 =

β 2σ 4

b
2σ 6

a

(
1

1+α̃ ∗
j /α̃

∗
i

)
2

.

H.2.3 I
д
jℓ > 0, Ihjℓ > 0 in Ij (z

∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)). In this case, we write Ij (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) as a qua-

dratic form using matrix notation,

Ij (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) =

1

2

[
дj−дi+1

hj−hi

]⊺ 
σ 2

дj

[
1

(w̃∗
д )

2
+
( ρ2

j

1−ρ2

j

) (
1 − 1

w̃∗
д

)
2
]

ρ jσдjσhj
[
1 −

(1− 1

w̃∗
д
)(1− 1

w̃∗
h
)

1−ρ2

j

]
ρ jσдjσhj

[
1 −

(1− 1

w̃∗
д
)(1− 1

w̃∗
h
)

1−ρ2

j

]
σ 2

hj

[
1

(w̃∗
h )

2
+
( ρ2

j

1−ρ2

j

) (
1 − 1

w̃∗
h

)
2
]

−1 [

дj−дi+1

hj−hi

]
.

Define the matrix

Mjℓ :=


1

(w̃∗
д )

2
+
( ρ2

j

1−ρ2

j

) (
1 − 1

w̃∗
д

)
2

1 −
(1− 1

w̃∗
д
)(1− 1

w̃∗
h
)

1−ρ2

j

1 −
(1− 1

w̃∗
д
)(1− 1

w̃∗
h
)

1−ρ2

j

1

(w̃∗
h )

2
+
( ρ2

j

1−ρ2

j

) (
1 − 1

w̃∗
h

)
2

 ,
which is positive definite. Then define the element-wise (Hadamard) product of the matricesMjℓ

and Σj as Σ̃jℓ, that is, Σ̃jℓ := Mjℓ ◦ Σj . By Schur’s theorems [Horn 1990, p. 95], we have

min{ 1

(w̃∗
д )

2
, 1

(w̃∗
h )

2
}λmin(Σj )

≤ min{ 1

(w̃∗
д )

2
+
( ρ2

j

1−ρ2

j

) (
1 − 1

w̃∗
д

)
2

, 1

(w̃∗
h )

2
+
( ρ2

j

1−ρ2

j

) (
1 − 1

w̃∗
h

)
2

}λmin(Σj ) ≤ λmin(Σ̃jℓ)

≤ λmax(Σ̃jℓ) ≤ max{ 1

(w̃∗
д )

2
+
( ρ2

j

1−ρ2

j

) (
1 − 1

w̃∗
д

)
2

, 1

(w̃∗
h )

2
+
( ρ2

j

1−ρ2

j

) (
1 − 1

w̃∗
h

)
2

}λmax(Σj )

≤ max{ 1

(w̃∗
д )

2

(
1

1−ρ2

j

)
, 1

(w̃∗
h )

2

(
1

1−ρ2

j

)
}λmax(Σj )

≤
(

1

1−ρ2

b

)
max{ 1

(w̃∗
д )

2
, 1

(w̃∗
h )

2
}λmax(Σj ). (33)

We find the eigenvalues of thematrix Σ̃−1

jℓ as λmax(Σ̃
−1

jℓ ) = 1/λmin(Σ̃jℓ) and λmin(Σ̃
−1

jℓ ) = 1/λmax(Σ̃jℓ)

[Strang 1988, p. 258]. From the inequalities that end in line (33) and using Assumption 6, we have

(1 − ρ2

b )
min{(w̃L

д )
2,(w̃L

h )
2 }

cb
≤ (1 − ρ2

b )
min{(w̃∗

д )
2,(w̃∗

h )
2 }

λmax(Σj )
≤ λmin(Σ̃

−1

jℓ )

≤ λmax(Σ̃
−1

jℓ ) ≤
max{(w̃∗

д )
2,(w̃∗

h )
2 }

λmin(Σj )
≤

max{(w̃U

д )
2,(w̃U

h )
2 }

ca
.

Then using bounds on quadratic forms [Boyd and Vandenberghe 2004, p. 647], we have

1

2
(1 − ρ2

b )
min{(w̃L

д )
2,(w̃L

h )
2 }

cb

[
дj−дi+1

hj−hi

]⊺ [
дj−дi+1

hj−hi

]
≤ Ij (z

∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

))
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≤ 1

2

max{(w̃U

д )
2,(w̃U

h )
2 }

ca

[
дj−дi+1

hj−hi

]⊺ [
дj−дi+1

hj−hi

]
,

which implies

lower: Ij (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) ≥
(1−ρ2

b )

2

min{(w̃L

д )
2,(w̃L

h )
2 }

cb
ϵ2

≥
ϵ 2(1−ρ2

b )σ
4

a

2cbσ 4

b
min{ 1

(1+α̃ ∗
j /α̃

∗
i+1

)2
, 1

(1+α̃ ∗
j /α̃

∗
i )

2
},

upper: Ij (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) ≤ 1

2

max{(w̃U

д )
2,(w̃U

h )
2 }

ca
2β2 ≤

β 2σ 4

b
caσ 4

a
max{ 1

(1+α̃ ∗
j /α̃

∗
i+1

)2
, 1

(1+α̃ ∗
j /α̃

∗
i )

2
}.

H.3 Proof of the Bounds in Equation (12)

We prove the result in cases, where κL

R3 =
ϵ 2σ 6

a
2σ 6

b
and κU

R3 =
β 2σ 6

b (1+ρb )
2

2σ 8

a (1−ρ2

b )
2
.

H.3.1 I
д
jℓ = 0, Ihjℓ > 0 in Ki (y

∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)). In this case,

lower: Ki (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) =
(hj−hi )2

2σ 2

hi

(1 − w̃∗
h)

2 ≥ ϵ 2

2σ 2

b
(1 − w̃∗

h)
2 ≥

ϵ 2σ 4

a
2σ 6

b

1

(1+α̃ ∗
i /α̃

∗
j )

2
;

upper: Ki (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) =
(hj−hi )2

2σ 2

hi

(1 − w̃∗
h)

2 ≤
β 2

2σ 2

a
(1 − w̃∗

h)
2 ≤

β 2σ 4

b
2σ 6

a

1

(1+α̃ ∗
i /α̃

∗
j )

2
.

H.3.2 I
д
jℓ > 0, Ihjℓ > 0 in Ki (y

∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)). In this case, under Assumption 7(b), the systems

cannot systematically approach the boundary of the region in which I
д
jℓ > 0, Ihjℓ > 0 from the

interior. Thus for all i, i + 1 ∈ P, the term
[ (hj−hi )

σhj
− ρ j

(дj−дi+1)

σдj
w̃∗
д
]

2

is bounded away from zero,

uniformly in j. Then we have the bounds

lower: Ki (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) =
(1−w̃∗

h )
2

2[1−ρ2

j w̃
∗
дw̃∗

h ]
2

σ 2

hj

σ 2

hi

[ (hj−hi )
σhj

− ρ j
(дj−дi+1)

σдj
w̃∗
д
]

2

≥
σ 2

a
2σ 2

b

[
1

[1−ρ2

j w̃
∗
дw̃∗

h ]
(
(hj−hi )
σhj

− ρ j
(дj−дi+1)

σдj
w̃∗
д)
]

2

(1 − w̃∗
h)

2

≥
σ 2

a
2σ 2

b

[ (hj−hi )
σhj

− ρ j
(дj−дi+1)

σдj
w̃∗
д
]

2

(1 − w̃∗
h)

2

≥
ϵ 2σ 2

a
2σ 2

b
(1 − w̃∗

h)
2 ≥

ϵ 2σ 6

a
2σ 6

b

1

(1+α̃ ∗
i /α̃

∗
j )

2
;

upper: Ki (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) =
(1−w̃∗

h )
2

2[1−ρ2

j w̃
∗
дw̃∗

h ]
2

σ 2

hj

σ 2

hi

[ (hj−hi )
σhj

− ρ j
(дj−дi+1)

σдj
w̃∗
д
]

2

≤
σ 2

b
2σ 2

a

1

[1−ρ2

b ]
2

[ (hj−hi )
σhj

+ ρb
(дj−дi+1)

σдj
w̃∗
д
]

2

(1 − w̃∗
h)

2

≤
σ 2

b
2σ 2

a

1

[1−ρ2

b ]
2

[ β
σa
(1 + ρb )

]
2

(1 − w̃∗
h)

2 ≤
β 2σ 6

b (1+ρb )
2

2σ 8

a (1−ρ2

b )
2

1

(1+α̃ ∗
i /α̃

∗
j )

2
.

H.4 Proof of the Bounds in Equation (13)

We omit the proof for the bounds on Jℓ+1(x
∗
ℓ+1

(α̃∗
j , α̃

∗
ℓ
, α̃∗

ℓ+1
)), since it is similar to the proof for

Kℓ(y
∗
ℓ
(α̃∗

j , α̃
∗
ℓ
, α̃∗

ℓ+1
)). The constants in this case are κL

R4 = κ
L

R3 and κ
U

R4 = κ
U

R3.

I PROOF OF PROPOSITION 4.5
From the upper bound in (10), at optimality in Problem Q̃ , it also holds that

z̃∗ ≤ R jℓ(α̃
∗
j , α̃

∗
i , α̃

∗
i+1

) ≤ α̃∗
j κ

U

R

[
1

1+α̃ ∗
j /α̃

∗
i+1

+ 1

1+α̃ ∗
j /α̃

∗
i

]
≤ α̃∗

j 2κU

R
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for all j ∈ Pc
and all ℓ ∈ Pph, ℓ = i . Then by Theorem 4.3 Part (1), for each non-Pareto sys-

tem j ∈ Pc
, there exists a phantom Pareto system ℓ∗(j) ∈ Pph, ℓ(j)∗ = i∗(j) such that z̃∗ =

R jℓ∗(j)(α̃
∗
j , α̃

∗
i∗(j), α̃

∗
i∗(j)+1

). Then it follows that

|Pc |z̃∗ =
∑

j ∈Pc z̃∗ =
∑

j ∈Pc R jℓ∗(j)(α̃
∗
j , α̃

∗
i∗(j), α̃

∗
i∗(j)+1

) ≤ 2κU

R

∑
j ∈Pc α̃∗

j ≤ 2κU

R ,

which implies z̃∗ ≤ 2κU

R/|P
c |. Thus z̃∗ = O(1/|Pc |).

J PROOF OF THEOREM 4.7
We prove the theorem in parts. In what follows, notice that under Assumption 9, there exists

κ0 ∈ (0,∞) such that λjℓ(r ) ≤ κ0λjℓ∗ (r ) for all ℓ ∈ Pph
, all r ≥ r j0.

J.1 Proof of Theorem 4.7 Part (1)
First, recall that for all i ∈ P, j ∈ Pc

, we have Ij (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) > 0 for all r ≥ r j0.

Now for a contradiction, suppose there exists j∗ ∈ Pc
such that ℓ∗ ∈ Pph, ℓ∗ = i∗ is its primary

phantom Pareto system, and lim inf Ij∗ (z
∗
j∗ (α̃

∗
j∗ , α̃

∗
i∗ , α̃

∗
i∗+1

)) = 0 as |Pc (i)| → ∞ for all i ∈ P. Then

there exists a subsequence {rk : k = 1, 2, . . . ; r1 ≥ r j∗0} such that

lim

k→∞
Ij∗ (z

∗
j∗ (α̃

∗
j∗ (rk ), α̃

∗
i∗ (rk ), α̃

∗
i∗+1

(rk ))) = 0.

Henceforth, we consider only this subsequence.

From the bounds on the derivatives in §E.3, it must be the case that w̃∗
д → 0 if limk→∞ I

д
j∗ℓ∗ (rk ) > 0,

and w̃∗
h → 0 if limk→∞ I

h
j∗ℓ∗ (rk ) > 0. (See §H for a definition of the w̃∗

д , w̃
∗
h notation.) Since the

variances are uniformly bounded, α̃∗
j∗/α̃

∗
i∗+1

→ ∞ if limk→∞ I
д
j∗ℓ∗ (rk ) > 0 and α̃∗

j∗/α̃
∗
i∗ → ∞ if

limk→∞ I
h
j∗ℓ∗ (rk ) > 0.

From the bounds in equations (12) and (13), there exist constants τK > 0, τ J > 0, not dependent

on r , such that Ki∗ (y
∗
i∗ (α̃

∗
j∗ , α̃

∗
i∗ , α̃

∗
i∗+1

)) ≥ Ihj∗ℓ∗τK and Ji∗+1(x
∗
i∗+1

(α̃∗
j∗ , α̃

∗
i∗ , α̃

∗
i∗+1

)) ≥ I
д
j∗ℓ∗τ J for all

k = 1, 2, . . . indexing the subsequence. From the KKT conditions in equation (7), for all r ,

2ν ≥
∑

j ∈Pc [λjℓ∗Ki∗ (y
∗
i∗ (α̃

∗
j , α̃

∗
i∗ , α̃

∗
i∗+1

))] +
∑

j ∈Pc [λjℓ∗ Ji∗+1(x
∗
i∗+1

(α̃∗
j , α̃

∗
i∗ , α̃

∗
i∗+1

))].

Thenwe have 2ν ≥ λj∗ℓ∗ (I
h
j∗ℓ∗τK+I

д
j∗ℓ∗τ J ) for allk = 1, 2, . . .. Letting τ1

:= (1/2)(Ihj∗ℓ∗τK+I
д
j∗ℓ∗τ J ) > 0,

we have the lower bound ν ≥ τ1λj∗ℓ∗ for all k = 1, 2, . . ..
Now under Assumptions 5 and 6, there exists a constant b1 < ∞ such that Ij (z

∗
j (α̃

∗
j , α̃

∗
i∗ , α̃

∗
i∗+1

)) ≤

b1 for all r ≥ r j0. From the KKT conditions in equation (8), for all r , we have

ν =
∑

ℓ∈Pph, ℓ=i
λj∗ℓIj∗ (z

∗
j∗ (α̃

∗
j∗ , α̃

∗
i , α̃

∗
i+1

)) ≤ λj∗ℓ∗ Ij∗ (z
∗
j∗ (α̃

∗
j∗ , α̃

∗
i∗ , α̃

∗
i∗+1

)) +
∑

ℓ∈Pph, ℓ,ℓ∗
λj∗ℓb1

Combining the upper and lower bounds on ν results in

0 < τ1 ≤
ν

λj∗ℓ∗
≤ Ij∗ (z

∗
j∗ (α̃

∗
j∗ , α̃

∗
i∗ , α̃

∗
i∗+1

)) +
∑

ℓ∈Pph, ℓ,ℓ∗

λj∗ℓ

λj∗ℓ∗
b1

for all k = 1, 2, . . ., which provides a contradiction since the limit of the right-hand side is zero on

the subsequence under Assumption 9.

J.2 Proof of Theorem 4.7 Part (2)
Proposition 4.5 provides the lower bound α̃∗

j ≥ z̃∗/(2κU

R). For the upper bound, by Theorem 4.7

Part (1), for all j ∈ Pc
with primary phantom Pareto system ℓ∗(j) ∈ Pph, ℓ∗(j) = i∗(j), we have

z̃∗ ≥ α̃∗
j Ij (z

∗(α̃∗
j , α̃

∗
i∗(j), α̃

∗
i∗(j)+1

)) ≥ α̃∗
j κ1 for all r ≥ r j0. Since there exists a primary phantom Pareto

system for every j ∈ Pc
, the result holds for all j ∈ Pc

and all r ≥ r j0.
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J.3 Proof of Theorem 4.7 Part (3)
Let j ∈ Pc

have primary phantom Pareto ℓ∗ ∈ Pph, ℓ∗ = i∗. Under Assumptions 5 and 6, recall that

there exists a constant b1 < ∞ such that Ij (z
∗
j (α̃

∗
j , α̃

∗
i∗ , α̃

∗
i∗+1

)) ≤ b1 for all r ≥ r j0. From equation (8)

and using Theorem 4.7 Part (1) and Assumption 9, we have

λjℓ∗κ1 ≤ ν =
∑

ℓ∈Pph, ℓ=i λjℓIj (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) ≤ (p + 1)κ0λjℓ∗b1. (34)

Flipping these inequalities around results in ν [(p + 1)κ0b1]
−1 ≤ λjℓ∗ ≤ νκ−1

1
, which implies λjℓ∗ =

Θ(ν ) for all j ∈ Pc
.

Summing over j ∈ Pc
in the right-hand side of (34) and applying equation (9) implies |Pc |ν ≤

(p+1)κ0b1

∑
j ∈Pc λjℓ∗ ≤ (p+1)κ0b1, and henceν = O(1/|P

c |). For the lower bound, from equation (8),

using Theorem 4.7 Part (1) and applying equation (9),

|Pc |ν =
∑

j ∈Pc
∑

ℓ∈Pph, ℓ=i λjℓIj (z
∗
j (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

)) ≥ κ1

∑
j ∈Pc

∑
ℓ∈Pph λjℓ = κ1.

Combining this lower bound with the upper bound implies ν = Θ(1/|Pc |).

J.4 Proof of Theorem 4.7 Part (4)
Recall that α̃∗

i (r )/α̃
∗
j (r ) > 0 for all i ∈ P, j ∈ Pc

, and all r ≥ r j0. For a contradiction, let

i ∈ P be a Pareto system, and suppose there exists a non-Pareto system j∗ ∈ Pc (i) such that

lim infr→∞ α̃∗
i (r )/α̃

∗
j∗ (r ) = 0. Then there exists a subsequence {rk : k = 1, 2, . . . ; r1 ≥ r j∗0} such

that limk→∞ α̃∗
i (rk )/α̃

∗
j∗ (rk ) = 0; henceforth, we consider only this subsequence.

J.4.1 Pareto System i ∈ {1,p}. If i ∈ {1,p} and j∗ ∈ Pc (i), then for all r ≥ r j0,

z̃∗/α̃∗
j∗ = min

(
R j∗ℓ−1(α̃

∗
j∗ , α̃

∗
i−1
, α̃∗

i )/α̃
∗
j∗ ,R j∗ℓ(α̃

∗
j∗ , α̃

∗
i , α̃

∗
i+1

)/α̃∗
j∗
)

=


min

(
inf

x
Jj∗ (x) +

α̃ ∗
i

α̃ ∗
j∗
Ji (x), inf

x j∗ ≤xi+1,
yj∗ ≤yi

Ij∗ (x j∗ ,yj∗ ) +
α̃ ∗
i

α̃ ∗
j∗
Ki (yi ) +

α̃ ∗
i+1

α̃ ∗
j∗
Ji+1(xi+1)

)
if i = 1

min

(
inf

x j∗ ≤xi ,
yj∗ ≤yi−1

Ij∗ (x j∗ ,yj∗ ) +
α̃ ∗
i−1

α̃ ∗
j∗
Ki−1(yi−1) +

α̃ ∗
i

α̃ ∗
j∗
Ji (xi ), inf

y
Kj∗ (y) +

α̃ ∗
i

α̃ ∗
j∗
Ki (y)

)
if i = p

≤ [inf

x
Jj∗ (x) + (α̃

∗
i /α̃

∗
j∗ )Ji (x)]I[i=1] + [infy Kj∗ (y) + (α̃

∗
i /α̃

∗
j∗ )Ki (y)]I[i=p].

Since limk→∞ α̃∗
i (rk )/α̃

∗
j∗ (rk ) = 0, the right-hand side of the inequality above goes to zero on the

subsequence, which contradicts Theorem 4.7 Part (2).

J.4.2 Pareto System i ∈ {2, . . . ,p − 1} and дj∗ < дi+1 or hj∗ < hi−1. Now suppose that j∗ ∈ Pc (i)
for i ∈ {2, . . . ,p − 1}, and дj∗ < дi+1 or hj∗ < hi−1. Under Assumptions 5 and 6, there exists a

constant b2 < ∞ such that maxi ∈P, j ∈Pc (Ji (xi (α̃
∗
j , α̃

∗
i−1
, α̃∗

i )), Ki (yi (α̃
∗
j , α̃

∗
i , α̃

∗
i+1

))) ≤ b2 for all r . Then
for all r ≥ r j∗0,

z̃∗/α̃∗
j∗ = min

(
R j∗ℓ−1(α̃

∗
j∗ , α̃

∗
i−1
, α̃∗

i )/α̃
∗
j∗ ,R j∗ℓ(α̃

∗
j∗ , α̃

∗
i , α̃

∗
i+1

)/α̃∗
j∗
)

= min

(
inf

x j∗ ≤xi , yj∗ ≤yi−1

Ij∗ (x j∗ ,yj∗ ) +
α̃ ∗
i−1

α̃ ∗
j∗
Ki−1(yi−1) +

α̃ ∗
i

α̃ ∗
j∗
Ji (xi ),

inf

x j∗ ≤xi+1, yj∗ ≤yi
Ij∗ (x j∗ ,yj∗ ) +

α̃ ∗
i

α̃ ∗
j∗
Ki (yi ) +

α̃ ∗
i+1

α̃ ∗
j∗
Ji+1(xi+1)

)
≤ min

(
inf

x j∗ ≤xi , yj∗ ≤yi−1

Ij∗ (x j∗ ,yj∗ ) +
α̃ ∗
i−1

α̃ ∗
j∗
Ki−1(yi−1) +

α̃ ∗
i

α̃ ∗
j∗
b2,

inf

x j∗ ≤xi+1, yj∗ ≤yi
Ij∗ (x j∗ ,yj∗ ) +

α̃ ∗
i

α̃ ∗
j∗
b2 +

α̃ ∗
i+1

α̃ ∗
j∗
Ji+1(xi+1)

)
.

=
α̃ ∗
i

α̃ ∗
j∗
b2 +min

(
inf

yj∗ ≤yi−1

Kj∗ (yj∗ ) +
α̃ ∗
i−1

α̃ ∗
j∗
Ki−1(yi−1), inf

x j∗ ≤xi+1

Jj∗ (x j∗ ) +
α̃ ∗
i+1

α̃ ∗
j∗
Ji+1(xi+1)

)
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=
α̃ ∗
i

α̃ ∗
j∗
b2 +min

(
[inf

y
Kj∗ (y) +

α̃ ∗
i−1

α̃ ∗
j∗
Ki−1(y)]I[hj∗>hi−1], [inf

x
Jj∗ (x) +

α̃ ∗
i+1

α̃ ∗
j∗
Ji+1(x)]I[дj∗>дi+1]

)
.

Then the limit on the right-hand side of the above inequality is zero on the subsequence, which

contradicts Theorem 4.7 Part (2). (Notice that the indicator functions in the last line of the inequality

above are not functions of r ; that is, they evaluate to zero or one for all r ≥ r j0. Thus we need not

consider α̃∗
i−1

/α̃∗
j∗ → ∞ or α̃∗

i+1
/α̃∗

j∗ → ∞ when at least one indicator function evaluates to zero.)

J.5 Proof of Theorem 4.7 Part (5)
We prove the upper bound first, then the lower bound.

J.5.1 Theorem 4.7 Part (5): Upper Bound. From the proof of Proposition 4.5, we have

1/α̃∗
j ≤ 2κU

R/z̃
∗

for all j ∈ Pc , r ≥ r j0. (35)

Now from Theorem 4.7 Part (2), there exists τ L

2
∈ (0,∞) such that α̃∗

j ≥ τ L

2
z̃∗ for all j ∈ Pc

and

all r ≥ r j0. From Theorem 4.7 Part (4), if j∗ ∈ Pc (i) is such that дj∗ < дi+1 or hj∗ < hi−1, then

α̃∗
i ≥ κ4α̃

∗
j∗ ≥ κ4τ

L

2
z̃∗. Since there exists such a j∗ ∈ Pc (i) for all i ∈ P and all r under Assumption 9,

it follows that

1/α̃∗
i ≤ (κ4τ

L

2
)−1/z̃∗ for all i ∈ P and all r . (36)

Let κ2
:= 2κU

R + (κ4τ
L

2
)−1

. Taking equations (35) and (36) together, we have

1/α̃∗
j + 1/α̃∗

i ≤ κ2/z̃
∗

for all i ∈ P, j ∈ Pc , r ≥ r j0. (37)

J.5.2 Theorem 4.7 Part (5): Lower Bound. From Theorem 4.7 Part (2), 1/α̃∗
j ≥ κ1/z̃

∗
for all

j ∈ Pc , r ≥ r j0. Combining this fact with (37), κ1/z̃
∗ ≤ 1/α̃∗

j ≤ 1/α̃∗
j + 1/α̃∗

i ≤ κ2/z̃
∗.

J.6 Proof of Theorem 4.7 Part (6)
From the KKT conditions in equation (5) and using the bounds in Lemma 4.4, for all i, i ′ ∈ P,

1 =

∑
j ∈Pc λjℓ−1(r )Ji (x

∗
i (α̃

∗
j , α̃

∗
i−1
, α̃∗

i )) + λjℓ(r )Ki (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

))∑
j ∈Pc λjℓ′−1(r )Ji′(x

∗
i′(α̃

∗
j , α̃

∗
i′−1
, α̃∗

i′)) + λjℓ′(r )Ki′(y
∗
i′(α̃

∗
j , α̃

∗
i′, α̃

∗
i′+1

))

≤

∑
j ∈Pc

κU

R

[ λjℓ−1(r )I
д
jℓ−1

(r )+λjℓ (r )Ihjℓ (r )

(1+α̃ ∗
i /α̃

∗
j )

2

]
∑

j ∈Pc
κL

R

[ λjℓ′−1
(r )Iдjℓ′−1

(r )+λjℓ′ (r )Ihjℓ′ (r )

(1+α̃ ∗
i′/α̃

∗
j )

2

] = κU

R

κL

R

α̃∗2

i′

α̃∗2

i

∑
j ∈Pc

[ λjℓ−1(r )I
д
jℓ−1

(r )+λjℓ (r )Ihjℓ (r )

(1/α̃ ∗
i +1/α̃ ∗

j )
2

]
∑

j ∈Pc

[ λjℓ′−1
(r )Iдjℓ′−1

(r )+λjℓ′ (r )Ihjℓ′ (r )

(1/α̃ ∗
i′+1/α̃ ∗

j )
2

] . (38)

From Theorem 4.7 Part (5), it follows that

κ2

1
/z̃∗2 ≤ (1/α̃∗

j + 1/α̃∗
i )

2 ≤ κ2

2
/z̃∗2

for all i ∈ P, j ∈ Pc , r ≥ r j0. (39)

Continuing from (38) and using line (39) and equation (9), respectively, we have

α̃∗2

i

α̃∗2

i′
≤

κU

R

κL

R

∑
j ∈Pc

[ λjℓ−1(r )I
д
jℓ−1

(r )+λjℓ (r )Ihjℓ (r )

κ2

1
/z̃∗2

]
∑

j ∈Pc

[ λjℓ′−1
(r )Iдjℓ′−1

(r )+λjℓ′ (r )Ihjℓ′ (r )

κ2

2
/z̃∗2

] = κU

Rκ
2

2

κL

Rκ
2

1

[ ∑
j ∈Pc

λjℓ−1(r )I
д
jℓ−1

(r )
]
+
[ ∑
j ∈Pc

λjℓ(r )I
h
jℓ(r )

]
∑

j ∈Pc

[
λjℓ′−1(r )I

д
jℓ′−1

(r ) + λjℓ′(r )I
h
jℓ′(r )

]
≤

κU

Rκ
2

2

κL

Rκ
2

1

2∑
j ∈Pc (i′)

[
λjℓ′−1(r )I

д
jℓ′−1

(r )I[ℓ∗(j)=ℓ′−1] + λjℓ′(r )I
h
jℓ′(r )I[ℓ∗(j)=ℓ′]

] . (40)

From Theorem 4.7 Part (3), for all i ∈ P, there exists τ L

3
∈ (0,∞) such that∑

j ∈Pc (i) λjℓ−1(r )I
д
jℓ−1

(r )I[ℓ∗(j)=ℓ−1] + λjℓ(r )I
h
jℓ(r )I[ℓ∗(j)=ℓ]
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≥
∑

j ∈Pc (i) τ
L

3

1

|Pc |
= τ L

3

|Pc (i) |
|Pc |

≥ τ L

3
κ, (41)

where the last step follows by Assumption 9. Combining this bound with (40), we have

α̃∗2

i

α̃∗2

i′
≤

2κU

Rκ
2

2

κL

Rκ
2

1
τ L

3
κ
,

and the result follows.

J.7 Proof of Theorem 4.7 Part (7)
First we prove the lower bound, then we prove the upper bound. In what follows, notice that

from Theorem 4.7 Part (2), there exists τ2 ∈ (0,∞) such that α̃∗
j /α̃

∗
j′ < τ2 for all j, j

′ ∈ Pc
and all

r ≥ max{r j0, r j′0}.

J.7.1 Proof of Theorem 4.7 Part (7): Lower Bound. Let i ∈ P, j ′ ∈ Pc
. From the KKT conditions in

equation (6), the bounds in Lemma 4.4, the inequality in (39), and Assumption 9, respectively,

1 =
∑

j ∈Pc

λjℓ−1 Ji (x
∗
i (α̃

∗
j , α̃

∗
i−1
, α̃∗

i )) + λjℓKi (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

))∑
ℓ′∈Pph, ℓ′=i′ λjℓ′Ij (z

∗
j (α̃

∗
j , α̃

∗
i′, α̃

∗
i′+1

))

≤
∑

j ∈Pc

κU

R

[ λjℓ−1I
д
jℓ−1
+λjℓ Ihjℓ

(1+α̃ ∗
i /α̃

∗
j )

2

]∑
ℓ′∈Pph, ℓ′=i′ λjℓ′κ

L

R min[ 1

(1+α̃ ∗
j /α̃

∗
i′ )

2
, 1

(1+α̃ ∗
j /α̃

∗
i′+1

)2
]

=
κU

R

κL

R

1

α̃∗2

i

∑
j ∈Pc

α̃∗2

j

[ λjℓ−1I
д
jℓ−1
+λjℓ Ihjℓ

(1/α̃ ∗
i +1/α̃ ∗

j )
2

]∑
ℓ′∈Pph, ℓ′=i′ λjℓ′ min[ 1

(1/α̃ ∗
j +1/α̃ ∗

i′ )
2
, 1

(1/α̃ ∗
j +1/α̃ ∗

i′+1

)2
]

≤
κU

Rκ
2

2

κL

Rκ
2

1

1

α̃∗2

i

∑
j ∈Pc

α̃∗2

j

[
λjℓ−1I

д
jℓ−1
+ λjℓI

h
jℓ

]∑
ℓ′∈Pph λjℓ′

≤
κU

Rκ
2

2

κL

Rκ
2

1

1

α̃∗2

i

∑
j ∈Pc

α̃∗2

j

[
2κ0λjℓ∗

]
λjℓ∗

=
κU

Rκ
2

2
2κ0

κL

Rκ
2

1

α̃∗2

j′

α̃∗2

i

∑
j ∈Pc

α̃∗2

j

α̃∗2

j′
≤

κU

Rκ
2

2
2κ0

κL

Rκ
2

1

α̃∗2

j′

α̃∗2

i
|Pc |τ 2

2
.

Then letting τ L

7
:=

κLRκ
2

1

2κURκ0κ2

2
τ 2

2

, it follows that

τ L

7

|Pc |
≤

α̃∗2

j′

α̃∗2

i
for all i ∈ P, j ′ ∈ Pc , r ≥ r j′0. (42)

J.7.2 Proof of Theorem 4.7 Part (7): Upper Bound. Let i ∈ P, j ′ ∈ Pc
. By Theorem 4.7 Part (3),

there exists τ U

3
∈ (0,∞) such that λjℓ∗(j) ≤ τ U

3
/|Pc | for all j ∈ Pc , r ≥ r j0. Then from the KKT

conditions in equation (6), the bounds in Lemma 4.4, the inequality in (39), Assumption 9, and line

(41), respectively,

1 =
∑

j ∈Pc

λjℓ−1 Ji (x
∗
i (α̃

∗
j , α̃

∗
i−1
, α̃∗

i )) + λjℓKi (y
∗
i (α̃

∗
j , α̃

∗
i , α̃

∗
i+1

))∑
ℓ′∈Pph, ℓ′=i′ λjℓ′Ij (z

∗
j (α̃

∗
j , α̃

∗
i′, α̃

∗
i′+1

))

≥
∑

j ∈Pc

κL

R

[ λjℓ−1I
д
jℓ−1
+λjℓ Ihjℓ

(1+α̃ ∗
i /α̃

∗
j )

2

]∑
ℓ′∈Pph, ℓ′=i′ λjℓ′κ

U

R[
1

(1+α̃ ∗
j /α̃

∗
i′ )

2
+ 1

(1+α̃ ∗
j /α̃

∗
i′+1

)2
]
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=
κL

R

κU

R

1

α̃∗2

i

∑
j ∈Pc

α̃∗2

j

[ λjℓ−1I
д
jℓ−1
+λjℓ Ihjℓ

(1/α̃ ∗
i +1/α̃ ∗

j )
2

]∑
ℓ′∈Pph, ℓ′=i′ λjℓ′[

1

(1/α̃ ∗
j +1/α̃ ∗

i′ )
2
+ 1

(1/α̃ ∗
j +1/α̃ ∗

i′+1

)2
]

≥
κL

R

κU

R

κ2

1

2κ2

2

1

α̃∗2

i

∑
j ∈Pc

α̃∗2

j

[λjℓ−1I
д
jℓ−1
+ λjℓI

h
jℓ]∑

ℓ′∈Pph, ℓ′=i′ λjℓ′
≥

κL

R

κU

R

κ2

1

2κ2

2

α̃∗2

j′

α̃∗2

i

∑
j ∈Pc (i)

α̃∗2

j

α̃∗2

j′

[λjℓ−1I
д
jℓ−1
+ λjℓI

h
jℓ]

(p + 1)κ0λjℓ∗(j)

≥
κL

R

κU

R

κ2

1

2κ2

2

τ−2

2

(p + 1)κ0

α̃∗2

j′

α̃∗2

i

∑
j ∈Pc (i)

λjℓ−1I
д
jℓ−1
I[ℓ∗(j)=ℓ−1] + λjℓI

h
jℓI[ℓ∗(j)=ℓ]

λjℓ∗(j)

≥
κL

R

κU

R

κ2

1

2κ2

2

τ−2

2

(p + 1)κ0

α̃∗2

j′

α̃∗2

i

∑
j ∈Pc (i)

τ L

3
/|Pc |

τ U

3
/|Pc |

=
κL

Rκ
2

1
τ L

3

2(p + 1)κU

Rκ0κ
2

2
τ 2

2
τ U

3

α̃∗2

j′

α̃∗2

i
|Pc (i)|

≥
κL

Rκ
2

1
τ L

3
κ

2(p + 1)κU

Rκ0κ
2

2
τ 2

2
τ U

3

α̃∗2

j′

α̃∗2

i
|Pc |.

Then letting τ U

7
:=

2(p+1)κURκ0κ2

2
τ 2

2
τ U

3

κLRκ
2

1
τ L

3
κ

, it follows that

α̃∗2

j′

α̃∗2

i
≤

τ U

7

|Pc |
for all i ∈ P, j ′ ∈ Pc , r ≥ r j′0. (43)

J.8 Proof of Theorem 4.7 Part (8)
Proposition 4.5 provides the upper bound. For the lower bound, for all j ∈ Pc

with primary phantom

Pareto system ℓ∗(j) ∈ Pph, ℓ∗(j) = i∗(j), we have

z̃∗ ≥ α̃∗
j Ijℓ∗(j)(z

∗(α̃∗
j , α̃

∗
i∗(j), α̃

∗
i∗(j)+1

)) ≥ α̃∗
j κ1.

Summing over j ∈ Pc
yields

|Pc |z̃∗ =
∑

j ∈Pc R jℓ∗(j)(α̃
∗
j , α̃

∗
i∗(j), α̃

∗
i∗(j)+1

) ≥
∑

j ∈Pc α̃∗
j Ijℓ∗(j)(z

∗(α̃∗
j , α̃

∗
i∗(j), α̃

∗
i∗(j)+1

))

≥ κ1

∑
j ∈Pc α̃∗

j = κ1(1 −
∑

i ∈P α̃∗
i ). (44)

From Proposition 4.5 and Theorem 4.7 Parts (2) and (7), it must be the case that α̃∗
i → 0 for all i ∈ P.

Thus (1 −
∑

i ∈P α̃∗
i ) is a constant, and we have the result for z̃∗. The result for α̃∗

j follows from the

result for z̃∗ and Theorem 4.7 Part (2).

J.9 Proof of Theorem 4.7 Part (9)
This result follows from Theorem 4.7 Part (7) and the bounds in Lemma 4.4.

J.10 Proof of Theorem 4.7 Part (10)
This result follows by noticing that Theorem 4.7 Part (7) implieswд → 0 andwh → 0 in the proof

of Proposition 4.1.

K PROOF OF THEOREM 4.11
From (42) and (43), for all i ∈ P, j ∈ Pc , r ≥ r j0, α̃

∗2

j /τ U

7
≤ α̃∗2

i /|Pc | ≤ α̃∗2

j /τ L

7
. Summing across

j ∈ Pc
yields

√
(1/τ U

7
)
∑

j ∈Pc α̃∗2

j ≤ α̃∗
i ≤

√
(1/τ L

7
)
∑

j ∈Pc α̃∗2

j . Applying that α̃∗
j = Θ(1/|Pc |) from

Theorem 4.7 Part (8) yields the result.
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L PROOF OF THEOREM 4.12
The only difference between ProblemsQ and Q̃ is that ProblemQ includes constraints corresponding

to the rate functions for MCE events between all pairs of Pareto systems. The assertion will hold if

we show that for large enough |Pc |, Ri (α̃
∗
i , α̃

∗
i′) > z̃∗ for all i, i ′ ∈ P, i ′ , i .

Recall that for all i, i ′ ∈ P, i ′ , i , we have

Ri (αi ,αi′) = inf

xi′ ≤xi , yi′ ≤yi
αi Ii (xi ,yi ) + αi′Ii′(xi′,yi′).

Under our assumptions, notice that there exists a constant a > 0 such that infxi′ ≤xi , yi′ ≤yi Ii (xi ,yi )+
Ii′(xi′,yi′) > a for all i, i ′ ∈ P, i ′ , i . From Theorem 4.7 Part (6), α̃∗

i /α̃
∗
i′ ≤ κ6 for all i, i

′ ∈ P, i ′ , i .
Supposing without loss of generality that κ6 > 1,

Ri (α̃
∗
i , α̃

∗
i′)/α̃

∗
i = inf

xi′ ≤xi , yk i′≤yi
Ii (xi ,yi ) + (α̃

∗
i′/α̃

∗
i )Ii′(xi′,yi′)

≥ inf

xi′ ≤xi , yi′ ≤yi
Ii (xi ,yi ) + κ

−1

6
Ik (xi′,yi′) ≥ κ−1

6
a > 0.

Thus letting η := κ−1

6
a > 0, Ri (α̃

∗
i , α̃

∗
i′)/z̃

∗ ≥ η(α̃∗
i /z̃

∗). From Theorem 4.7 Part (8), we have z̃∗ =

Θ(1/|Pc |), and from Theorem 4.11, we have α̃∗
i = Θ(1/

√
|Pc |). Then it follows that α̃∗

i /z̃
∗ → ∞.

Thus for large enough |Pc |, the Pareto systems receive a large enough proportion of the allocation

that the constraints corresponding to MCE in Problem Q are not binding, and the result holds.

M PROOF OF PROPOSITION 5.1
Under Assumption 6, Problem RMCE

ii′ is a quadratic program with linear constraints. The KKT

conditions are necessary and sufficient for global optimality. Let λPx ≥ 0 and λPy ≥ 0 be dual variables.

In addition to primal feasibility, we have the complementary slackness conditions λPx (xi′ − xi ) = 0

and λPy (yi′ − yi ) = 0, and the stationarity conditions

αi
∂Ii (xi ,yi )

∂xi
− λPx = 0 αi

∂Ii (xi ,yi )
∂yi

− λPy = 0

αi′
∂Ii′ (xi′,yi′ )

∂xi′
+ λPx = 0 αi′

∂Ii′ (xi′,yi′ )
∂yi′

+ λPy = 0,

which simplify to

αi
(1−ρ2

i )

( xi−дi
σ 2

дi
−

ρi (yi−hi )
σдi σhi

)
= λPx

αi
(1−ρ2

i )

(yi−hi
σ 2

hi

−
ρi (xi−дi )
σдi σhi

)
= λPy

αi′
(1−ρ2

i′ )

( xi′−дi′
σ 2

дi′
−

ρi′ (yi′−hi′ )
σдi′ σhi′

)
= −λPx

αi′
(1−ρ2

i′ )

(yi′−hi′
σ 2

hi′
−

ρi′ (xi′−дi′ )
σдi′ σhi′

)
= −λPy .

Since λPx ≥ 0 and λPx ≥ 0, then

xi ≥ дi + ρi
σдi
σhi

(yi − hi ) yi ≥ hi + ρi
σhi
σдi

(xi − дi )

xi′ ≤ дi′ + ρi′
σдi′
σhi′

(yi′ − hi′) yi′ ≤ hi′ + ρi′
σhi′
σдi′

(xi′ − дi′).

Since i,k ∈ P, we cannot have λPx = 0 and λPx = 0. We consider three cases, as follows.

Case 1: λPx > 0 and λPy = 0. Then x∗i = x∗i′ ; solving, we find

x∗i = x∗i′ =
(αi /σ 2

дi )дi+(αi′/σ
2

дi′
)дi′

αi /σ 2

дi +αi′/σ
2

дi′
y∗i = hi + ρi

σhi
σдi

( (αi′/σ 2

дi′
)(дi′−дi )

αi /σ 2

дi +αi′/σ
2

дi′

)
y∗i′ = hi′ − ρi′

σhi′
σдi′

( (αi /σ 2

дi )(дi′−дi )
αi /σ 2

дi +αi′/σ
2

дi′

)
,
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which implies дi ≤ дi′ . Primal feasibility further implies

hi ≥ hi′ − (дi′ − дi )
( ρi′ (σhi′ /σдi′ )(αi /σ 2

дi )+ρi (σhi /σдi )(αi′/σ
2

дi′
)

αi /σ 2

дi +αi′/σ
2

дi′

)
.

Substituting into the objective function yields the result in this case.

Case 2: λPx = 0 and λPy > 0. Then y∗i = y
∗
i′ ; solving, we find

x∗i = дi + ρi
σдi
σhi

( (αi′/σ 2

hi′
)(hi′−hi )

αi /σ 2

hi
+αi′/σ 2

hi′

)
y∗i = y

∗
i′ =

(αi /σ 2

hi
)hi+(αi′/σ 2

hi′
)hi′

αi /σ 2

hi
+αi′/σ 2

hi′

x∗i′ = дi′ − ρi′
σдi′
σhi′

( (αi /σ 2

hi
)(hi′−hi )

αi /σ 2

hi
+αi′/σ 2

hi′

)
,

which implies hi ≤ hi′ . Primal feasibility further implies

дi ≥ дi′ − (hi′ − hi )
( ρi′ (σдi′ /σhi′ )(αi /σ 2

hi
)+ρi (σдi /σhi )(αi′/σ

2

hi′
)

αi /σ 2

hi
+αi′/σ 2

hi′

)
.

Substituting into the objective function yields the result in this case.

Case 3: λPx > 0 and λPy > 0. Then x∗i = x∗i′ and y
∗
i = y

∗
i′ ; solving, we find

x∗i = x∗i′ =

[ ρiσдi σhi
αi

σ 2

дi′

αi′
−

ρi′σдi′ σhi′
αi′

σ 2

дi
αi

]
(hi′ − hi )

(σ 2

дi /αi + σ
2

дi′/αi′)(σ
2

hi
/αi + σ

2

hi′
/αi′) − (ρiσдiσhi /αi + ρi′σдi′σhi′/αi′)

2

+

[ σ 2

дi σ
2

hi
(1−ρ2

i )

α 2

i
+

σ 2

дi
αi

σ 2

hi′

αi′
−

ρiσдi σhi
αi

ρi′σдi′ σhi′
αi′

]
дi′

(σ 2

дi /αi + σ
2

дi′/αi′)(σ
2

hi
/αi + σ

2

hi′
/αi′) − (ρiσдiσhi /αi + ρi′σдi′σhi′/αi′)

2

+

[ σ 2

дi′
σ 2

hi′
(1−ρ2

i′ )

α 2

i′
+

σ 2

дi′

αi′

σ 2

hi
αi

−
ρiσдi σhi

αi

ρi′σдi′ σhi′
αi′

]
дi

(σ 2

дi /αi + σ
2

дi′/αi′)(σ
2

hi
/αi + σ

2

hi′
/αi′) − (ρiσдiσhi /αi + ρi′σдi′σhi′/αi′)

2

y∗i = y
∗
i′ =

[
ρiσдi σhi

αi

σ 2

hi′

αi′
−

ρi′σдi′ σhi′
αi′

σ 2

hi
αi

](дi′ − дi )

(σ 2

дi /αi + σ
2

дi′/αi′)(σ
2

hi
/αi + σ

2

hi′
/αi′) − (ρiσдiσhi /αi + ρi′σдi′σhi′/αi′)

2

+

[ σ 2

дi σ
2

hi
(1−ρ2

i )

α 2

i
+

σ 2

дi′

αi′

σ 2

hi
αi

−
ρiσдi σhi

αi

ρi′σдi′ σhi′
αi′

]
hi′

(σ 2

дi /αi + σ
2

дi′/αi′)(σ
2

hi
/αi + σ

2

hi′
/αi′) − (ρiσдiσhi /αi + ρi′σдi′σhi′/αi′)

2

+

+
[ σ 2

дi′
σ 2

hi′
(1−ρ2

i′ )

α 2

i′
+

σ 2

дi
αi

σ 2

hi′

αi′
−

ρiσдi σhi
αi

ρi′σдi′ σhi′
αi′

]
hi

(σ 2

дi /αi + σ
2

дi′/αi′)(σ
2

hi
/αi + σ

2

hi′
/αi′) − (ρiσдiσhi /αi + ρi′σдi′σhi′/αi′)

2

.

It can also be shown that the rate functions depend on the locations of the systems, as in the

proof of Proposition 4.1. We do not the provide the details of this proof.

N TEST PROBLEMS
We consider test problems having the following objective function values (дk ,hk ) for all systems

k ≤ r , where the values are truncated to the fourth decimal place.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0. Publication date: 201X.



SCORE Allocations for Bi-objective Ranking and Selection 0:45
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Fig. 15. Test Problems 1A, 1B, 1C: r = 100, |P| = 9

95 100 105

g

95

100

105

h

Fig. 16. Test Probelms 2A, 2B, 2C: r = 100, |P| = 6

N.1 Objective Function Values for Test Problems 1A, 1B, and 1C

(100.7668, 98.2846)

(101.6930, 96.4598)

(104.4776, 96.5696)

( 98.1913, 98.5706)

( 96.3599, 103.2968)

( 97.6691, 104.1171)

(100.8665, 98.3810)

(103.1941, 96.9960)

( 99.5010, 95.1233)

(104.9940, 99.3581)

(102.1225, 103.2007)

(102.6375, 97.9407)

( 95.7051, 102.7686)

(102.2577, 97.6354)

(103.2209, 100.6225)

(101.0120, 104.4635)

(101.9143, 97.3885)

( 95.5534, 102.4620)

( 99.8642, 103.6219)

( 99.8691, 105.1958)

( 95.2816, 103.3236)

( 96.9166, 98.1973)

(101.1100, 105.6254)

( 99.6992, 94.5015)

( 97.4538, 94.5998)

(101.5803, 104.8465)

(102.4406, 103.9730)

(100.2660, 97.1450)

( 95.3507, 97.2208)

( 95.1358, 98.9354)

(100.2951, 94.2726)

(101.3779, 103.1052)

(100.9392, 94.5154)

( 97.8254, 98.1723)

( 94.0823, 99.1163)

( 97.5961, 102.2120)

(100.5365, 99.1881)

(100.0106, 99.9755)

(101.4506, 100.8885)

( 95.2964, 102.4307)

(103.4158, 98.2910)

(101.8231, 97.7814)

( 95.4512, 99.7769)

( 98.1493, 94.7886)

( 94.2787, 100.9571)

( 98.9207, 105.6910)

(103.9091, 96.2181)

( 99.9034, 95.9735)

( 94.2172, 101.2350)

(100.1180, 100.9099)

(104.1497, 96.4957)

( 99.7297, 98.8975)

(102.3980, 102.8872)

( 97.7111, 97.0571)

(105.1037, 100.4531)

( 96.0538, 99.3129)

( 96.5450, 97.8568)

( 96.6498, 101.6032)

(100.7589, 99.7948)

(101.1593, 98.9937)

(102.3316, 94.6044)

(104.6868, 103.2014)

( 96.4683, 97.9059)

( 95.1119, 102.1749)

(100.1523, 102.9490)

(105.1581, 103.0230)

(102.7163, 95.4334)

( 95.7699, 98.7454)

(101.2693, 96.5736)

(100.6072, 98.0980)

( 98.1615, 97.3504)

( 99.9506, 94.7994)

( 99.8464, 103.9968)

(102.3153, 94.7393)

(101.1873, 100.2082)

( 98.2325, 99.7302)

( 98.5848, 94.9992)

(100.2067, 95.8049)

( 97.8318, 97.4372)

(101.3503, 94.1658)

( 97.3253, 98.4759)

(104.5639, 100.6942)

( 98.5302, 102.3237)

( 95.6396, 103.1989)

( 97.3611, 95.4519)

(102.1988, 104.3315)

( 99.6457, 102.9520)

( 99.5199, 97.8854)

(100.4225, 97.3680)

(104.1576, 101.6352)

(100.7040, 94.9867)

( 96.9135, 101.7750)

( 97.7667, 102.0209)

( 98.5932, 102.4351)

(102.9696, 95.7064)

(101.3419, 97.4189)

(103.7129, 98.1209)

(101.2705, 99.7475)

( 96.8860, 95.9145)

(100.8755, 99.4588)

N.2 Objective Function Values for Test Problems 2A, 2B, and 2C

(103.6848, 103.9609)

( 96.5578, 97.3298)

(102.2526, 102.4639)

( 99.5723, 103.2071)

( 95.6040, 101.5735)

(100.2110, 98.8719)

( 98.4904, 94.3098)

(103.1300, 98.1427)

( 97.7876, 100.0430)

( 98.8857, 96.9268)

( 95.7547, 102.5842)

(100.7443, 103.4310)

(105.3983, 100.1675)

(102.7555, 100.3548)

(103.1232, 97.8702)

( 98.9429, 102.6029)
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(102.3963, 100.4059)

( 99.5536, 97.5641)

(101.7970, 101.6996)

(101.0486, 100.0085)

(103.2828, 104.5445)

( 95.6618, 97.0988)

( 98.9666, 99.3876)

(104.0700, 100.8312)

(101.6212, 97.4931)

(104.4545, 101.9316)

( 98.1023, 98.0927)

( 99.7569, 94.1299)

(101.8289, 101.2260)

( 98.8547, 105.2610)

(100.1998, 97.0971)

( 99.1475, 95.4149)

(101.7079, 100.0766)

(100.6163, 101.0873)

(102.7289, 103.1864)

(102.9739, 103.9954)

(102.4299, 96.9297)

(100.8767, 95.5375)

(102.4810, 99.8521)

( 99.3234, 105.8587)

( 98.7336, 101.4354)

(102.5242, 98.0001)

(103.2267, 100.3741)

(104.7891, 98.5051)

(101.4978, 98.8410)

(105.7609, 100.6060)

( 99.2888, 103.1690)

( 97.7997, 98.9963)

(102.3656, 103.4900)

( 95.4270, 103.5057)

( 99.7376, 100.0911)

( 97.6938, 101.7028)

(103.1432, 98.0707)

(103.5927, 96.5823)

(103.9547, 96.3935)

( 95.4602, 102.3155)

(104.2743, 102.9276)

( 94.8932, 100.1113)

(100.8257, 105.8330)

(102.2372, 105.0177)

(103.3371, 103.8918)

( 98.4455, 105.1548)

(102.3256, 100.0627)

(100.5905, 103.5784)

(103.1183, 95.8092)

( 95.9098, 99.1952)

( 95.9841, 103.6136)

(102.8691, 102.1152)

( 97.0409, 96.2717)

( 96.7093, 96.8682)

( 98.9799, 102.3676)

(102.2202, 102.8368)

( 99.8989, 97.3402)

(101.6622, 98.5825)

(102.8712, 97.3695)

( 99.6997, 98.1131)

(102.4739, 96.2580)

( 94.4548, 98.9261)

( 99.1705, 96.0906)

( 97.5041, 100.6324)

(101.5048, 95.9317)

( 96.0391, 103.7757)

( 98.4389, 100.0983)

(105.2779, 98.1816)

( 98.7128, 95.2642)

(100.9300, 94.8031)

( 94.1848, 100.5359)

( 97.5040, 101.1247)

( 95.4441, 99.7011)

( 99.7799, 94.6877)

(100.4201, 95.7602)

(101.2380, 99.4185)

( 95.5491, 96.6968)

( 95.7147, 97.0357)

( 97.3134, 98.1090)

( 97.6245, 103.2716)

(105.0540, 102.8406)

( 96.7749, 100.8922)

(103.6188, 101.8041)

(103.5947, 99.6592)

O THE SECOND TEST PROBLEM SET WITH RESULTS
The second set of test problems is shown in Figures 17–19. This set of test problems has a low

percent of dual variable values associated with MCE constraints. Note that in Figures 17–19, the

asymptotically optimal allocations are proportional to the size of the circle. While there is no

obvious visible difference in the optimal allocations with different correlations, the allocations do

differ slightly.

95 100 105

g

95

100

105

h

Fig. 17. Test 2A: r = 100, |P| = 6,
ρk = −0.8 for all k ≤ r , % dual to
MCE = 26.1, z∗ = 7.71 × 10

−4.

95 100 105

g

95

100

105

h

Fig. 18. Test 2B: r = 100, |P| = 6,
ρk = 0 for all k ≤ r , % dual to
MCE = 25.4, z∗ = 7.55 × 10

−4.

95 100 105

g

95

100

105

h

Fig. 19. Test 2C: r = 100, |P| = 6,
ρk = 0.8 for all k ≤ r , % dual to
MCE = 25.0, z∗ = 7.47 × 10

−4.

For each algorithm BVN True, SCORE, MOCBA, M-MOBA, and equal allocation, we run 10,000

independent sample paths on each of the test problems 2A, 2B, and 2C. For each algorithm, we

calculate the average number of misclassifications, false exclusions, and false inclusions across the

sample paths, as a function of sample size. Note that for a particular sample path, the sequence
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containing the number of misclassifications as a function of the sample size n is autocorrelated.

All algorithm parameters used in the second test problem set are identical to those reported in the

main body of the paper. The resulting performance of the algorithms is reported in Figures 20–22.
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BVN True

Fig. 20. Test 2A: For 10,000 sample paths per algorithm, the graphs show the average % of systemsmisclassified
(MC), % of Paretos falsely excluded (FE), and % of non-Paretos falsely included (FI), respectively.
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Fig. 21. Test 2B: For 10,000 sample paths per algorithm, the graphs show the average % of systemsmisclassified
(MC), % of Paretos falsely excluded (FE), and % of non-Paretos falsely included (FI), respectively.
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Fig. 22. Test 2C: For 10,000 sample paths per algorithm, the graphs show the average % of systemsmisclassified
(MC), % of Paretos falsely excluded (FE), and % of non-Paretos falsely included (FI), respectively.
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