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Abstract—In this work, we consider multitask learning prob-
lems where clusters of nodes are interested in estimating their own
parameter vector. Cooperation among clusters is beneficial when
the optimal models of adjacent clusters have a good number of sim-
ilar entries. We propose a fully distributed algorithm for solving
this problem. The approach relies on minimizing a global mean-
square error criterion regularized by nondifferentiable terms to
promote cooperation among neighboring clusters. A general dif-
fusion forward–backward splitting strategy is introduced. Then,
it is specialized to the case of sparsity promoting regularizers. A
closed-form expression for the proximal operator of a weighted
sum of ℓ1 -norms is derived to achieve higher efficiency. We also
provide conditions on the step-sizes that ensure convergence of the
algorithm in the mean and mean-square error sense. Simulations
are conducted to illustrate the effectiveness of the strategy.

Index Terms—Distributed processing, multitask networks, dif-
fusion LMS, forward-backward splitting approach, sparsity-
inducing coregularizers, adaptive regularization factors.

I. INTRODUCTION

W E consider the problem of distributed adaptive learn-
ing over networks to simultaneously estimate several

parameter vectors from noisy measurements using in-network
processing. Depending on the number of parameter vectors to
estimate, we distinguish between single-task networks and mul-
titask networks. In a single-task scenario, the entire network
aims to estimate a common parameter vector for all nodes. The
nodes are allowed to exchange information with their neigh-
bors to improve their own estimates. Then, the estimates are
combined in order to achieve the solution of the problem. Dif-
ferent cooperation rules have been proposed and studied in the
literature [1]–[17]. Diffusion strategies [4]–[11] are particularly
attractive since they are scalable, robust, and enable continu-
ous learning and adaptation in response to concept drifts. They
have also been shown to outperform consensus implementations
over adaptive networks when constant step-sizes are employed
to enable continuous adaptation [4], [5], [18].
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In this work, we are interested in distributed estimation over
multitask networks: nodes are grouped into clusters, and each
cluster is interested in estimating its own parameter vector (i.e.,
each cluster has its own task). Although clusters may generally
have distinct though related tasks to perform, the nodes may still
be able to capitalize on inductive transfer between clusters to
improve their estimation accuracy. Such situations occur when
the tasks of nearby clusters are correlated, which happens, for
instance, in monitoring applications where agents in a network
need to track multiple targets moving along correlated trajecto-
ries. Multitask diffusion estimation problems of this type have
been addressed before in two main ways.

In a first scenario, no prior information on possible relation-
ships between tasks is assumed and nodes do not know which
other nodes share the same task. In this case, all nodes cooper-
ate with each other as dictated by the network topology. It was
shown in [11] that the diffusion iterates will end up converging
to a Pareto optimal solution corresponding to a multi-objective
optimization problem. If, on the other hand, the only available
information is that clusters may exist in the network (but their
structures are not known), then extended diffusion strategies can
be developed [19]–[22] for setting the combination weights in
an online manner in order to enable automatic network cluster-
ing and, subsequently, to limit cooperation between clustered
agents. In a second scenario, it is assumed that nodes know
which clusters they belong to. In this case, multitask diffusion
strategies can be derived by exploiting this information on the
relationships between tasks. A couple of useful works have ad-
dressed variations of this scenario. For example, in [23], a dif-
fusion LMS strategy estimates spatially-varying parameters by
exploiting the spatio-temporal correlations of the measurements
at neighboring nodes. In [24], it is assumed that there are three
types of parameters: parameters of global interest to all nodes
in the network, parameters of common interest to a subset of
nodes, and a collection of parameters of local interest. A diffu-
sion strategy was developed to perform estimation under these
conditions. A similar work dealing with incremental strategies
instead of diffusion strategies appears in [25]. Likewise, in the
works [26], [27], distributed algorithms are developed to esti-
mate node-specific parameter vectors that lie in a common latent
signal subspace. In another work [28], the parameter space is
decomposed into two orthogonal subspaces, with one of the
subspaces being common to all nodes. There is yet another
useful way to exploit and model relationships among tasks,
namely, to formulate optimization problems with appropriate
co-regularizers between nodes. The strategy developed in [29]
adds squared ℓ2-norm co-regularizers to the mean-square-error
criterion in order to promote smoothness of the graph signal. Its
convergence behavior is studied over asynchronous networks
in [30].

In some applications, however, such as cognitive radio [24],
[28] and remote sensing [29], it may happen that the optimum
parameter vectors of neighboring clusters have a large number
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of similar entries and a relatively small number of distinct com-
ponents. In this work, we build on the second scenario where the
composition of the clusters is assumed to be known and where
nodes know which cluster they belong to. It is then advantageous
to develop distributed strategies that involve cooperation among
adjacent clusters in order to promote and exploit such similarity.
Although the current problem seems to be related to the prob-
lem studied in [29], it should be noted that the differentiable
regularizers used in [29] are not effective when sparsity pro-
moting regularization is required. Moreover, when neighboring
nodes belonging to different clusters are aware of the indices of
common and distinct entries, and when these indices are fixed
over time, one may appeal to the multitask diffusion strategies
developed in [24], [28]. However, in the current work, we are in-
terested in solutions that are able to handle situations where the
only available information is that the optimum parameter vectors
of neighboring clusters have a large number of similar entries.
A multitask diffusion algorithm with ℓ1-norm co-regularizers
is proposed in [31] to address this problem leading to a sub-
gradient descent method distributed among the agents. The aim
of this work is to introduce a more general approach for solv-
ing such convex but non-differentiable problems by employing
instead a diffusion forward-backward splitting strategy based
on the proximal projection operator. Before proceeding, we re-
call the forward-backward splitting approach in a single-agent
deterministic environment [32]–[34].

Consider the problem

min
x∈RM

f(x) + g(x) (1)

with f a real-valued differentiable convex function whose gradi-
ent is β-Lipschitz continuous, and g a real-valued convex func-
tion. The proximal gradient method or the forward-backward
splitting approach for solving (1) is given by the iteration [32],
[34]:

x(i + 1) = proxµg (x(i) − µ∇f(x(i))), (2)

where µ is a constant step-size chosen such that µ ∈ (0, 2β−1 ]
to ensure convergence to the minimizer of (1). The gradient-
descent step is the forward step (explicit step) and the proximal
step is the backward step (implicit step). The proximal operator
of µg(x) at a given point v ∈ RM is a real-valued map given
by [34]:

proxµg (v) = argmin
x∈RM

g(x) +
1
2µ

∥x − v∥2 . (3)

Since the proximal operator needs to be calculated at each it-
eration in (2), it is important to have a closed form expression
for evaluating it. In this work, we derive a multitask diffusion
adaptation strategy where each node employs this approach for
minimizing a cost function with sparsity based co-regularizers.
Instead of using iterative algorithms for evaluating the proximal
operator of a weighted sum of ℓ1-norms at each iteration [33],
we shall instead derive a closed form expression that allows us
to compute it exactly. We shall also examine under which condi-
tions on the step-sizes the proposed multitask diffusion strategy
is mean and mean-square stable. Simulations are conducted to
show the effectiveness of the proposed strategy. An adaptive
rule to guarantee an appropriate cooperation between clusters is
also introduced.

Notation: In what follows, normal font letters denote scalars,
boldface lowercase letters denote column vectors, and boldface

uppercase letters denote matrices. We use the symbol (·)⊤ to de-
note matrix transpose, the symbol (·)−1 to denote matrix inverse,
and the symbol Tr(·) to denote the trace operator. The operator
col{·} stacks the column vectors entries on top of each other.
The symbol ⊗ denotes the Kronecker product operation. The
identity matrix of size N × N is denoted by IN . The N × M
matrices of zeros and ones are denoted by 0N ×M and 1N ×M ,
respectively. The setNk denotes the neighbors of node k includ-
ing k. The set N−

k denotes the neighbors of node k excluding k.
Finally, Ci denotes the set of nodes in the i-th cluster and C(k)
denotes the cluster to which node k belongs.

II. MULTITASK DIFFUSION LMS WITH

FORWARD-BACKWARD SPLITTING

A. Network Model and Problem Formulation

We consider a network of N nodes grouped into Q connected
clusters in a predefined topology. Clusters are assumed to be
connected, i.e., there exists a path between any pair of nodes
in the cluster. At every time instant i, every node k has access
to a zero-mean measurement dk (i) and a zero-mean M × 1
regression vector xk (i) with positive covariance matrix Rx,k =
E{xk (i)x⊤

k (i)} > 0. We assume the data to be related via the
linear model:

dk (i) = x⊤
k (i)wo

k + zk (i), (4)

where wo
k is the M × 1 unknown parameter vector, also called

task, we wish to estimate at node k, and zk (i) is a zero-mean
measurement noise of variance σ2

z ,k , independent of xℓ(j) for
all ℓ and j, and independent of zℓ(j) for ℓ ̸= k or i ̸= j. We
assume that all nodes in a cluster are interested in estimating the
same parameter vector, namely, wo

k = wo
Cq

whenever k belongs
to cluster Cq . However, if cluster Cp is connected to cluster Cq ,
that is, there exists at least one link connecting a node from Cp to
a node from Cq , vectors wo

Cp
and wo

Cq
are assumed to have a large

number of similar entries and only a relatively small number of
distinct entries. Cooperation across these clusters can therefore
be beneficial to infer wo

Cp
and wo

Cq
.

Considerable interest has been shown in the literature about
estimating an optimum parameter vector wo subject to the prop-
erty of being sparse. Motivated by the well-known LASSO
problem [35] and compressed sensing framework [36], dif-
ferent techniques for sparse adaptation have been proposed.
For example, the authors in [37], [38] promote sparsity within
an LMS framework by considering regularizers based on the
ℓ1-norm, reweighed ℓ1-norm, and convex approximation of
ℓ0-norm. In [39], projections of streaming data onto hyper-
slabs and weighted ℓ1 balls are used instead of minimizing
regularized costs recursively. Proximal forward-backward split-
ting is considered in an adaptive scenario in [40]. In the con-
text of distributed learning over single-task networks, diffusion
LMS methods promoting sparsity have been proposed. Sparse
diffusion LMS strategies using subgradient methods are pro-
posed in [41]–[43] and using proximal methods are proposed
in [44]–[46]. In [47], the authors employ projection-based tech-
niques [39] to derive distributed diffusion algorithms promoting
sparsity, and in [48] a diffusion LMS algorithm for estimat-
ing an s-sparse vector is proposed based on adaptive greedy
techniques similar to [49]. These techniques estimate the posi-
tions of non-zero entries in the target vector, and then perform
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computations on this subset. More generally, diffusion strategies
based on proximal gradient for minimizing general costs (not
necessarily mean-square error costs) and subject to a broader
class of constraints on the parameter vector to be estimated
(including sparsity) are derived in [46].

Our purpose is to derive an adaptive learning algorithm over
multitask networks where optimum parameter vectors of neigh-
boring clusters share a large number of similar entries and a
relatively small number of distinct entries. Consider nodes k
and ℓ of neighboring clusters C(k) and C(ℓ), and let δk,ℓ denote
the vector difference wC(k) − wC(ℓ) . Promoting the sparsity of
δk,ℓ can be performed by considering the pseudo ℓ0-norm of
δk,ℓ as it denotes the number of nonzero entries. Nevertheless,
∥δk,ℓ∥0 is a non-convex co-regularizer that leads to computa-
tional challenges. A common alternative is to use the ℓ1-norm
regularization function defined as

f1(δk,ℓ) = ∥δk,ℓ∥1 =
M∑

m=1

|[δk,ℓ ]m |. (5)

Since the ℓ1-norm uniformly shrinks all the components of a
vector and does not distinguish between zero and non-zero
entries [50], it is common in the sparse adaptive filtering
framework [37], [39]–[42], [44], [45], [47], [51] to consider
a weighted formulation of the ℓ1-norm. Weighted ℓ1-norm was
designed to reduce the bias induced by the ℓ1-norm and en-
hance the penalization of the non-zero entries of a vector [39],
[50], [52]. Given the weight vector αkℓ = [α1

kℓ , . . . ,α
M
kℓ ]

⊤, with
αm

kℓ > 0 for all m, the weighted ℓ1-norm is defined as:

f2(δk,ℓ) =
M∑

m=1

αm
kℓ

∣∣[δk,ℓ ]m
∣∣. (6)

The weights are usually chosen as:

αm
kℓ =

1
ϵ + |[δo

k,ℓ ]m | , m = 1, . . . , M, (7)

where δo
k,ℓ = wo

k − wo
ℓ . Since the optimum parameter vectors

are not available beforehand, we set

αm
kℓ(i) =

1
ϵ + |[δk,ℓ(i − 1)]m | , m = 1, . . . ,M, (8)

at each iteration i, where ϵ is a small constant to prevent the
denominator from vanishing and δk,ℓ(i) is the estimate of δo

k,ℓ
at nodes k and ℓ and iteration i. This technique, also known as
reweighted ℓ1 minimization [50], is performed at each iteration
of the stochastic optimization process. It has been shown in [50]
that, by minimizing (6) with the weights (8), one minimizes
the log-sum penalty function,

∑M
m=1 log(ϵ + |[δk,ℓ ]m |), which

acts like the ℓ0-norm by allowing a relatively large penalty
to be placed on small nonzero coefficients and more strongly
encourages them to be set to zero. In the sequel, we shall use
f(wC(k) − wC(ℓ)) to refer to the unweighted or reweighted ℓ1-
norm promoting the sparsity of wC(k) − wC(ℓ) .

It is sufficient for this work to derive a distributed learning
algorithm of the LMS type. We shall therefore assume that the
local cost function Jk (wC(k)) at node k is the mean-square error
criterion defined by:

Jk (wC(k)) = E
{
|dk (i) − x⊤

k (i)wC(k) |2
}
. (9)

Combining local mean-square-error cost functions and regu-
larization functions, the cooperative multitask estimation prob-
lem is formulated as the problem of seeking a fully distributed
solution for solving:

min
wC1 ,...,wCQ

J
glob(wC1 , . . . ,wCQ ) = min

wC1 ,...,wCQ

N∑

k=1

Jk (wC(k))

+ η
N∑

k=1

∑

ℓ∈Nk \C(k)

ρkℓf(wC(k) − wC(ℓ)), (10)

where η > 0 is the regularization strength used to enforce spar-
sity. It ensures a tradeoff between fidelity to the measurements
and prior information on the relationships between tasks. The
weights ρkℓ ≥ 0 aim at locally adjusting the regularization
strength. The notation Nk \ C(k) denotes the set of neighboring
nodes of k that are not in the same cluster as k.

Note that the regularization terms (5) and (6) are symmetric
with respect to the weight vectors wC(k) and wC(ℓ) , that is,
f(wC(k) − wC(ℓ)) = f(wC(ℓ) − wC(k)). Due to the summation
over the N nodes, each term f(wC(k) − wC(ℓ)) can be viewed
as weighted by (ρk ℓ +ρℓ k )

2 in (10). Problem (10) can therefore be
written in an alternative way as:

min
wC1 ,...,wCQ

J
glob(wC1 , . . . ,wCQ ) = min

wC1 ,...,wCQ

N∑

k=1

Jk (wC(k))

+ η
N∑

k=1

∑

ℓ∈Nk \C(k)

pkℓf(wC(k) − wC(ℓ)) (11)

where the factors {pkℓ} are symmetric, i.e., pkℓ = pℓk , and are
given by:

pkℓ ! (ρkℓ + ρℓk )
2

. (12)

One way to avoid symmetrical regularization is to con-
sider an alternative problem formulation defined in terms of
Q Nash equilibrium problems as done in [29] with ℓ2-norm
co-regularizers. In this paper, we shall focus on problem (10).

Let us consider the variable wCj of the j-th cluster. Given
wC(ℓ) with ℓ ∈ Nk \ Cj and k ∈ Cj , the subdifferential of

J
glob(wC1 , . . . ,wCQ ) in (11) with respect to wCj is given by:

∂wCj
J

glob(wC1 , . . . ,wCQ )

=
∑

k∈Cj

∇wCj
Jk (wCj )+2η

∑

k∈Cj

∑

ℓ∈Nk \Cj

pkℓ∂wCj
f(wCj−wC(ℓ)),

(13)

where we used the fact that the regularization terms (5), (6),
and the regularization factors {pkℓ} are symmetric. Since we
are interested in a distributed strategy for solving (10) that re-
lies only on in-network processing, we associate the following
regularized problem (Pj ) with each cluster Cj :

min
wCj

JCj (wCj ) = min
wCj

∑

k∈Cj

E
{
|dk (i) − x⊤

k (i)wCj |2
}

+ 2η
∑

k∈Cj

∑

ℓ∈Nk \Cj

pkℓf(wCj − wC(ℓ)). (14)
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Given wC(ℓ) with ℓ ∈ Nk \ Cj , note that the costs in prob-
lems (10) and (14) have the same subdifferential relative to
wCj . In order that each node can solve the problem in an au-
tonomous and adaptive manner using only local interactions, we
shall derive a distributed iterative algorithm for solving (10) by
considering (14) since both costs have the same subdifferential
information.

B. Problem Relaxation

We shall now extend the derivations in [7], [9], [53] to handle
multitask estimation problems with nondifferentiable functions.
In the sequel, we write wk instead of wC(k) for simplicity of
notation. First, we associate with each node k an unregularized
local cost function J loc

k (·) and a regularized local cost function
J

loc
k (·) of the form:

J loc
k (wk ) =

∑

ℓ∈Nk ∩C(k)

cℓkE
{
|dℓ(i) − x⊤

ℓ (i)wk |2
}
, (15)

J
loc
k (wk ) =

∑

ℓ∈Nk ∩C(k)

cℓkE
{
|dℓ(i) − x⊤

ℓ (i)wk |2
}

+ 2η
∑

ℓ∈Nk \C(k)

pkℓf(wk − wℓ), (16)

where Nk ∩ C(k) denotes the set of nodes in the neighborhood
of node k that belongs to its cluster, and {cℓk} are non-negative
weights satisfying

N∑

k=1

cℓk = 1, and cℓk = 0 if k /∈ Nℓ ∩ C(ℓ). (17)

Note that wk = wℓ whenever ℓ ∈ Nk ∩ C(k). Both costs (15)
and (16) consist of a convex combination of mean-square errors
in the neighborhood of node k but limited to its cluster. In
addition, expression (16) takes interactions among neighboring
clusters into account. Let us consider node k belonging to cluster
Cj , i.e., Cj = C(k). It can be checked that JCj (wCj ) in (14) can
be written as:

JCj (wCj ) =
∑

ℓ∈Cj

J
loc
ℓ (wℓ) = J

loc
k (wk ) +

∑

ℓ∈Cj \{k}

J
loc
ℓ (wℓ),

(18)
The term

∑
ℓ∈Cj \{k} J

loc
ℓ (wℓ) contains terms promoting rela-

tionships between nodes ℓ ∈ Cj \ {k} and their neighbors that
are outside Cj but not necessarily in the neighborhood of node
k. To limit these inter-cluster information exchanges to node k

and its extra-cluster neighbors, we relax
∑

ℓ∈Cj \{k} J
loc
ℓ (wℓ) to∑

ℓ∈Cj \{k} J loc
ℓ (wℓ). Since (15) is second-order differentiable, a

completion-of-squares argument shows that each J loc
ℓ (wℓ) can

be expressed as [7]:

J loc
ℓ (wℓ) = J loc

ℓ (wloc
ℓ ) + ∥wℓ − wloc

ℓ ∥2
Rℓ

, (19)

where the notation ∥x∥2
Σ denotes x⊤Σx for any nonnegative

definite matrix Σ, wloc
ℓ is the minimizer of J loc

ℓ (wℓ), and Rℓ is
given by:

Rℓ =
∑

k∈Nℓ ∩C(ℓ)

ckℓRx,k . (20)

Thus, using (16), (18), and (19) and dropping the constant
term J loc

ℓ (wloc
ℓ ), we can replace the original cluster cost (14) by

the following cost function for cluster C(k) at node k:

J
′
C(k)(wk ) =

∑

ℓ∈Nk ∩C(k)

cℓkE
{
|dℓ(i) − x⊤

ℓ (i)wk |2
}

+ 2η
∑

ℓ∈Nk \C(k)

pkℓf(wk − wℓ) +
∑

ℓ∈C(k)\{k}

∥wℓ − wloc
ℓ ∥2

Rℓ
. (21)

Equation (21) is an approximation relating the local cost
function J

loc
k (wk ) at node k to the global cost function (14)

associated with the cluster C(k). Node k cannot minimize (21)
directly since this cost still requires global information that may
not be available in its neighborhood. To avoid access to infor-
mation via multihop, we relax J

′
C(k)(wk ) by limiting the sum

in the third term on the RHS of (21) over the neighbors of
node k. In addition, since the covariance matrices Rx,ℓ may not
be known beforehand within the context of online learning, a
useful strategy proposed in [7] is to substitute the covariance
matrices Rℓ by diagonal matrices of the form bℓkIM , where
bℓk are nonnegative coefficients that allow to assign different
weights to different neighbors. Later, these coefficients will be
incorporated into a left stochastic matrix and the designer does
not need to worry about their selection. Based on the arguments
presented so far, the cluster cost function at each node k can be
relaxed as follows:

J
′′
C(k)(wk ) =

∑

ℓ∈Nk ∩C(k)

cℓkE
{
|dℓ(i) − x⊤

ℓ (i)wk |2
}

+ 2η
∑

ℓ∈Nk \C(k)

pkℓf(wk − wℓ) +
∑

ℓ∈N−
k ∩C(k)

bℓk

∥∥wk − wloc
ℓ

∥∥2
.

(22)

Since this cost function only relies on data available in the
neighborhood of each node k, we can now proceed to derive
distributed strategies.

The first and third terms on the RHS of (22) are second-order
differentiable and strictly convex. The second term is convex but
not continuously differentiable. In [31], a multitask Adapt-then-
Combine (ATC) diffusion algorithm was derived using subgradi-
ent techniques. The purpose of this work is to obtain an iterative
algorithm for solving the convex minimization problem (22)
using a forward-backward splitting approach.

C. Multitask Diffusion With Forward-Backward
Splitting Approach

Let wk (i) denote the estimate of wo
k at node k and itera-

tion i. Considering a forward-backward splitting strategy for
solving (22), we have:

wk (i + 1) = prox2ηνk g̃k , i

(
wk (i) − νk∇wk J ′′

C(k)(wk (i))
)
,

(23)
with νk a positive step-size parameter,

g̃k ,i(wk ) =
∑

ℓ∈Nk \C(k)

pkℓf(wk − wℓ(i)), (24)
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and J ′′
C(k)(wk ) denoting the unregularized part of J

′′
C(k)(wk )

limited to the first and third terms on the RHS of (22). Let

φk (i + 1) = wk (i) − νk∇wk J ′′
C(k)(wk (i)). (25)

Node k can run the Adapt-then-Combine (ATC) form of
diffusion [7] for evaluating φk (i + 1). Thus, we arrive at the
following Adapt-then-Combine (ATC) diffusion strategy with
forward-backward splitting for solving problem (10) in a fully
distributed adaptive manner:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψk (i + 1) = wk (i)

+ µk

∑

ℓ∈Nk ∩C(k)

cℓk xℓ(i)[dℓ(i) − x⊤
ℓ (i)wk (i)],

φk (i + 1) =
∑

ℓ∈Nk ∩C(k)
aℓkψℓ(i + 1),

wk (i + 1) = proxηµk gk , i + 1
(φk (i + 1)),

(26)
where µk = 2νk is introduced to avoid an extra factor of 2 mul-
tiplying νk and coming from evaluating the gradient of squared
quantities in J ′′

C(k)(wk ), {aℓk} are nonnegative combination co-
efficients satisfying:

N∑

ℓ=1

aℓk = 1, and aℓk = 0 if ℓ /∈ Nk ∩ C(k), (27)

and

gk,i+1(wk ) !
∑

ℓ∈Nk \C(k)

pkℓf(wk − φℓ(i + 1)). (28)

Functions g̃k ,i(·) in (24) and gk,i+1(·) in (28) are iteration
dependent through wℓ(i) and φℓ(i + 1). Note that we have
substituted wℓ(i) in (24) by φℓ(i + 1) in (28) since φℓ(i + 1) is
an updated estimate of wℓ(i) at node ℓ. The proximal operator
of ηµkgk,i+1(·) in the third step of (26) needs to be evalu-
ated at each iteration i + 1 and for all nodes k in the network.
A closed-form expression is recommended to achieve higher
computational efficiency. We shall derive such closed-form ex-
pression when f in (28) is selected either as the ℓ1-norm or the
reweighted ℓ1-norm — see Section II-D for details.

The multitask diffusion LMS (26) with forward-backward
splitting starts with an initial estimate wk (0) for all k, and
repeats (26) at each instant i ≥ 0 and for all k. In the first
step of (26), which corresponds to the adaptation step, node
k receives from its intra-cluster neighbors their raw data
{dℓ(i),xℓ(i)}, combines this information through the coeffi-
cients {cℓk}, and uses it to update its estimate wk (i) to an
intermediate estimate ψk (i + 1). The second step in (26) is a
combination step where node k receives the intermediate es-
timates {ψℓ(i + 1)} from its intra-cluster neighbors and com-
bines them through the coefficients {aℓk} to obtain the interme-
diate value φk (i + 1). Finally, in the third step in (26), node k
receives the intermediate estimates {φℓ(i + 1)} from its neigh-
bors that are outside its cluster and evaluates the proximal op-
erator of the function in (28) at φk (i + 1) to obtain wk (i + 1).
To run the algorithm, each node k only needs to know the step-
size µk , the regularization strength η, the regularization weights
{pkℓ}ℓ∈Nk \C(k) , and the coefficients {aℓk , cℓk}ℓ∈Nk ∩C(k) satis-
fying conditions (17) and (27). The scalars {aℓk , cℓk} and {ρkℓ}

correspond to weighting coefficients over the edges linking node
k to its neighbors ℓ according to whether these neighbors lie
inside or outside its cluster. There are several ways to select
these coefficients [4], [5], [7], [29]. In Section IV, we propose
an adaptive rule for selecting each regularization weight pkℓ

based on a measure of the sparsity level of wo
k − wo

ℓ at node
k. Finally, note that alternative implementations of (26) may be
considered. In particular, the adaptation step can be followed
by the proximal step, before or after aggregation as in the pos-
sible Adapt-then-Combine and Combine-then-Adapt diffusion
strategies.

Algorithm (26) may be applied to multitask problems involv-
ing any type of coregularizers f(·) provided that the proximal
operator of a weighted sum of these regularizers can be as-
sessed in closed form. In the next section, we shall focus on the
particular case of sparsity promoting regularizers.

D. Proximal Operator of Weighted Sum of ℓ1-Norms

We shall now derive a closed form expression for the proxi-
mal operator of the convex function gk,i+1(wk ) in (28). Con-
sidering both regularizations addressed in this work, that is, the
ℓ1-norm (5) and the reweighted ℓ1-norm (6), we write:

gk,i+1(wk )=
∑

ℓ∈Nk \C(k)

pkℓ

M∑

m=1

αm
kℓ(i)

∣∣[wk ]m − [φℓ(i + 1)]m
∣∣

=
M∑

m=1

Φk,m,i+1([wk ]m ) (29)

where Φk,m,i+1([wk ]m ) is the iteration-dependent function
given by:

Φk,m,i+1([wk ]m ) =
∑

ℓ∈Nk \C(k)

pkℓ αm
kℓ(i)

∣∣[wk ]m −[φℓ(i + 1)]m
∣∣.

(30)
Since gk,i+1(wk ) is fully separable, its proximal operator can
be evaluated component-wise [34]:

[proxηµk gk , i + 1
(φk (i + 1))]m

= proxηµk Φk , m , i + 1
([φk (i + 1)]m ), ∀m = 1, . . . , M. (31)

For clarity of presentation, we shall now derive the proximal
operator of a function h(·) similar to Φk,m,i+1 . Next, we shall
establish the closed-form expression for proxηµk Φk , m , i + 1

(·) by
identification.

Let h : R → R be a combination of absolute value functions
defined as:

h(x) !
J∑

j=1

cj hj (x) =
J∑

j=1

cj |x − bj |, (32)

with cj > 0 for all j and b1 < b2 < . . . < bJ . Note that this
ordering is assumed for convenience of derivation and does not
affect the final result. Iterative algorithms have been proposed
in the literature for evaluating the proximal operator of sums of
composite functions [32], [33]. We are, however, able to derive
a closed-form expression for (32) as detailed in the sequel. From
the optimality condition for (3), namely that zero belongs to the
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Fig. 1. Decomposition of R into J + 1 intervals given by (37)–(40). The width of the intervals depends on the weights {cj }J
j=1 and on the coefficients {bj }J

j=1 .

subgradient set at the minimizer proxλh(v), we have,

0 ∈ ∂h(proxλh(v)) +
1
λ

(proxλh(v) − v)

⇒ v − proxλh(v) ∈ λ∂h(proxλh(v)). (33)

Since x ∈ R and cj are non-negative, we have [54, Chapter 5:
Lemma 10]:

∂

⎛

⎝
J∑

j=1

cjhj (x)

⎞

⎠ =
J∑

j=1

cj∂hj (x) =
J∑

j=1

cj∂|x − bj |. (34)

Hence, the subdifferential of the real valued convex function
h(x) in (32) is:

∂h(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
J∑

j=1

cj , if x < b1 ,

c1 · [−1, 1] −
J∑

j=2

cj , if x = b1 ,

c1 −
J∑

j=2

cj , if b1 < x < b2 ,

...

J−1∑

j=1

cj + cJ · [−1, 1], if x = bJ ,

J∑

j=1

cj , if x > bJ .

(35)

From (33) and (35), extensive but routine calculations lead to the
following implementation for evaluating the proximal operator
of h in (32). Let us decompose R into J + 1 intervals such that
R =

⋃J
n=0 In where, as illustrated in Fig. 1:

I0 !
]
−∞ , b1 − λ

J∑

j=1

cj

[
, (36)

In ! In,1 ∪ In,2 , n = 1, . . . , J, (37)

with

In ,1 !
[
bn − λ

(
J∑

j=n

cj −
n−1∑

j=1

cj

)
, bn − λ

(
J∑

j=n +1

cj −
n∑

j=1

cj

) [
,

n = 1, . . . , J, (38)

In ,2 !
[
bn −λ

(
J∑

j=n +1

cj −
n∑

j=1

cj

)
, bn +1 −λ

(
J∑

j=n +1

cj −
n∑

j=1

cj

) [
,

n = 1, . . . , J − 1, (39)

IJ,2 !
[
bJ + λ

J∑

j=1

cj ,+∞
[
. (40)

Depending on the interval to which v belongs, we evaluate
the proximal operator according to:

proxλh(v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v + λ
J∑

j=1
cj , if v ∈ I0

bn , if v ∈ In,1

v + λ

(
J∑

j=n+1
cj −

n∑
j=1

cj

)
, if v ∈ In,2 .

(41)

In order to make clearer how the operator in (41) works, we plot
proxh(v) for three expressions of h in Fig. 2.

It can be checked that the proximal operator in (41) can be
written more compactly as:

proxλh(v) = v − λΓ(v), (42)

where

Γ(v) =
1
2

J∑

n=1

{∣∣∣∣∣∣
v − bn

λ
−

n−1∑

j=1

cj +
J∑

j=n

cj

∣∣∣∣∣∣

−

∣∣∣∣∣∣
v − bn

λ
−

n∑

j=1

cj +
J∑

j=n+1

cj

∣∣∣∣∣∣

}
. (43)

Comparing (33) and (42), we remark that Γ(v) is a subgradi-
ent of h at proxλh(v). Based on equation (41), Γ(v) is bounded
as follows:

|Γ(v)| ≤
J∑

j=1

cj (44)

for all v. In fact, equality holds when v belongs to I0 in (36) or
IJ,2 in (40). When v belongs to an interval of the form of In,1
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Fig. 2. Proximal operator proxλh
(v) versus v ∈ R with λ = 1 and h : R → R, h(x) =

∑J

j=1 cj |x − bj |. (a) h(x) = |x|. (b) h(x) = 1
2 |x − 2|. (c) h(x) =

1
5 |x + 1| + 3

10 |x − 1| + 1
2 |x − 4|.

in (38), we have:

Γ(v) =
v − bn

λ
∈

[
n−1∑

j=1

cj −
J∑

j=n

cj ,
n∑

j=1

cj −
J∑

j=n+1

cj

]

⊂
[
−

J∑

j=1

cj ,
J∑

j=1

cj

]
, (45)

and when it belongs to an interval of the form of In,2 in (39),
we have:

Γ(v) =
n∑

j=1

cj −
J∑

j=n+1

cj ∈
[
−

J∑

j=1

cj ,
J∑

j=1

cj

]
. (46)

We note that the upper bound in (44) is independent of λ.
Using (42), the m-th entry of proxηµk gk , i + 1

(φk (i + 1)) in (31)
can be written as:

[proxηµk gk , i + 1
(φk (i + 1))]m

= [φk (i + 1)]m − ηµkΓk,m,i+1([φk (i + 1)]m ). (47)

Note that Γk,m,i+1([φk (i + 1)]m )] is a function of the
form (43) where, based on (30), the coefficients bj and cj

are given by [φℓ(i + 1)]m and pkℓ αm
kℓ(i), respectively, and

the scalar v corresponds to the m-th component of the vec-
tor φk (i + 1). Using the boundedness of Γk,m,i+1(·) in (44),
we obtain:

|Γk,m,i+1([φk (i + 1)]m )| ≤
∑

ℓ∈Nk \C(k)

pkℓ αm
kℓ(i) ! sm

k (i)

(48)
for all [φk (i + 1)]m . For the ℓ1-norm (5), we have:

sm
k (i) = sk !

∑

ℓ∈Nk \C(k)

pkℓ , (49)

for all i and m = 1, . . . ,M . For the reweighted ℓ1-norm (6), we
have:

sm
k (i) =

∑

ℓ∈Nk \C(k)

pkℓ

ϵ + |[δk,ℓ(i − 1)]m |

=
1
ϵ

∑

ℓ∈Nk \C(k)

pkℓ

1 + |[δk , ℓ (i−1)]m |
ϵ

≤ sk

ϵ
(50)

for all i and m = 1, . . . , M . Using (47), the proximal operator
of ηµkgk,i+1 can be written as:

proxη µk gk , i + 1
(φk (i + 1)) = φk (i + 1) − ηµk Γk ,i+1 (φk (i + 1)),

(51)

where Γk,i+1(φk (i + 1)) is the M × 1 vector given by:

Γk,i+1(φk (i + 1))

= col
{

Γk,1,i+1([φk (i + 1)]1 , . . . ,Γk,M ,i+1([φk (i + 1)]M )
}

.

(52)

As a consequence, the ℓ2-norm of the vector Γk,i+1(·) can be
bounded as:

∥Γk,i+1(·)∥2 ≤ sk

√
M, for the ℓ1-norm, (53)

∥Γk,i+1(·)∥2 ≤ sk

√
M

ϵ
, for the reweighted ℓ1-norm. (54)

III. STABILITY ANALYSIS

A. Error Vector Recursion

We shall now analyze the stability of the multitask diffusion
algorithm (26) in the mean and mean-square-error sense. We first
define at node k and iteration i the weight error vector w̃k (i) !
wo

k − wk (i) and the intermediate error vector φ̃k (i) ! wo
k −
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φk (i). Furthermore, we introduce the network vectors:

w̃(i) ! col {w̃1(i), . . . , w̃N (i)} (55)

φ(i) ! col {φ1(i), . . . ,φN (i)} (56)

φ̃(i) ! col
{

φ̃1(i), . . . , φ̃N (i)
}

. (57)

Let M and Rx(i) be the MN × MN block diagonal matrices
defined as:

M ! diag {µkIM }N
k=1 (58)

Rx(i) ! diag

{
∑

ℓ∈Nk ∩C(k)

cℓk xℓ(i)x⊤
ℓ (i)

}N

k=1

(59)

and pzx(i) be the MN × 1 block vector defined as:

pzx(i) ! C⊤col
{
xk (i) zk (i)

}N

k=1 , (60)

where C ! C ⊗ IM and C is the N × N right-stochastic ma-
trix whose ℓk-th entry is cℓk . Let A ! A ⊗ IM where A is
the N × N left-stochastic matrix whose ℓk-th entry is aℓk . Sub-
tracting wo

k from both sides of the first and second step in (26),
and using the linear data model (4), we obtain:

φ̃(i + 1) = A⊤[IM N − MRx(i)]w̃(i) − A⊤Mpzx(i).
(61)

Subtracting wo
k from both sides of the third step in (26), and

using result (51), we get:

w̃k (i + 1) = φ̃k (i + 1) + ηµk Γk,i+1(φk (i + 1)). (62)

Hence, the network error vector for the diffusion strategy (26)
evolves according to the following recursion:

w̃(i + 1) = A⊤[IM N − MRx(i)] w̃(i) − A⊤Mpzx(i)

+ η MΓi+1(φ(i + 1)),

(63)

where Γi+1(φ(i + 1)) is the N × 1 block vector whose k-th
block is given by (52), namely,

Γi+1(φ(i + 1)) ! col
{
Γk,i+1(φk (i + 1))

}N

k=1
. (64)

In order to make the presentation clearer, we shall use the fol-
lowing notation for terms in recursion (63):

B(i) ! A⊤[IM N − MRx(i)], (65)

g(i) ! A⊤Mpzx(i), (66)

r(i + 1) ! η MΓi+1(φ(i + 1)). (67)

Hence, recursion (63) can be rewritten as follows:

w̃(i + 1) = B(i)w̃(i) − g(i) + r(i + 1). (68)

Before proceeding, let us introduce the following assumptions
on the regression data and step-sizes.

Assumption 1: (Independent regressors) The regression vec-
tors xk (i) arise from a zero-mean random process that is tem-
porally white and spatially independent.

It follows that xk (i) is independent of wℓ(j) for i ≥ j and
for all ℓ. This assumption is commonly used in adaptive filtering
since it helps simplify the analysis. Furthermore, performance

results obtained under this assumption match well the actual
performance of stand alone filters for sufficiently small step-
sizes [55].

Assumption 2: (Small step-sizes) The step-sizes µk are suf-
ficiently small so that terms that depend on higher order powers
of the step-sizes can be ignored.

B. Mean Behavior Analysis

Taking the expectation of both sides of (68), using Assump-
tion 1, and E{pzx(i)} = 0, we obtain that the mean error vector
evolves according to the following recursion:

E{w̃(i + 1)} = BE{w̃(i)} + E{r(i + 1)}, (69)

where

B ! A⊤(IM N − MRx), (70)

Rx ! E{Rx(i)}= diag

{
∑

ℓ∈Nk ∩C(k)

cℓkRx,ℓ

}N

k=1
(71)

E{r(i + 1)} ! ηME{Γi+1(φ(i + 1))}. (72)

The following theorem guarantees the mean stability of the
multitask diffusion LMS (26) with forward-backward splitting.

Recall that the block maximum norm of an N × 1 block
vector x = col{xk}N

k=1 and the induced block maximum norm
of an N × N block matrix X are defined as [7]:

∥x∥b,∞ = max
1≤k≤N

∥xk∥2 ,

∥X∥b,∞ = max
x

∥Xx∥b,∞

∥x∥b,∞
, (73)

Theorem 1: (Stability in the mean) Assume data model (4)
and Assumption 1 hold. Then, for any initial conditions,
the multitask diffusion strategy (26) converges in the mean
to a small bounded region of the order of µmax , i.e.,
limi→∞ E{∥w̃(i)∥b,∞} = O(µmax), if the step-sizes are cho-
sen such that:

0 < µk <
2

λmax(
∑

ℓ∈Nk ∩C(k) cℓkRx,ℓ)
, k = 1, . . . , N,

(74)
where µmax ! max1≤k≤N µk and λmax(·) is the maximum
eigenvalue of its matrix argument. The block maximum norm
of the bias can be upper bounded as:

lim
i→∞

∥E{w̃(i)}∥b,∞ ≤ η µmax smax
√

M

1 − ∥B∥b,∞
, (75)

lim
i→∞

∥E{w̃(i)}∥b,∞ ≤ 1
ϵ
· η µmax smax

√
M

1 − ∥B∥b,∞
, (76)

for the ℓ1-norm and the reweighted ℓ1-norm, respectively.
Proof: Iterating (69) starting from i = 0, we arrive to the

following expression:

E{w̃(i + 1)} = Bi+1E{w̃(0)} +
i∑

j=0

Bj E{r(i + 1 − j)},

(77)
whereE{w̃(0)} is the initial condition.E{w̃(i + 1)} converges
when i → ∞ if, and only if, both terms on the RHS of (77)



NASSIF et al.: PROXIMAL MULTITASK LEARNING OVER NETWORKS WITH SPARSITY-INDUCING COREGULARIZATION 6337

converges to finite values. The first term converges to zero as
i → ∞ if the matrix B is stable. A sufficient condition to ensure
the stability of B is to choose the step-sizes according to (74)
(the proof can be obtained using the same arguments as [7,
Theorem 5.1]). We shall now prove the convergence of the
second term on the RHS of (77). To prove the convergence of
the series

∑+∞
j=0 Bj E{r(i + 1 − j)}, it is sufficient to prove

that the series
∑+∞

j=0[Bj E{r(i + 1 − j)}]k converges for k =
1, . . . ,MN . A series is absolutely convergent if each term of
the series can be bounded by a term of an absolutely convergent
series [42]. Since the block maximum norm of a block vector is
greater than or equal to the largest absolute value of its entries,
each term

∣∣[Bj E{r(i + 1 − j)}]k
∣∣ can be bounded as:

∣∣[Bj E{r(i + 1 − j)}]k
∣∣ ≤ ∥B∥j

b,∞ · ∥E{r(i + 1 − j)}∥b,∞

≤ ∥B∥j
b,∞rmax . (78)

The quantity ∥E{r(i + 1 − j)}∥b,∞ is finite for all i and j and
bounded by some constant rmax = O(µmax). In fact, from (72),
we have:

∥E{r(i + 1)}∥b,∞ ≤ ηµmax∥E{Γi+1(φ(i + 1))}∥b,∞ (79)

since ∥M∥b,∞ = µmax. Using (53)–(54), the block maximum
norm of Γi+1(φ(i + 1)) in (64) can be bounded as:

∥Γi+1(φ(i + 1))∥b,∞ ≤ smax

√
M, (ℓ1-norm) (80)

∥Γi+1(φ(i + 1))∥b,∞ ≤ smax
√

M

ϵ
, (rew. ℓ1-norm) (81)

for all i, where smax = max1≤k≤N sk . If the step-sizes are cho-
sen according to (74), the series

∑+∞
j=0 ∥B∥j

b,∞rmax is absolutely
convergent. Therefore, the series

∑+∞
j=0[Bj E{r(i + 1 − j)}]k

is an absolutely convergent series.
Note that when i → ∞, the block maximum norm of the bias

can be bounded as

lim
i→∞

∥E{w̃(i)}∥b,∞ = lim
i→∞

∥∥∥∥∥

i∑

j=0

Bj E{r(i + 1 − j)}

∥∥∥∥∥
b,∞

≤ lim
i→∞

∞∑

j=0

∥Bj E{r(i + 1 − j)}∥b,∞

≤ lim
i→∞

∞∑

j=0

∥B∥j
b,∞rmax =

rmax

1 − ∥B∥b,∞
,

(82)

"

C. Mean-Square-Error Stability

We examine the mean-square-error stability by studying the
convergence of the weighted variance E{∥w̃(i)∥2

Σ}, where Σ
is a positive semi-definite matrix that we are free to choose.
Evaluating the variance, we obtain:

E{∥w̃(i + 1)∥2
Σ} = E{∥w̃(i)∥2

Σ ′} + E{∥g(i)∥2
Σ}

+ ϕ(r(i + 1),Σ,B(i), w̃(i), g(i)),
(83)

where Σ′ ! E{B⊤(i)ΣB(i)} and

ϕ(r(i + 1),B(i), w̃(i), g(i)) = E{∥r(i + 1)∥2
Σ}

+ 2E{r⊤(i + 1)ΣB(i)w̃(i)}− 2E{r⊤(i + 1)Σg(i)}
(84)

is a term coming from promoting relationships between clusters.
The last two terms on the RHS of (84) contain higher-order pow-
ers of the step-sizes. Using Assumption 2, we get the following
approximation:

ϕ(r(i + 1), w̃(i)) ≈ E{∥r(i + 1)∥2
Σ } + 2E{r⊤(i + 1)ΣBw̃(i)}

(85)

Let σ ! vec(Σ) and σ′ ! vec(Σ′) where the vec(·) operator
stacks the columns of a matrix on top of each other. We will
use the notation ∥w̃∥2

σ and ∥w̃∥2
Σ interchangeably to denote

the same quantity w̃⊤Σw̃. Using the property vec(UΣW ) =
(W⊤ ⊗ U)vec(Σ), the relation between σ′ and σ can be ex-
pressed in the following form:

σ′ = Fσ, (86)

where F is the (LN)2 × (LN)2 matrix given by:

F ! E{B⊤(i) ⊗ B⊤(i)} ≈ B⊤ ⊗ B⊤. (87)

The approximation in (87) is reasonable under Assumption
2 [7]. Introducing the matrix G:

G ! E{g(i)g⊤(i)} = A⊤M C⊤diag{Rx,kσ2
z ,k}N

k=1CMA
(88)

and using the property tr(ΣX) = [vec(X⊤)]⊤vec(Σ), the sec-
ond term on the RHS of (83) can be written as:

E{∥g(i)∥2
Σ} = [vec(G⊤)]⊤σ. (89)

Hence, the variance recursion (83) can be expressed as

E{∥w̃(i + 1)∥2
σ} = E{∥w̃(i)∥2

Fσ} + [vec(G⊤)]⊤σ

+ ϕ(r(i + 1),σ, w̃(i)). (90)

Theorem 2: (Mean-square-error Stability) Assume data
model (4) and Assumptions 1 and 2 hold. Then, for any initial
conditions, the multitask diffusion strategy (26) is mean-square
stable if the error recursion (63) is mean stable and the matrix F
is stable. Using the approximation (87), the matrix F is stable
if the step-sizes satisfy (74).

Proof. Since Σ is a positive semi-definite matrix and the
vector r(i + 1) is uniformly bounded for all i, E{∥r(i + 1)∥2

Σ}
can be bounded as

0 ≤ E{∥r(i + 1)∥2
Σ} ≤ κ1 (91)

for all i, where κ1 is a positive constant. Since r(i + 1) is
uniformly bounded for all i, the vector 2r⊤(i + 1)ΣB is also
bounded for all i. Let γmax be a bound on the largest component
of 2r⊤(i + 1)ΣB in absolute value for all i. We obtain

2|E{r⊤(i + 1)ΣBw̃(i)}| ≤ γmax

M N∑

ℓ=1

∣∣E
{
w̃ℓ(i)

}∣∣

= γmax · ∥E
{
w̃(i)

}
∥1 . (92)

Under condition (74) on the step-sizes, the mean error vector
E{w̃(i)} converges to a small bounded region as i → ∞. Hence,
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∥E{w̃(i)}∥1 can be upper bounded by some positive constant
scalar κ2 for all i, and using the approximation (85), |ϕ(r(i +
1),σ, w̃(i))| satisfies:

|ϕ(r(i + 1),σ, w̃(i))| ≤ κ1 + γmaxκ2 (93)

for all i. The positive constant κ3 ! κ1 + γmaxκ2 can be writ-
ten as a scaled multiple of the positive quantity [vec(G⊤)]⊤σ
as κ3 = t[vec(G⊤)]⊤σ where t ≥ 0 [42]. We arrive at the fol-
lowing inequality for (90):

E{∥w̃(i + 1)∥2
σ} ≤ E{∥w̃(i)∥2

Fσ} + (1 + t) · [vec(G⊤)]⊤σ.
(94)

Iterating (94) starting from i = 0, we obtain

E{∥w̃(i + 1)∥2
σ}

≤ E{∥w̃(0)∥2
F i + 1 σ} + (1 + t)[vec(G⊤)]⊤

i∑

j=0

F jσ, (95)

where E{∥w̃(0)∥2} is the initial condition. If we show that the
RHS of (95) converges, then E{∥w̃(i + 1)∥2

σ} is stable. The
first term on the RHS of (95) vanishes as i → ∞ if the matrix
F is stable. Consider now the second term on the RHS of (95).
The series

∑∞
j=0 F jσ converges if

∑∞
j=0[F jσ]k converges for

k = 1, . . . , (MN)2 . Each term of the series can be bounded as

[F jσ]k ≤ |[F jσ]k | ≤ ∥F jσ∥b,∞ ≤ ∥F j∥b,∞ · ∥σ∥b,∞.
(96)

Since F is stable, there exists a submultiplicative norm1∥ · ∥ρ

such that ∥F∥ρ = ζ < 1. All norms are equivalent in finite di-
mensional vector spaces. Thus, we have:

∥F j∥b,∞ ≤ τ∥F j∥ρ ≤ τ∥F∥j
ρ = τζj , (97)

for some positive constant τ . Considering this bound with (96)
yields:

∞∑

j=0

|[F jσ]k | ≤
∞∑

j=0

∥F j∥b,∞ · ∥σ∥b,∞ ≤ τ
∞∑

j=0

ζj∥σ∥b,∞

=
τ · ∥σ∥b,∞

1 − ζ
. (98)

As a consequence, since the second term on the RHS of (95)
converges to a bounded region when F is stable, E{∥w̃(i +
1)∥2

σ} also converges. "

IV. SIMULATION RESULTS

Before proceeding, we present a new rule for selecting the
regularization weight pkℓ based on a measure of sparsity of the
vector wo

k − wo
ℓ . The intuition behind this rule is to employ a

large weight pkℓ when the objectives at nodes k and ℓ have few
distinct entries, i.e., wo

k − wo
ℓ is sparse, and a small weight pkℓ

when the objectives have few similar entries, i.e., wo
k − wo

ℓ is
not sparse. Among other possible choices for the sparsity mea-
sure, we select a popular one based on a relationship between

1The norm ∥·∥ρ is called submultiplicative if for any square matrices U and
W of compatible dimensions we have: ∥UW∥ρ ≤ ∥U∥ρ · ∥W∥ρ .

Fig. 3. Experimental setup. (a) Network topology. (b) Regression and
noise variances.

the ℓ1-norm and ℓ2-norm [56]:

ξ(wo
k − wo

ℓ )=
M

M −
√

M

(
1 − ∥wo

k − wo
ℓ ∥1√

M · ∥wo
k − wo

ℓ ∥2

)
∈ [0, 1].

(99)
The quantity ξ(wo

k − wo
ℓ ) is equal to one when only a single

component of wo
k − wo

ℓ is non-zero, and zero when all elements
of wo

k − wo
ℓ are relatively large [56]. Since the nodes do not

know the true objectives wo
k and wo

ℓ , we propose to replace
these quantities by the available estimates at each time instant i
and allow the regularization factors to vary with time according
to:

pkℓ(i) ∝
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M

M −
√

M

(
1 − ∥φk (i + 1) − φℓ(i + 1)∥1√

M · ∥φk (i + 1) − φℓ(i + 1)∥2

)
,

if ℓ ∈ Nk\C(k)
0, otherwise

(100)

where the symbol ∝ denotes proportionality. As we shall see
in the simulations, this rule improves the performance of the
algorithm and allows agent k to adapt the regularization strength
pkℓ with respect to the sparsity level of the vector wo

k − wo
ℓ at

time instant i.

A. Illustrative Example

We consider a clustered network with the topology shown
in Fig. 3(a), consisting of 20 nodes divided into 3 clusters:
C1 = {1, . . . , 10}, C2 = {11, . . . , 15}, and C3 = {16, . . . , 20}.
The regression vectors xk (i) are 18 × 1 zero-mean Gaussian
distributed vectors with covariance matrices Rx,k = σ2

x,kI18 .
The variances σ2

x,k are shown in Fig. 3(b). The noises zk (i)
are zero-mean i.i.d. Gaussian random variables, independent of
any other signal, with variances σ2

z ,k shown in Fig. 3(b). Let
card{·} denote the cardinal of its entry. We run the diffusion
algorithm (26) by setting cℓk = 1

card{Nℓ ∩C(ℓ)} for k ∈ Nℓ ∩ C(ℓ)
and aℓk = 1

card{Nk ∩C(k)} for ℓ ∈ Nk ∩ C(k). The regularization
weights are set to ρkℓ = 1

card{Nk \C(k)} for ℓ ∈ Nk\C(k). We use
a constant step-size µ = 0.02 for all nodes, a sparsity strength
η = 0.06 for the ℓ1-norm regularizer, and η = 0.04 for the
reweighted ℓ1-norm regularizer with ϵ = 0.1 . The results are
averaged over 200 Monte-Carlo runs.
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Fig. 4. Network MSD comparison for 6 different strategies: non-cooperative
LMS (algorithm (26) with A = C = IN , η = 0), spatially regularized LMS
(algorithm (26) with A = C = IN with ℓ1 -norm and reweighted ℓ1 -norm,
standard diffusion without cooperation between clusters (algorithm (26) with
η = 0), and our proximal diffusion (26) with ℓ1 -norm and reweighted ℓ1 -norm.

The optimum vectors are set to wo
Cj

= wo + δCj at each clus-
ter with wo an 18 × 1 vector whose entries are generated from
the Gaussian distributionN (0, 1). First, we set δC1 to 0⊤

1×18 , δC2

to [−1 01×17 ]⊤, and δC3 to [01×6 − 1 01×11 ]⊤. Observe that at
most two entries differ between clusters. After 500 iterations, we
set δC2 to [−11×3 1 01×14 ]⊤ and δC3 to [01×12 − 11×3 01×3 ]⊤.
In this way, at most 7 entries differ between clusters. After 1000
iterations, we set δC2 to [−11×3 11×3 − 11×3 01×9 ]⊤ and δC3 to
[01×9 11×3 −11×3 11×3 ]⊤. Thus, at most 18 entries now differ
between clusters.

In Fig. 4, we compare 6 algorithms: the non-cooperative LMS
(algorithm (26) with A = C = IN and η = 0), the regular-
ized LMS (algorithm (26) with A = C = IN ) with ℓ1-norm
and reweighted ℓ1-norm, the multitask diffusion LMS without
regularization (algorithm (26) with η = 0), and the multitask
diffusion LMS (26) with ℓ1-norm and reweighted ℓ1-norm reg-
ularization. As observed in this figure, when the tasks share a
sufficient number of components, cooperation between clusters
enhances the network MSD performance. When the number
of common entries decreases, the cooperation between clusters
becomes less effective. The use of the ℓ1-norm can lead to a
degradation of the MSD relative to the absence of cooperation
among clusters. However, the use of the reweighted ℓ1-norm
allows to improve the performance.

In order to better understand the behavior of the algorithm (26)
in the clusters, we report in Fig. 5 the learning curves for i ∈
[0, 1000] of the common and distinct entries among clusters
given by

1
card{Cj}

∑

k∈Cj

E

{
∑

m∈Ω(i)

([wo
k (i) − wk (i)]m )2

}
, (101)

for j = 1, 3, where Ω(i) is the set of identical (or distinct)
components among all clusters at iteration i and wo

k (i) is the
optimum parameter vector at node k and iteration i. For exam-
ple, for i ∈ [0, 500], the set of distinct components is {1, 7}.
As shown in this figure, cluster C3 benefits considerably from
cooperation with other clusters in the estimation of the common
entries. Nevertheless, cluster C1 benefits slightly from cooper-

ation. This is due to the fact that the performance of C3 is low
relatively to that of C1 since the SNR in C3 is small and the
number of nodes employed in this cluster is 5.

We shall now illustrate the effect of the regularization strength
η over the performance of the algorithm for different numbers of
common entries between the optimum vectors wo

k . We consider
the same settings as above, which means that the number of
common entries among clusters is successively set to 16, 11, and
0 over 18. Parameter η is uniformly sampled over [0, 0.14]. Fig. 6
shows the gain in steady-state MSD versus the unregularized
algorithm obtained for η = 0, as a function of η. For each η,
the results are averaged over 50 Monte-Carlo runs and over 50
samples after convergence of the algorithm. It can be observed in
Fig. 6 that the interval for η over which the network benefits from
cooperation between clusters becomes smaller as the number
of common entries decreases. In addition, the reweighted ℓ1-
norm regularizer provides better performance than the ℓ1-norm
regularizer.

In order to guarantee a correct cooperation among clusters,
we repeat the same experiment as Fig. 4 using the adaptive
rule in (100) for adjusting the regularization factors pkℓ . The
proportionality coefficient in (100) is set equal to one. As shown
in Fig. 7, when the number of distinct components is small,
both ℓ1 and reweighted ℓ1-norms yield better performance than
the diffusion LMS with η = 0. When the number of distinct
components increases (i ∈ (1000, 1500]), the performance of
strategy (26) with ℓ1-norm gets closer to diffusion LMS with
η = 0, while the reweighted ℓ1-norm still guarantees a gain.
Thus, the mechanism proposed in (100) for the selection of the
regularization factors improves the cooperation between nodes
belonging to distinct clusters.

Finally, we compare the current multitask diffusion strat-
egy (26) with two other useful strategies existing in the litera-
ture [24], [29]. We consider a stationary environment where the
optimum parameter vectors {wo

Cj
}3

j=1 consist of a sub-vector
ξo of 16 parameters of global interest to the whole network and
a 2 × 1 sub-vector {ςo

Cj
} of common interest to nodes belong-

ing to cluster Cj , namely, wo
Cj

= col{ξo , ςo
Cj
}. The entries of

ξo , ςo
C1

, ςo
C2

, and ςo
C3

are uniformly sampled from a uniform dis-
tribution U(−3, 3). Except for these changes, we consider the
same experimental setup described in the first paragraph of the
current section. When applying the strategy developed in [24],
we assume that node k belonging to cluster Cj is aware that the
first 16 parameters of wo

Cj
are of global interest to the whole

network while the remaining parameters are of common inter-
est to nodes in cluster Cj . However, the current method (26)
and the algorithm in [29] do not require such assumption. We
run the ATC D-NSPE strategy developed in [24] using uni-
form combination weights aw

ℓk = 1/card{Nk} for ℓ ∈ Nk and
a

ςC(k )
ℓk = 1/card{Nk ∩ C(k)} for ℓ ∈ Nk ∩ C(k), and uniform

step-sizes µk = 0.02 ∀k. We run the multitask diffusion strat-
egy developed in [29] by setting {cℓk , aℓk , ρkℓ} in the same
manner described in the first paragraph of the current section,
µk = 0.02 ∀k, and η = 0.06. The learning curves of the algo-
rithms are reported in Fig. 8. As expected, it can be observed
that the cooperation between clusters based on the ℓ2-norm [29]
degrades the performance relative to the case of non-cooperative
clusters, i.e., η = 0. Indeed, the multitask diffusion strategy de-
veloped in [29] considers squared ℓ2-norm co-regularizers to
promote the smoothness of the graph signal, whereas, in the
current simulation we need to promote the sparsity of the vector
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Fig. 5. Clusters MSD over identical and distinct components. Comparison for the same 6 different strategies considered in Fig. 4. (a) Cluster 1 MSD over
identical entries. (b) Cluster 3 MSD over identical entries. (c) Cluster 1 MSD over distinct entries. (d) Cluster 3 MSD over distinct entries.

Fig. 6. Differential network MSD (MSD(η) − MSD(η = 0)) in dB with respect to the regularization strength η for the multitask diffusion LMS (26) with
ℓ1 -norm (left) and reweighted ℓ1 -norm (right) for 3 different degrees of similarity between tasks. Experiment 1: at most 2 entries differ between clusters. Experiment
2: at most 7 entries differ between clusters. Experiment 3: at most 18 entries differ between clusters. (a) ℓ1 -norm. (b) Reweighted ℓ1 -norm.

wo
k − wo

ℓ . Furthermore, when the reweighted ℓ1-norm is used,
our method is able to perform well compared to the strategy
developed in [24] that requires the knowledge of the indices of
common and distinct entries in the parameter vectors. We note
that recent unsupervised strategies [57], [58] dealing with group
of variables rather than variables propose to add a step in or-
der to adapt the cooperation between neighboring nodes based
on the group at hand. It is shown in [57] that the performance
depends heavily on the group decomposition of the parameter
vectors.

B. Distributed Spectrum Sensing

Consider a cognitive radio network composed of NP primary
users (PU) and NS secondary users (SU). To avoid causing
harmful interference to the primary users, each secondary user
has to detect the frequency bands used by all primary users,
even under low signal to noise ratio conditions [7], [24], [59].

Fig. 7. Network MSD comparison for the same 6 different strategies consid-
ered in Fig. 4 using adaptive regularization factors pk ℓ (i).
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Fig. 8. Network MSD comparison for 5 different strategies: standard diffusion
without cooperation between clusters (algorithm (26) with η = 0), our proxi-
mal diffusion (26) with ℓ1 -norm and reweighted ℓ1 -norm, the ATC D-NSPE
algorithm developed in [24], and the multitask diffusion strategy with squared
ℓ2 -norm coregularizers [29].

We assume that the secondary users are grouped into Q clusters
and that there exists within each cluster a low power interference
source (IS). The goal of each secondary user is to estimate the
aggregated spectrum transmitted by all active primary users, as
well as the spectrum of the interference source present in its
cluster.

In order to facilitate the estimation task of the secondary
users, we assume that the power spectrum of the signal trans-
mitted by the primary user p and the interference source q can
be represented by a linear combination of NB basis functions
φm (f):

Sp(f) =
NB∑

m=1

αpm φm (f), p = 1, . . . , NP , (102)

Sq (f) =
NB∑

m=1

βqm φm (f), q = 1, . . . , Q, (103)

where αpm , βqm are the combination weights, and f is the
normalized frequency. Each secondary user k ∈ Cq has to esti-
mate the NB × (NP + 1) vector Υo

k = col{αo
1 , . . . ,α

o
NP

,βo
q}

where αo
p = [αp1 , . . . ,αpNB ]⊤ and βo

q = [βq1 , . . . ,βqNB ]⊤.
Let ℓp,k (i) denote the path loss factor between the primary
user p and the secondary user k at time i. Let also ℓ′q ,k (i) denote
the path loss factor between the interference source q and the
secondary user k at time i. Then, the power spectrum sensed
by node k ∈ Cq at time i and frequency fj can be expressed as
follows:

rk,j (i) =
NP∑

p=1

ℓp,k (i)Sp(fj ) + ℓ′q ,k (i)Sq (fj ) + zk,j (i), (104)

where zk,j (i) is the sampling noise at the j-th frequency as-
sumed to be zero-mean Gaussian with variance σ2

zk , j
. At each

time instant i, node k observes the power spectrum over NF

frequency samples. Let rk (i) and zk (i) be the NF × 1 vec-
tors whose j-th entries are rk,j (i) and zk,j (i), respectively. Us-
ing (104), we can establish the following linear data model for

Fig. 9. A cognitive radio network consisting of 2 primary users and 13
secondary users grouped into 4 clusters containing each an interference
source IS.

Fig. 10. Network MSD comparison for 4 different algorithms: standard dif-
fusion LMS without cooperation between clusters (η = 0), our proximal dif-
fusion (26) with ℓ1 -norm regularizer, the ATC D-NSPE algorithm developed
in [24], and the multitask diffusion strategy [29].

node k ∈ Cq :

rk (i) = Φk (i)Υo
k + zk (i), (105)

where Φk (i) ! [ℓ1,k (i), . . . , ℓNP ,k (i), ℓ′q ,k (i)] ⊗ Φ with Φ the
NF × NB matrix whose j-th row contains the magnitudes of
the NB basis functions at the frequency sample fj .

To show the effect of multitask learning with sparsity-based
regularization, we consider a cognitive radio network consist-
ing of NP = 2 primary users and NS = 13 secondary users
decomposed into 4 clusters as shown in Fig. 9. The power spec-
trum is represented by a combination of NB = 20 Gaussian
basis functions centered at the normalized frequency fm with
variance σ2

m = 0.001 for all m:

φm (f) = exp
− ( f −f m ) 2

2 σ 2
m , (106)
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Fig. 11. PSD estimation for nodes 2 (C1 ), 4 (C2 ), 7 (C3 ), and 13 (C4 ). Left: noncooperating clusters (multitask strategy (26) with η = 0). Right: cooperating
clusters (multitask strategy (26) with η ̸= 0).

where the central frequencies fm are uniformly distributed. The
combination vectors are set to:

Υo
C1

= [01×4 1 1 01×14 ,01×14 1 1 01×4 , 0 0.3 0.3 01×17 ]⊤

Υo
C2

= [01×4 1 1 01×14 ,01×14 1 1 01×4 ,01×20 ]⊤

Υo
C3

= [01×4 1 1 01×14 ,01×14 1 1 01×4 , 0 0.3 01×16 0.3 0]⊤

Υo
C4

= [01×4 1 1 01×14 ,01×14 1 1 01×4 ,01×17 0.3 0.3 0]⊤.
(107)

We consider NF = 80 frequency samples. Based on the free
propagation theory, we set the deterministic path loss factor ℓp,k

to the inverse of the squared distance between the transmitter
p and the receiver k. At time instant i, we set ℓp,k (i) = ℓp,k +
δℓp,k (i) with δℓp,k (i) a zero-mean random Gaussian variable
with standard deviation 0.1ℓp,k . The secondary user k estimates
ℓp,k (i) according to the following model:

ℓ̂p,k (i) =

{
ℓp,k , if ℓp,k (i) > ℓ0 ,

0, otherwise
(108)

with ℓ0 a threshold value. The same rule is used to set the path
loss factor between the interference sources and the secondary
users. We run the ATC diffusion algorithm (26) with the follow-
ing adaptation step:

ψk (i + 1) = Υk (i) + µk Φ̂
⊤
k (i)[rk (i) − Φ̂k (i)Υk (i)], (109)

with Υk (i) the estimate of Υo
k at time instant i. The sampling

noise zkℓ,j (i) is assumed to be a zero-mean random Gaussian
variable with standard deviation 0.01. The combination coeffi-
cients {aℓk} and regularization factors {ρkℓ} are set in the same
way as in the previous experimentation.

The MSD learning curves are averaged over 50 Monte-Carlo
runs. We run the multitask diffusion LMS (26) in two different
situations. In the first scenario, we do not allow any coopera-
tion between clusters by setting η = 0. In the second scenario,
we set the regularization strength η to 0.01 and we use the ℓ1-
norm as co-regularizing function. As can be seen in Fig. 10, the
network MSD performance is significantly improved by coop-
eration among clusters. For comparison purposes, we also run
the ATC D-NSPE strategy developed in [24] and the multitask

diffusion strategy with ℓ2-norm developed in [29]. For the ATC
D-NSPE strategy we assume that nodes are aware that the first
NP × NB components of the vector Υo

k are of global inter-
est to the whole network and that the remaining components
are of common interest to the cluster C(k). The link weights
{aℓk , cℓk , ρkℓ , aw

ℓk , a
ςC(k )
ℓk } are set in the same manner as the ex-

periment in Fig. 8. It can be observed from Fig. 10 that our
strategy performs well without the need to know the parame-
ters of global interest and the parameters of common interest
during the learning process. Fig. 11 shows the estimated power
spectrum density for nodes 2, 4, 7, and 13 when running the
multitask diffusion strategy (26) with η = 0 (left) and η = 0.01
(right). In the left plot, we observe that the clusters are able to
estimate their interference source. However, depending on the
distance to the primary users, the secondary users do not always
succeed in estimating the power spectrum transmitted by all ac-
tive primary users. For example, clusters 1 and 2 are not able
to estimate the power spectrum transmitted by PU2. As shown
in the right plot, regardless of the distance between primary
and secondary users, each secondary user is able to estimate
the aggregated power spectrum transmitted by all the primary
users and its own interference source by cooperating with nodes
belonging to neighboring clusters.

V. CONCLUSION AND PERSPECTIVES

In this work, we considered multitask learning problems over
networks where the optimum parameter vectors to be estimated
by neighboring clusters have a large number of similar entries
and a relatively small number of distinct entries. It then becomes
advantageous to develop distributed strategies that involve co-
operation among adjacent clusters in order to exploit these sim-
ilarities. A diffusion forward-backward splitting algorithm with
ℓ1-norm and reweighed ℓ1-norm co-regularizers was derived to
address this problem. A closed-form expression for the proxi-
mal operator was derived to achieve higher efficiency. Condi-
tions on the step-sizes to ensure convergence of the algorithm in
the mean and mean-square sense were derived. Finally, simula-
tion results were presented to illustrate the benefit of cooperat-
ing to promote similarities between estimates. Future research
efforts will be focused on exploiting other sparsity promoting
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co-regularizers. Perspectives also include the derivation of other
forms of cooperation depending on prior information.
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