
Visual COKO: A Debugger for Query Optimizer Development
Daniel Abadi

May 2002

Abstract

Query optimization generates plans to retrieve data requested by queries, and query

rewriting (rewriting a query expression into an equivalent form to prepare it for plan

generation) is typically the first step. COKO-KOLA introduced a new approach to query

rewriting that enables query rewrites to be formally verified using an automated theorem

prover. KOLA [1] is a language for expressing rewriting rules that can be “fired” on

query expressions. COKO is a language for expressing query rewriting transformations

that are too complex to express with simple KOLA rules [2].

COKO is a programming language designed for query optimizer development.

Programming languages require debuggers, and this paper describes a COKO debugger:

Visual COKO. Visual COKO enables a query optimization developer to visually trace the

execution of a COKO transformation. At every step of the transformation, the developer

can view a tree-display that illustrates how the original query expression has evolved.

Rule-based query rewriting and the COKO-KOLA project are described for background.

Then the COKO syntax is summarized from the point of view of the COKO programmer

using an example query transformation that converts query predicates to conjunctive

normal form. Visual COKO is described and instructions for its use are presented.

Finally, a description of its implementation is given.

Background

Rule-Based Optimization

Optimization is the middle step of query processing – the procedure of extracting data

from a database. After the user has submitted a query in a usable language such as SQL,

the query processor first parses and translates the query into an internal representation

language (often a relational algebra), It then sends this representation to the query

optimizer which searches through possible algorithms for executing the query, and

generates a plan that is as efficient as possible. Finally, it executes the query according to

the prescribed plan. Not all databases perform query processing in this way. [6] and [7]

show examples of query processing algorithms that merge the query optimization and

query execution steps so that a query is reoptimized during execution the environment

evolves.

A complex query that accesses many tables in a large database can take a long time to

execute, so creating an efficient plan can sometimes increase execution time by orders of

magnitude. Thus, a sophisticated query optimizer is an essential part of database

systems. There are two aspects of query optimization. The first aspect is to find the best

ordering of operators (selections, projections, joins, etc.) in the internal representation of

the query that will lead to efficient execution. For example, selection operators might be

moved so that they will be performed before join operators (so that the join operators will

have a smaller input). The second aspect is to annotate each with the best algorithm for

its execution. For example, it might be decided to use a sort-merge join or a nested-loop

join for a particular join operator. These two parts of query optimization are often

interleaved – different operator algorithms might be best for different inputs to the

operator (depending on where the operator is located in the query expression tree). For

example, a sort-merge join might only be used if the inputs to the join operator are

already sorted on the join attribute. The work described in this paper focuses on the first

aspect of query optimization – the generation of the layout and order of operators in the

query expression tree.

Although user languages such as SQL are typically declarative (meaning that the user

does not indicate how the data should be extracted, just what data should be extracted

from the database), the structure of an SQL query will lead to a particular translation into

an internal representation that contains an initial ordering of query operators. However,

one cannot expect the user to write queries that suggest efficient processing plans. Query

rewriting is the process of searching for expressions that are logically equivalent

(meaning that it will always return the same result) to the initial expression, but lead to

more efficient execution plans.

One method for performing query writing is to use equivalence rules to generate

expressions that are equivalent to the initial expression. If the initial expression matches

the left-hand side of the rule, the expression can be transformed according to the right-

hand side of the rule. One example of such a rule is the commutative property of

selection operators: σθ1(σθ2(E)) => σθ2(σθ1(E)) where σ is the selection operator and θ1

and θ2 are the predicates upon which to select. For example, this rule could be used to

transform σsalary > 40(σsalary < 80(employees)) to σsalary < 80(σsalary > 40(employees)). The

primary advantage of expressing query rewrites using rules is that it makes the optimizer

easily extensible: in order to change the functioning of the optimizer, one only has to add

and subtract the rules that it uses to generate equivalent expressions. [4] and [5] show

examples of extensible optimizers that use rules to rewrite queries.

The COKO-KOLA project

Although the above discussion asserted that rule-based optimizers are extensible, there

can be drawbacks to using rules to rewrite queries. Sometimes, the rewritten query does

not return the same result as the original query. [3] described the infamous “count bug”,

an example of a rewrite rule that unnests nested queries (rewrites SQL queries with a

nested SQL query in the WHERE clause as a join) that returns incorrect results when the

aggregation operation COUNT returns a value of 0. Clearly, it is imperative for rewrite

rules to return the expected results– rules should be formulated so that they be proved

correct.

The problem is that most internal query representation languages make the process of

reasoning and proving the correctness of rules very difficult. Cherniack and Zdonik

showed in [1] that the choice of the representation determines the effectiveness with

which rules can express rewrites. In particular, variable-based languages make the

process of identifying matches of patterns in the rule and the query and the rearrangement

of these patterns more complicated because of the presence of free variables in the

matched patterns that make its meaning context dependent. For example, consider the

following rewrite rule expressing in SQL:

SELECT distinct X.name � SELECT distinct X.name

FROM X, Y FROM X

The above rule says that we don’t need to join X with Y if we only need an attribute from

X. The problem with this rule is the presence of variables X and Y, making the rule

context dependent. A replacement of X with Y in the SELECT clause would give the rule

an entirely different meaning. One would need code to supplement this rule to make it

more general (i.e. the code would express that X and Y are two tables, and the X in the

SELECT clause is referring to the first of the two tables in the FROM clause). [1] also

introduced a new language for query representation, KOLA, that removed variables from

the query by using combinators. KOLA’s functions and predicates are either predefined

primitives, or are built using formers from other functions and predicates. The above

query, expressed in KOLA, would be:

join (K(true), name o π1) ! [X, Y] � iterate (K(true), name) ! X

In the above rule, ! implies a function call, the function is to its left, and the parameters

are to its right. Intuitively, the left-hand side of the above rule says that there is a join of

X and Y and is taking the “name” attribute for each value of X (for specific details on the

syntax of KOLA see [1]) . The right hand side just takes the “name” attribute for each

element in X (it avoids the join like in the SQL rule). In this KOLA rule, the only place

where the variables appear are in the function parameters. The function itself (to the left

of the !) has no variables. This facilitates the proof of this rewrite rule, and indeed [1]

showed that this can be done using an automatic theorem prover.

Rules alone are not always sufficient to express complicated rewrites. Take the example

of normalization. In many cases, in order to fire a rule on a query, the query must be

normalized so that query can follow a predictable pattern to be matched with the left hand

side of a rule. One simple rule is not sufficient to normalize a query, because typically an

algorithm of adjustments must be made to complete the normalization. Normalizations

are thus too general to be expressed with just one rule, or even a set of rules. [2]

introduced the concept of a COKO transformation, which can perform these more

complex rewrites by integrating a set of KOLA rules with a language that can express an

algorithm for their firing. COKO transformations retain the property of ease to prove

correct because the only way the transformation can affect a query is through the firing of

KOLA rules – the COKO language simply states an algorithm for their firing.

Even though a COKO transformation can be correct from the point of view that the

results of the transformed query will be the same as the results of the initial query, a

faulty COKO code will lead to unexpected resulting queries. It will return the “correct”

answer, but it might not be in the normalized form that the programmer intended. Visual

COKO facilitates the COKO programming process by providing the ability to visually

trace the execution of a COKO transformation, one step at a time. Before Visual COKO

is presented, the language that it debugs: COKO is described in more detail.

The COKO language

In order to understand the use of Visual COKO, the language that it debugs must be

explained in more detail. In this section, the COKO syntax is presented, in the context of

a COKO transformation that converts a KOLA predicate to CNF (conjunction normal

form). The COKO code that performs this normalization is given.

In order to convert a predicate to CNF (assuming the query does not contain negation) all

one needs are two base KOLA rules:

rule1: (p & q) | r −> (p | r) & (q | r)

rule2: (p & q) | r −>(p | r) & (q | r)

and the following algorithm:

Assume the input predicate is in the form of a tree, for example:

 |

 / \

 & d

 / \

 a &

 / \

 b c

traverse the tree from the bottom up in a post-order pass. For each visited node, attempt

to fire rule1. If that fails, then attempt to fire rule2. If either rule fired, then attempt to fire

both rules on both children of this subtree and continue down on each child until both

rules fail. The COKO code for this algorithm is the following:

TRANSFORMATION CNF

 USES

 CNFAux

 BEGIN

 BU {CNFAux}

 END

TRANSFORMATION CNFAux

 USES

 rule1: p | (q & r) −> (p | q) & (p | r),

 rule2: (p & q) | r −> (p | r) & (q | r)

BEGIN

 {rule1 || rule2} −>

 GIVEN p & q DO {CNFAux (p); CNFAux (q)}

END

The basic structure of a COKO transformation, is the keyword TRANSFORMATION

followed by the name of the transformation, the keyword USES followed by a list

(separated by commas) of the rules or other COKO transformations that this

transformation will be using, and the keywords BEGIN and END surrounding the body

of the transformation algorithm.

CNFAux uses the two rules discussed earlier. It declares them in the USES section using

the format <rule-name>: <rule>. The rules are named so that they can be used later (in

the line {rule1 || rule2}) without having to rewrite the entire rule. COKO does not require

that these rules be declared in advance as the following example shows. Another way that

CNFAux could have been programmed is as follows:

TRANSFORMATION CNFAux

 USES

BEGIN

 { [p | (q & r) −> (p | q) & (p | r)] || [(p & q) | r −> (p | r) & (q | r)]} −>

 GIVEN p & q DO {CNFAux (p); CNFAux (q)}

END

However, this is messy and difficult to read, so in general one declares rules ahead of

time in the USES section.

The body of CNFAux is best explained piece by piece. Once again the body is:

{rule1 || rule2} −>

 GIVEN p & q DO {CNFAux (p); CNFAux (q)}

A parser would break this line up into statements. In the above code, rule1 is a statement,

rule2 is a statement, rule1 || rule2 is a statement, CNFAux (p) is a statement, CNFAux (q)

is a statement, CNFAux (p); CNFAux (q) is a statement, GIVEN p & q DO {CNFAux

(p); CNFAux (q)} is a statement, and finally, {rule1 || rule2} −> GIVEN p & q DO

{CNFAux (p); CNFAux (q)} is a statement. Each of these statements will be looked at in

turn. First, however, it is important to note that in addition to altering the input KOLA

tree, execution of each statement returns a boolean success value indicating whether or

not that statement was successful in its execution.

The first statement that the parser sees is rule1. An identifier such as this means that rule1

must be naming either a rule or another COKO transformation. From looking at the

USES section, it is deduced that rule1 is a rule. This is code for an attempt to fire rule1 on

the current KOLA tree. If the pattern for the rule does not match the pattern of the tree,

then this attempt will fail (this statement will return a success value of false). If the

patterns match, the rule will fire (the KOLA tree will transform) and a success value of

true would be returned.

{rule1 || rule2} is a special type of statement, named a disjunctive multistatement. A

disjunctive multistatement takes two statements (in this case rule1 and rule2) and will

only execute the second statement (in this case rule2) if the first statement returned a

success value of false. The success value of a disjunctive multistatement is true if either

one of the two input statements returned a success value of true. In this example, rule1 is

fired on the tree. If it failed, then rule2 is fired.

As stated above, CNFAux (p) is a statement. This type of statement (an identifier

followed by a variable name in parenthesis) is similar to the simple type of identifier

statement (e.g. rule1) discussed above. CNFAux must either be a rule or a transformation

(in this case, it is a recursive call to the current transformation). The variable in

parenthesis is a pointer to the KOLA tree upon with the transformation call should be

executed. In this case, CNFAux will be called on the KOLA tree rooted at the node

pointed by p. If the code had been just CNFAux (without the '(p)') then a pointer to the

current KOLA tree would have been sent to CNFAux, instead of a tree rooted at p.

{CNFAux (p); CNFAux (q)} is a special type of statement, named a sequential

multistatement. A sequential multistatement takes two statements (in this case CNFAux

(p) and CNFAux (q)) and will only execute both statements in order. Like a disjunctive

multi-statement, the success value of a sequential multistatement is true if either one of

the two input statements returned a success value of true.

GIVEN p & q DO {CNFAux (p); CNFAux (q)} is also a special type of statement. The

format of a GIVEN statement is GIVEN <equations> DO <statement>. The <equations>

tag is a set of bindings of variables to pointers to various nodes of the KOLA tree. An

equation is of the form <COKO expression with pattern variables> = <KOLA

expression>. An equation can also take the form of just < COKO expression with pattern

variables> where the right side is assumed to be a pointer to the current KOLA tree. In

this example, there is one equation (p & q) with no right hand side, so an attempt to

match p and q to the current KOLA tree leads to p pointing to the left child of the current

tree, and q pointing to the right child of the current tree. With these bindings in place, the

DO statement ('{CNFAux (p); CNFAux (q)}') can now be executed with p and q pointing

to the correct trees. A GIVEN statement returns a success value of true if all of the

equations succeed in pattern matching and the DO statement returns a success value of

true.

The two statements discussed thus far can be put together using the symbol −> .

{rule1 || rule2} −>

 GIVEN p & q DO {CNFAux (p); CNFAux (q)}

Once again, this is a special type of statement, named a conjunctive multistatement. A

conjunctive multistatement takes two statements (in this case '{rule1 || rule2}' and

'GIVEN p & q DO {CNFAux (p); CNFAux (q)}') and will only execute the second

statement if and only if the first statement returned a success value of true. The success

value of a conjunctive multi-statement is true if the first of the two input statements

returned a success value of true.

So now the body of CNFAux has been completely explained. Rule 1 fired on the current

KOLA tree. If it fails, then rule2 is fired. If one of them succeeded, then p and q are

matched to be the left and right children of the current tree, and CNFAux is called

recursively on each subtree.

Now, the body of transformation CNF will be examined. Once again, the body was

simply:

BU {CNFAux}

CNFAux is an identifier that, as stated above, must either be a rule or a transformation. In

this case it is a transformation declared in the USES section. BU {<statement>} is a

special kind of statement that executes <statement> on every node of the parse tree of the

KOLA expression in a bottom up (post-order) traversal. In this example, CNFAux is

called on every node of the input KOLA parse tree in a bottom up fashion. A BU

statement returns a success value of true if <statement> succeeded on any of the subtrees

that it was called upon.

A call to CNF will transform the input KOLA predicate tree into a KOLA tree in CNF

(assuming there were no negations). The above discussion included most of the COKO

syntactical constructs. The remaining COKO statements are included below.

TD {<statement>} will execute <statement> on every node of the current KOLA tree in a

top-down (pre-order) traversal. A TD statement returns a success value of true if

<statement> succeeded on any of the subtrees.

TRUEv <statement> will execute <statement> but will always return a success value of

true. Likewise, FALSEv <statement> will execute <statement> but will always return a

success value of false.

REPEAT <statement> will continually execute <statement> until <statement> returns a

success value of true.

Visual COKO

Visual COKO enables a query optimization developer to visually trace the execution of a

COKO transformation, one step at a time. It functions as a debugger by providing

commands that control the execution of the COKO code, allowing the programmer to

step through the code and to find the source that is causing the transformation to behave

unexpectedly. It functions as a visual aid by displaying the original KOLA query parse

tree (and various branches of this tree) throughout execution so that the user can visually

observe and understand how the COKO code and KOLA rules transform the original

query. By functioning both as a debugger and a visual aid, Visual COKO greatly

facilitates the COKO programming process.

First, Visual COKO’s functionality as a debugger will be described, and its commands

for use presented. Then, Visual COKO’s functionality as a visual tool will be explained.

Debugger Commands

Introduction

The Visual COKO debugger commands are based on, and work similarly to the gdb

commands. There are two key differences between common programming languages

(for example: C or JAVA) and COKO which make the commands work slightly

differently. First is the use of the semicolon. In C or Java, semicolons can be ignored (at

least in the sense of someone reading and understanding code – of course semicolons are

a syntactical necessity) – the language parser simply uses them in order to differentiate

between programming statements. But in COKO, semicolons are inherently much more

important to the language – they are used as connections between two statements, and are

the mechanism for constructing COKO transformations from smaller sequential COKO

statements. As described earlier, a semicolon is a COKO statement in its own right; and

like any other COKO statement has a success value (defined by the following: the

semicolon is successful if one of the two COKO statements it connects is successful).

Given the importance of the semicolon (termed a sequential multistatement), the

debugger can not skip over them (as in C or JAVA), nor treat them as part of one of the

two statements it connects, but must provide the capabilities to stop on a semicolon like

any other COKO statement.

A second difference between COKO and other common programming languages is the

concept of the subroutine (sometimes referred to as functions, methods, or procedures in

various languages). A COKO transformation works similarly to standard subroutines in

that it contains a subset of COKO commands and can be called from a different COKO

transformation in a similar fashion as a procedure call. What makes it slightly different

from C methods or Pascal functions is that transformations are restricted in that they can

only be called with one parameter (the KOLA tree upon which it will work) and can only

return one value (that very same KOLA tree with its appropriate alterations). Each

transformation is designed to be able to work alone, as if it was the only transformation

working on the query. Nevertheless, from a debugging point of view, COKO

transformations will be treated like standard subroutines with respect to commands such

as step and next (that either enter or skip over subroutine calls respectively).

Breakable Statements

The debugger only provides the capabilities to stop on certain COKO statements, termed

breakable statements. The debugger can stop on a rule or transformation firing statement,

a multistatement, a GIVEN statement and its respective matching equations, or a print

statement. The debugger will not stop on any other COKO statement. Some examples of

statements that the debugger will not stop on are REPEAT statements, bottom-up or top-

down statements, and TRUEv/FALSEv statements. Note that this is different from

standard debuggers such as gdb. Debuggers tend to stop on while or repeat statements

once for each time through the loop. The decision as to what statements to stop, or not to

stop on were made from using the command line version of the debugger. In stepping

through a transformation, it seemed wasteful to stop every time on a REPEAT or BU

statement since the statement itself wasn’t going to accomplish anything. Clearly it is the

statements inside these loops that perform the work. Thus, the user is not given any more

power over the execution of the transformation if given the ability to stop on loop

commands – it just slows down the stepping process. So the general heuristic used was

that the debugger only stops on statements that actually perform some task (such as firing

a rule, matching an equation, or printing to the screen). The debugger does not stop on

statements that simply describe future execution.

The exceptions to this heuristic are the multistatements on which the debugger provides

capabilities to stop, even though they don’t actually perform a task. The reasoning for

this exception is that it was found useful to stop after the first of the two statements that

the multistatements connect in order to check its success value. Since the success value

of this statement often determines whether or not the second statement will be executed,

pausing in between these two statements will allow the programmer to check the success

value of the first statement and prepare for the execution of the second statement (for

instance by placing a break in the appropriate location). Given that the decisions as to

which statements the debugger should stop on were made using sample runs of the

debugger, it is entirely possible that it will be found on future runs of the debugger that it

should stop on REPEAT, BU, or TD statements. If this is found, it will be relatively

straightforward to make it possible for the debugger to stop on these statements. Details

will be given in the implementation section.

Execution Control Commands

break: The user can indicate a COKO statement that the debugger should stop upon

reaching. Placing a break on a statement in the current transformation will cause the

debugger to pause transformation execution before executing the indicated statement. In

addition, it will stop on that statement any time that transformation is called – not just in

the current version. So the break is placed on the transformation, not an instance of the

transformation. A break is indicated in Visual COKO with a red rectangle around the

statement. To choose the statement upon which to break, the user right clicks on the

statement and selects the command break.

condition: This command works similarly to break. However, it will only break on the

indicated statement if it generated a positive success value (remember that every COKO

statement evaluates to either true or false). Since it must evaluate the statement to test its

success value, this command differs from break, which stops before the execution of the

statement. If the conditioned statement evaluates to true, the debugger will stop on the

next breakable statement after the indicated one (otherwise it will not stop). The

conditional statement is particularly useful for COKO rule firing statements. A

conditional break is indicated in Visual COKO with a blue rectangle around the

statement. To choose the statement upon which to place a conditional break, the user

right clicks on the statement and selects the command condition.

clear: This command removes both regular and conditional breaks on the indicated

statement. To choose the statement upon which to clear a break, the user right clicks on

the statement and selects the command clear.

continue: When the debugger is in a paused state, the user can use the continue command

to cause the debugger to continue execution of the transformation until the next statement

upon which a break is indicated (either regular or conditional).

step: This works similarly to the standard debugger command. The debugger will

execute the current statement that it was previously stopped on and will go on to the next

COKO statement. If the statement is breakable (see the above discussion), the debugger

will stop. Otherwise, the debugger will continue until it reaches a breakable statement. If

the executed COKO statement was a transformation call, the debugger will stop on the

first breakable statement inside the new transformation. Visual COKO will also display

the contents of this new transformation in the current transformation window.

next: Again, this works similarly to the standard debugger command. The debugger will

execute the current statement that it was previously stopped on and will continue to the

next breakable statement in the current transformation. The only difference between next

and step is that if the current statement was a transformation execution, the debugger will

not enter that transformation, but instead perform that transformation and return to next

statement of the current transformation. If the next command is performed on the last

statement of a transformation, it acts identically to the continue command (see above).

run: This command restarts execution of the COKO transformation.

Textual Output Commands

The following commands are initiated by typing the command into the console below the

current transformation in Visual COKO, and all textual output from the command is

written into the same console window. These commands are not commonly used and are

left over from a command line version of Visual COKO that relied solely on textual

output. The information derived from issuing these commands can usually be found

visually, without having to wade through the text in the console window.

set success on: This command causes the success value of each COKO breakable

statement that is executed to be displayed to the console. The format of the output is:

Statement: <transformation name>::<statement number>|<statement> evaluated to

<boolean value>. The success value of each statement is printed to the screen directly

after it has finished executing. It should be noted that the order of statements with their

success values is not necessarily (and indeed not usually) the same as the order of

statements in the transformation. The reason is that the success value of a multistatement

can not usually be determined until both of its statements have been evaluated (the

exception is the conditional multistatement whose success value could theoretically be

determined after evaluating just the first statement since the success value of the

conditional multistatement is the same as the success value of its first statement). Thus,

the success value of the second statement of a multistatement will be outputted before the

success value of the multistatement itself. A possible future extension of Visual COKO

would be to have the success value of a statement be indicated directly in the current

transformation window, perhaps by changing the color of the COKO statement text.

Under this implementation, the statement text will not be colored in order, nor will each

step immediately color the statement that it executed with a true or false value (for

example if the statement executed was a multistatement), but it would be easier to match

success values with specific COKO statements in the transformation. set success off turns

off this textual output feature.

set rule on: This command causes state and success information to be displayed to the

console every time a rule is fired. The format of the output is:

ATTEMPT TO EXECUTE RULE: <KOLA rule> on tree <KOLA tree> ATTEMPT

<succeeded or failed> Result State is: <resulting KOLA tree>. Like the success feature

described above, the rule output can be difficult to read at times. This is principally

because the outputted text is a KOLA expression. Textual KOLA expressions tend to be

much more challenging to read than the same expressions in graphical tree format,

especially as the expressions become more complex. An additional limitation of this

command is that matching information is not displayed – just the original KOLA rule and

the KOLA tree. There is no attempt to display attempts of matching the variables in the

rules with the branches of the KOLA parse tree of the query. Future versions of Visual

COKO could change this feature to be more of a visual tool. The process of matching

variables can be displayed directly on the graphical display of the KOLA tree with

variables pointing to their corresponding branches.

output <stmt>: This command will output to the console one of three KOLA expressions.

If <stmt> is root, it will print the textual representation of the entire KOLA query tree. If

<stmt> is a variable name (usually used inside a GIVEN statement), the KOLA

expression bound to that variable will be outputted. If <stmt> is current (or empty) the

part of the KOLA query tree that the transformation is currently working on is outputted.

The output command is used rarely because the entire query tree (root) and the current

query tree are always visually displayed as separate windows. Furthermore, whenever a

variable is bound to a branch of the tree, it will be displayed directly on the tree with an

arrow the branch to which it is bound.

Additional Visual Features

stack: This command brings up a new window listing the current transformation, and

each of its calling transformations above it. This allows the user to observe the path of

transformation calls that lead to the execution of the current execution. This stack

window is especially useful for recursive transformation calls – it is possible to detect the

current level of recursion.

In addition to simply being able to view the names of the transformations that called the

current transformation, one can also view the transformations themselves. By right

clicking on the name of the transformation and clicking expand, the transformation will

be opened in a new window. Breaks can be added or cleared from this opened

transformation. This is especially useful in the situation where the current transformation

is long and boring – for example it might be a cleaning transformation that performs rule

firings in a bottom up or top down fashion on a large query tree. Rather than stepping

through this boring transformation, one can right-click on the transformation that called it

and put a break on the statement following the statement that called the current

transformation. By then clicking on the continue command, the rest of the current

transformation can be skipped, the debugger will stop at the next statement of the calling

transformation. A common scenario where this happens is if the user accidentally pushed

the step button when she meant to push the next button.

Graphical KOLA Tree Display

As described above, KOLA is a difficult language to understand, but is particularly

difficult to read in its textual form. The task of comprehending the KOLA is greatly

facilitated if, instead of wading through commas, parenthesis, and long lines of text, a

picture of the KOLA parse tree is displayed. While this graphical representation does not

illuminate the semantics of KOLA subexpressions (if the user does not understand how

iterate works, he will not be helped by seeing iterate in the KOLA parse tree

representation), it will make clear the parameters of each KOLA expression and

eliminates the commas and parenthesis that makes KOLA so difficult to read.

Throughout the execution of a transformation, Visual COKO keeps track of the KOLA

query that is being transformed, and the current branch of the KOLA query upon which

the transformation is working on. Both parse trees of these KOLA expressions are

displayed in separate windows. The root KOLA parse tree is displayed as a default, but

the current KOLA tree is kept hidden by default (to display this tree, simply click on the

appropriate option in the view menu). Often the KOLA queries can be quite large, and

might have trouble fitting into one of these display windows. In such a scenario, each

node of the tree (ands its corresponding internal text) might be so small that it is difficult

to read. There are two options that the user can pursue. First is to expand the display

window. The tree will automatically expand with the window, and each node will get

bigger with each additional increment of window size. The second option is to use the

zoom feature. The user can right click on any area of the tree, and select ZOOM. Scroll

bars will appear in the window, and the tree will expand by a factor of approximately

125% (so it will not all fit in the window).

In addition to the current and root KOLA trees there are two other types of display

windows that show branches of the KOLA query tree. The first is a branch isolator

feature. The user can right click on a node of any display of a KOLA tree and isolate that

branch (with the selected node as the root) in a new window. Subsequent changes that

occur on that branch on the original query tree will also be seen in this isolation. This

isolation feature is similar to the zoom feature, in that it functions to make a portion of

the tree look larger. However, it differs in that it opens up a new window with the

enlarged tree rather than enlarging it in the current window and adding scroll bars. An

isolation window is kept open until the user closes the window – at which point the

isolation is deleted. Note that if the branch upon which the isolation was based is

eliminated, the isolation window simply displays the text “nothing to display”.

The second type of display window is a variable display window. If there are variables

currently bound to portions of the tree, they can be isolated by typing the command:

display <variable-name> into the console. A new window will open containing the

KOLA tree that the variable is bound to. This variable display window is automatically

closed as soon as the variable becomes out of scope.

Implementation

While the commands and visual interface of command line COKODB and Visual COKO

are based on gdb and ddd, the implementation is not. The COKO debugger is written

directly into the COKO language so that the language itself can be run in regular or

debugging mode. This implementation of COKO and its debugger is explained in the

following section.

The COKO language is written in a very object oriented style. There is a class: CStmt,

from which every COKO statement inherits. These COKO statements can have other

COKO statements as member variables upon which that COKO statement works. A

COKO statement object tree can be constructed by representing each of these COKO

statement variables as children of that statement. A COKO transformation is a pointer to

the root COKO statement of such an object tree.

Each COKO statement contains an Exec method that is called to perform the activity of

that statement upon the current environment (an instance of a CState class). To execute a

COKO transformation, the Exec method of the root statement is called, which will call

the Exec method of each of its children in an order that depends on what type of

statement this root is. Thus, the COKO statement tree is traversed and the Exec method is

called on every node of this tree.

Debugging methods are programmed directly into these COKO statements. An

ExecDebug method was added to every COKO statement that mirrors the actions of the

corresponding Exec method except that it calls ExecDebug on its children instead of

Exec. In addition, it checks with the debug controller (an instance of the

DDebugController class) to see if it should execution of the current statement should

pause (break) program execution and control given to the debug controller which can

prompt the user for debugging commands.

Various other debugging methods were added to these COKO statements. The rep_string

method is used to display the textual representation of that statement only (in contrast to

the representation method which is used to display the textual representation of the entire

COKO transformation by returning not only the representation of the current statement,

but also calling the representation method of each of its children). The number_self

method is used to number the breakable statements in a transformation by assigning the

current statement a number (its key) and then numbering its children. The output_self

method will display to the debugging window the key number and its representation. All

of these methods are used by the debug controller to display information about the

current statement to the user.

It can be seen from the above description that the COKO debugger is integrated closely

with the COKO language itself. The above described COKO statements and their

debugging methods can be found in the /src/coko/PC folder. However, there are many

classes (including the debug controller alluded to above) that were written for the

debugger only, and are separate from the COKO language. These classes can be found in

the /src/coko/DE folder.

The debug controller (DEDebugController.C) is the central class to the COKO debugger.

When execution of the COKO transformation is paused, the debug controller gains

control and prompts the user for commands. It then analyzes these commands and

performs the necessary actions. For instance, if the user typed “break 8” into the

command line debugger (or the console of the visual debugger) then the debugger will

find the current transformation in the COKO transformation stack, and will place the

bool: true in the 8th index of the break array for this transformation. The debugger then

retains control and asks the user for the next command. If the command is step, next, or

continue, then appropriate variables are set, and control is returned to the COKO program

execution (the ExecDebug method that gave control to the debug controller in the first

place).

If the visual option is turned on (Visual COKO), then the debug controller interfaces with

a visual window controller: VC.C. This visual window class uses QT to provide a visual

interface to the user so that the user can use the debugger with more ease. When a

program is paused, control is still passed to the debug controller, but the debug controller

then passes this control to the visual window controller which waits for user input. Once

the user inputs a command (by pressing a button, right clicking the mouse, selecting a

menu option, etc) the visual window controller sends control back to the debug controller

which analyzes the command and decides whether to give control back to the visual

window controller, or to send control back to program execution. Thus, the debug

controller and the visual window controller are the two central components of the COKO

debugger. For this reason, a description of each of the methods contained in these two

classes are given below. A quick glance at the code below will show that these two

classes perform many functions and have many methods. The best way to familiarize

oneself with the debugging code is to start in the central method of the debug controller:

breakLoop and look one-by-one at the methods it calls. This method also interfaces with

the visual window controller if the visual flag is turned on, and so walking through this

breakLoop method will result in looking at most of the classes in both the debug and

visual window controllers.

DEDebugController.C methods:

public:

 DDebugController(int, int, char**);
 // Constructor

 ~DDebugController();
 // Destructor

 void doBreak(CStmt*, CState*);
 // This method is called from any COKO statement class that inherits from
 // CStmt. It is called if its previous call to ch eck_for_break returned true.
 // If so, then it passes along a pointer to itsel f (stmt) and a pointer to
 // the current state (s). The key number of the C OKO statment inside the
 // current transformation and the rep_string of t he statement are found from

 // stmt and this information, along with s, is pa ssed along to the breakLoop
 // method which takes control and allows the user to indicate his/her wishes
 // while the program execution has paused.

 void doBreak(CEqn*, CState*);
 // This method is called from any COKO statement class that inherits from
 // CEqn. It is called if its previous call to che ck_for_break returned true.
 // If so, then it passes along a pointer to itsel f (eqn) and a pointer to
 // the current state (s). The key number of the e quation inside the current
 // transformation and the rep_string of the equat ion are found from eqn and
 // this information, along with s, is passed alon g to the breakLoop method
 // which takes control and allows the user to ind icate his/her wishes while
 // the program execution has paused.

 void start(CRuleBlock*);
 // This method is called to start the debugging p rocess on the root
 // transformation. Two options are possible: this is the first time through
 // this transformation (the user just started up Visual COKO or Command Line
 // COKO) or this is not the first time through th is transfomration (the user
 // restarted the debugger). In the former case, t he current transformation is
 // added to the _curr and _break_rbList and a wel come line is printed to the
 // screen. In the latter case, the same thing occ urs but the _break_rbList
 // is not reinitialized (so that the breaks that the user placed on various
 // statements will be remembered even though exec ution got restarted).

 void stop();
 // This method is called when the debugger is fin ished executing the root
 // transformation. This root transfomration (rule block) is simply popped off
 // the _curr_rbList stack.

 void format_output(char*, char*);
 // This method outputs to the textual display win dow the two parameters
 // separated by a '|' character.

 void format_output(int, char*);
 // This method outputs to the textual display win dow the two parameters
 // separated by a '|' character.

 int check_for_break(int);
 // This method checks to see if the debugger shou ld break and take control
 // before executing the next COKO statement. It i s called at the beginning of
 // every ExecDebug method of each COKO statement class. This method takes an
 // int (key_number) and finds if there is a break on that key (statement of
 // COKO code) in the current transformation (the transformation that is
 // currently executing). Alternatively, it checks if the debugger should
 // break for other reasons (such as if the user t yped "step" or next". If any
 // of these reasons are valid, it returns true in dicating that the debugger
 // should break. Otherwise it returns false.

 NonType* setToExec(NonType*, char*, char*);
 // This method sets the global variable toExec wh en a COKO transformation
 // is about to call a sub-transformation on a bra nch of the tree (toExec
 // stands for to execute). toExec points to this branch of the tree. In
 // addition, the variable num of the root of this branch is set to be
 // negative so that an arrow can be drawn in the visual window to indicate
 // that a subroutine is about to be called. This branch with the new variable
 // num is returned. In addition, the global varia ble "execName" is set so
 // that the visual window can use this as the lab el of the arrow pointing to
 // the tree branch.

 NonType* resetOldVariableNum(NonType*, char*, CSt ate*);
 // This method takes a NonType (pointer to a KOLA tree) and resets all of the
 // variable-nums of each node in the tree back to being a positive number (ie

 // if that node was marked (the mark is done by g iving the varibale-num of
 // that node a negative number) as the node upon which a sub-transformation
 // was about to be called, then we now remove thi s "mark"). This method is
 // currently called from the PCRuleInvokeStmt cla ss after the debugger has
 // returned control to this class and just before the transformation call
 // actually occurs. The char* key paramater is th e name of the variable that
 // is bound to the branch of the tree that the su b-transformation is being
 // called upon. For this method, I only care whet her or not key is NULL. If
 // it is not NULL, then s->Store has to be rebuil t to reflect these changes
 // in variableNum - otherwise the change was only to the root and the tree
 // does not have to be rebuilt. The function retu rns back the toExec tree
 // with the updated variableNums.

 void check_for_condition(CState*, char*, int);
 // This method is called from the COKO statement classes after they are
 // finished to check if the success flag is set. If it is, then the success
 // variable in the CState parameter s checked and printed to the screen. In
 // addition, if the success value was true, this method checks to see if
 // there was a conditional break set on that stat ement (in which case a
 // global variable is set saying that the debugge r should stop as soon as it
 // can).

 int ruleOn();
 // This 1-line method simply returns the value of the rule_on flag.

 //void checkAndDisplaySuccess();

 int really_execute();
 // This method is called from every ExecDebug met hod in every COKO statement
 // to make sure that it should really go ahead wi th the execution. The reason
 // why this check has to be made is that if the u ser wants to restart the
 // program, no more execution should occur until the the current execution
 // unwinds from all its recursive calls and the w hile loop and begin again.

 int do_restart();
 // Once the outer while loop is ready to restart the COKO program (ready to
 // begin execution again, do_restart will be call ed to reinitialze the
 // restart variable to 0). But, before restarting , it checks to see if it
 // really should restart by checking the value of the restart boolean.

 void setReadyToGo();
 // This method sets the readyToGo member variable to equal 1.

 void repInitialize(int, int, int);
 // This method takes textual display information about the current
 // transformation including the number of lines (line) columns (col) and
 // statements (num_stmts) and sets corresponding member variables to equal
 // these parameter values. In addition, this meth od initializes an array
 // (currLCArray) of size num_stmts that will even tually contain the line and
 // column number of the beginning and end of each statement in the textual
 // represenation of the current transformation.

 void updateArray(int, int, int, int, int);
 // This method is called from the representationW DI mehtod of various COKO
 // breakable statement classes. This method will update the currLCArray with
 // input statment number (kn) the exact location (in terms of characters)
 // inside the QT textarea window of this statemen t (using the start line
 // (sL), end line (eL), start column (sC) and end column (eC)). This method
 // also updates where we are in the text area usi ng the end line and end
 // column.

 void updateLine(int, int);
 // This method is called if CMulStmtCon or CMulSt mtDis added a '{' to the

 // textual representation. If that is the case th en every statement on that
 // line must be moved over by one character to ac count for this '{'.

 int getLine();
 // Returns the current line number in the text ar ea that is being used to
 // display the contents of the current transforma tion.

 void setLine(int);
 // Sets the current line number in the text area that is being used to
 // display the contents of the current transforma tion.

 int getCol();
 // Returns the current column number in the text area that is being used to
 // display the contents of the current transforma tion.

 void setCol(int);
 // Sets the current column number in the text are a that is being used to
 // display the contents of the current transforma tion.

 void outputDBArray();
 // This method is for debugging purposed only. It displays to cout the
 // current contents of currLCArray and currLine a nd currCol.

 void parseInput(const char*, char**, int);
 // This method is called by the command line vers ion of the debugger to pasre
 // the char* charArrayToParse input string into a n array of char* with each
 // element of the array pointing to 1 word (space delimited)

 void printInRightPlace(char*);
 // This method prints whatever is stored in the C har* parameter (toPrint) in
 // the correct location. If visual mode is turned on, then this text is
 // printed to the console window. Otherwise, it i s printed directly to the
 // screen (cout).

 int findCurrent(CRuleBlock* actuallyFindThisOne=N ULL, char* transName=NULL);
 // This is an important method that goes through the break rule block list
 // (this list maintains all of the transformation s that have been called so
 // far and any break information that the debugge r might need to know about
 // each transformation) and by default finds the one that is being currently
 // run (the top element in the current rule clock stack). Alternatively, if
 // a char* transformation name is given (transNam e) it will find that
 // transformation (and not the current one) or if a pointer to a RuleBlock
 // is given it will get the name of the RuleBlock by following the pointer
 // and calling the get_name() method and will fin d that transformation.
 // The key assumption here is that transformation name is a key. This method
 // returns a boolean value indicating whether it found that transformation in
 // the break list and additionally will result in the iterator of the global
 // variable _break_rbList pointing to the appropo rate element.

 void testRunAgain();
 // Once the COKO program has finished executing, this method will be called
 // to check if the user wants to run the program again, or just finish.

 void histPush(NonType*, int, int, char*, CIEnvSta ck*, NonType*);
 // This method simply passes along all of its par ameters to the push method
 // of member variable _histList (which is an inst ance of HistoryList and is
 // used to reconstruct the global KOLA tree from the current KOLA tree and
 // the environment stack stored in this _histList variable).

 void histPop();
 // This method simply calls the pop() method of t he _histList member variable

 NonType* histUnravel(CState*);

 // This method takes a pointer to the current sta te (s) and unravels the
 // histList stack from the current state to the r oot of the stack. Each
 // element in this histList stack is the current environment when a
 // transformation was called on a branch of the t ree resulting in a new
 // environment to be initialized that contains on ly information pertaining
 // to this new "zoomed in" portion of the tree. T hus this method can be seen
 // as unraveling all of these environments to "zo om out" to get the original
 // KOLA tree as it now stands. Since changes may have been made in each
 // "zoomed in" frame, care must be take to make s ure that this new version of
 // this branch of the KOLA tree replaces the old branch in the older
 // envirment in the stack frame above.
 //
 // This method is called when the user types: "di splay root" in the command
 // line debugger, and in the root tree display in the visual debugger

 void setTempStmt(CStmt*);
 // This method sets member variable tempStmt to C Stmt* parameter stmt. This
 // is done because unfortunately, updateDEP was w ritten so that it is a
 // member method of the CStmt class, and sometime s the debugger needs to call
 // this method and doesn't have an instance of a CStmt around to call it on.
 // Since updateDEP doesn't actually affect the st mt that it was called on, it
 // doesn't matter what statement is sent to this method - as long as it will
 // always be non-NUll while the debugger is runni ng. Really, updateDEP should
 // have been declared static when it was original ly written.

 LCSubstring* getCurrLCArray();
 // This method returns currLCArray (the variable that contains the location
 // of each statement in the text area that is dis playing the current
 // transformation).

 int getNumStmts();
 // This method returns the number of breakable st atements in the current
 // transformation.

 void updatePaintWindow(CState*);
 // This method tells the visual display window (v is) to update itself,
 // sending the variable symbol list (_symList), a nd the current tree
 // (s->Store()) which is found using the State pa rameter to this method (s).

private:

 void doPrintOST();
 // This method displays to the screen whatever is stored so far in the member
 // variable ost. If visual mode is turned on, the n this text is printed to
 // the console window. Otherwise, it is printed d irectly to the screen
 // (cout).

 void breakLoop(int, char*, CState*);
 // This is the central and most important method in this class! If the visual
 // option is turned on, then this method gathers all of the current
 // information: the transformation code, the glob al tree, the current tree,
 // and all trees bound by variables, and sends th is information to vis (the
 // visual coko display controller) which displays this information to the
 // user. In addition, this method sets the variab leNums of all of the nodes
 // in these trees so that the tree drawer can dis play arrows pointing to all
 // bound variables and so that the current node c an be painted green. If the
 // visual option is not turned on, then the only information displayed is the
 // current statement upon which the COKO transfor mation has stopped. Further
 // information must be explicitly requested by th e user.
 //
 // Once the information has been display, the met hod loops while the user
 // types commands that do not return control back to program execution (such
 // as break x, display y, print z, etc) - perform ing those commands and

 // waiting for the next command. Otherwise (if th e user typed step, next, or
 // continue) global variables are set and control is returned back to the
 // COKO program execution.

 void getInput(string*);
 // This method is called by the command line vers ion of the debugger to get
 // a line that the user inputted.

 void parseInput(string*, char**, int);
 // This method is called by the command line vers ion of the debugger to pasre
 // the char* charArrayToParse input string into a n array of char* with each
 // element of the array pointing to 1 word (space delimited)

 void outputInput(string*, int);
 // This method is simply a debugging method used to make sure that I am
 // parsing the input correctly.

 void doUndefinedCommand(char*);
 // If the user typed a command that is not recogn ized by the debugger, this
 // method will be called to inform the user.

 void doBreakOptions();
 // While the command was renamed to "list", the m ethod name wasn't. This
 // method is only called in the command line vers ion of the debugger. It
 // displays the current transformation that is be ing debugged to the user and
 // beneath it displays the same transformation wi th numbers before all the
 // breakable statements. That way, it is easy for the user to select which
 // statement upon which to break.

 void doAddBreak(char* whereToBreak, int key_numbe r, CRuleBlock* toAddBreak =
NULL);
 // This method will add a break to the indicated key number. If the parameter
 // whereToBreak is NULL then the parameter key_nu mber is the indication of
 // which statement to add the break. Otherwise th e integer conversion from
 // the char* whereToBreak is used. The default tr ansformation to add the
 // break is the current transformation. Otherwise , a RuleBlock* must be
 // passed to indicate which transformation to add the break.

 void doAddBreakSpecific(char*, char*, int);
 // This method will add a break to the indicated key number to the
 // transformation transName. If the parameter whe reToBreak is NULL then the
 // parameter key_number is the indication of whic h statement to add the
 // break. Otherwise the integer conversion from t he char* whereToBreak is
 // used. The parameter transName is expected to c ome in as "<transname>" so
 // the < and > have to be eliminated before searc hing for the transformation
 // in the transformation list _transList.

 void doAddConditionBreak(char*, int);
 // This method will add a conditional break to th e indicated key number. If
 // the parameter whereToBreak is NULL then the pa rameter key_number is the
 // indication of which statement to add the break . Otherwise the integer
 // conversion from the char* whereToBreak is used .

 void doAddConditionBreakSpecific(char*, char*, in t);
 // This method will add a condition break to the indicated key number to the
 // transformation transName. If the parameter whe reToBreak is NULL then the
 // parameter key_number is the indication of whic h statement to add the
 // break. Otherwise the integer conversion from t he char* whereToBreak is
 // used. The parameter transName is expected to c ome in as "<transname>" so
 // the < and > have to be eliminated before searc hing for the transformation
 // in the transformation list _transList.

 void doPrint(char*, CState *);

 // This method will print in textual form the KOL A tree depending on toPrint.
 // If toPrint is null or is current, this method will print to the screen the
 // textual version of the current KOLA tree. If t oPrint is "root", then this
 // method will print the KOLA tree starting from the query root. Otherwise,
 // it will print the KOLA tree bound to the varia ble inidicated in doPrint.

 void doDisplay(char*, CState *);
 // This method will display in textual form (or i f Visual COKO is running
 // then in visual form) a KOLA tree which is indi cated by the toDisplay
 // parameter. If toDisplay is null or is current, this method will display
 // the textual (or visual) version of the current KOLA tree. If toPrint is
 // "root", then this method will display the KOLA tree starting from the
 // query root. Otherwise, it will print the KOLA tree bound to the variable
 // inidicated in doDisplay. The biggest differenc e between the doDisplay and
 // doPrint methods is the display means continual ly display it (don't just
 // print it once). For instance, if a variable is to be displayed, it should
 // be displayed every time the debugger stops unt il the variable is no longer
 // in context. This method accomplishes this by a dding the variable name to a
 // display list which is checked every time the d ebgger stops. There is one
 // variable list in every rule block in _curr_rbL ist and accessed using the
 // topSym() method.

 void doUndisplay(char*, CState *);
 // This method turns of the KOLA tree indicated b y the toDisplay paramater
 // that the doDisplay method turned on. If it was a variable that was being
 // displayed, it is removed from the current rule block list. Otherwise,
 // the approporiate flag is turned off.

 void doClearBreak(char*, int);
 // This method will clear a break at the indicate d key number. If the
 // parameter whereToClear is NULL then the parame ter key_number is the
 // indication of which statement to add the break . Otherwise the integer
 // conversion from the char* whereToClear is used .

 void doClearBreakSpecific(char*, char*, int);
 // This method will clear a break at the indicate d key number in the
 // transformation transName. If the parameter whe reToClear is NULL then the
 // parameter key_number is the indication of whic h statement to clear the
 // break. Otherwise the integer conversion from t he char* whereToClear is
 // used. The parameter transName is expected to c ome in as "<transname>" so
 // the < and > have to be eliminated before searc hing for the transformation
 // in the transformation list _transList.

 void doHelp(char*);
 // If the user typed the command: "help" this met hod will be called. It
 // simply displays a list of all the command the user can type. At some
 // point, this should be updated so that the user can type "help clear" or
 // "help print" and get more detailed instruction s on those specific
 // commands.

 int analyzeInput(char**, int, CState*);
 // This method is called once the input is parsed to perform the appropriate
 // command. It checkes the first parameter (which in every case is the
 // command) and calls the appropriate method depe nding on the command. Some
 // commands don't need separate methods, so they are dealt with directly in
 // this method. An integer is returned that speci fies whether the command
 // should return control back to the COKO executi on (such as continue or
 // next) or if the user should retain control (as in the case of most other
 // commands). 0 means return control to the execu tion, and 1 means retain
 // control in the debugger.

 void outputNode(int, char*, CIdent*);
 // This method is used only in the command line v ersion of the debugger. It

 // takes a CIdent (that is holding the value of a variable) and outputs this
 // variable (val) and its textual value along wit h its display number (num).

 void displayAndDeleteList(SymbolList*, CState*);
 // This method takes a symbol list (sym) and chec ks to see if each variable
 // in this list is currently bound in the current state (s). If it is, then
 // it is displayed. Otherwise, it is removed from the list. It also displays
 // the current and root trees of the appropriate flags are set to true

 void reaffirmAndDeleteList(CState* s);
 // This method is used only in Visual COKO. The _ svl is a list of all windows
 // currently being displayed by the visual debugg er besides the root,
 // current, and isolate tree display windows (lea ving just windows that
 // display branches of the tree that are bound to variables). For each window
 // specified, this method looks up the value of t he variable and sets the
 // approprate variable in the window so that the correct tree will be
 // displayed. In other words, this method "refres hes" all of the variable
 // display windows.

 void doSet(char*, char*);
 // If the user typed a command that started with the word "set", this method
 // will be called. There are three possible flags that the user can set:
 // set rule on/off, set pattern on/off, and set s uccess on/off. Set rule on
 // will display to the screen information about r ule firing every time COKO
 // attempts to fire a rule. Set pattern on right now does nothing. Set
 // success on will print to the screen the succes s value of every COKO
 // statement after that statement is finished exe cuting. This method just
 // checks the value of the second parameter (par1) for "rule". "pattern", and
 // "success" (and prints an error if it is not on e of those three) and sets
 // the appropriate flag to on or off depending on the thrid parameter (par2).

 void doStack();
 // If the user typed the command: "stack" this me thod is callled and will
 // call the displayStack in vis (if Visual COKO) or on the _curr_rbList
 // directly if the command line version is being run. These methods will
 // simply print to the screen in some way the sta ck of all the COKO
 // transformation calls up to the current COKO tr ansformation.

 void doExit();
 // If the user typed the command: "exit" or "quit " this method is callled and
 // will ask the user if they really want to exit. If they do, a system exit
 // is called.

 int doRun();
 // If the user typed the command: "run" this meth od is called and will ask
 // the user if they really want to restart the pr ogram. If they do, the
 // necessary variables are reset, the restart fla g is set to true, and the
 // program continues. Later on, the program will check the value of the
 // restart flag (using the really_execute method) to stop excecuting the
 // current run.

 NonType* findNodeFromNumHelper(NonType*, int);
 // This method initializes the member variable hi stCounter to 0 and then
 // calls the findNodeFromNum method which finds t he "num"th element in a
 // preorder traversal of the parameter: tree.

 NonType* findNodeFromNum(NonType*, int);
 // This method recurses through the KOLA tree par ameter (tree) counting each
 // node that it visits. Once it has visited num n odes, it returns the tree
 // that is rooted at the current node.

 void visMarkVariables(CState*);
 // This method takes a State (s) and goes through the environment of that

 // state. For each variable that is found in the environment, it assigns a
 // variableNum to that node starting from 4, and then counting by twos
 // upwards (4, 6, 8, 10, etc). Before setting the variableNum of the NonType
 // (KOLA tree) stored in that variable, it checks to see what it used to be.
 // If it was negative (meaning that a COKO transf ormation is about to be
 // called on this node) this information is prese rved by assigning it a new
 // variableNum that is -1 times what it would hav e otherwise given it (ie
 // instead of giving it 4, it gives it -4). Once the variableNum has been
 // changed for each KOLA tree pointed to by each variable, s->Store is
 // rebuilt to reflect these changes in variableNu ms (this is because
 // unfortunately, the COKO system was built witho ut the debugger in mind, and
 // for this reason the KOLA trees that are pointe d to by each variable in the
 // environment are only copies of the branches of the corresponding current
 // tree, so any changes made to these copies must also be made to the current
 // KOLA tree in s->Store).

 void scaleVariableNums(NonType*);
 // This method takes a KOLA tree input (currNT) a nd scales the variableNum
 // of each node in the tree to a number between [-2, 1]. In so doing, it
 // retains the sign of the variableNum (if it was negative before it will
 // remain negative and if it was positive before it will remain positive or
 // 0) and whether or not it was divisible by 2 (o dd numbers remain odd, even
 // numbers remain even). Thus the mapping is:
 // negative and odd --> -1
 // negative and even --> -2
 // positive and odd --> 1
 // positive and even --> 0
 //
 // By scaling variableNums to be within [-2, 1] t his method takes away
 // magnitude information from the variableNums wh ere each variable number
 // corresponds to a variable in the environment. This magnitude information
 // is set in the method visMarkVariables, which i s usually called after the
 // the variableNums have been scaled in this meth od.

 NonType* findCurr(NonType*);
 // This method looks through its KOLA tree parame ter (currNT) and finds the
 // parent of the node whose variableNum is not ev en (which signifies that
 // that is the "current" node of the tree and sho uld be drawn with the color
 // green on the visual display of that tree). It returns a pointer to this
 // parent.

 int findCurrWhich(NonType*);
 // This method looks through its KOLA tree parame ter (currNT) and finds the
 // parent of the node whose variableNum is not ev en (which signifies that
 // that is the "current" node of the tree and sho uld be drawn with the color
 // green on the visual display of that tree). Aft er finding the parent of
 // this node, it returns which child of the paren t this node is (ie it
 // returns 1 if it is the first child of the pare nt, 2 if it is the second
 // child, etc). This information is used in the b reakLoop method to replace
 // this branch of the tree (from this special nod e downwards) with s->Store.
 // But in order to call the replaceChild method o n the parent, the second
 // parameter needs to know which child - hence th is method is called.

 void resetVariables();
 // This method is called whenever the debugger is restarted. Right now, all
 // it does is set tempStmt back to NULL, but my g uess is that certain other
 // variables must be reset as well, and that is w hy the program crashes
 // sometimes when the user restarts debugger exec ution (by pressing the run
 // button). This method should be revisited.

 void doTrack(char*);
 // If the user typed the command: "track <transna me>" this method is called
 // and will place the specified transformation on the tracking list. Once on

 // the tracking list, the user can place breaks o n that transformation even
 // if it is not the current tranformation that is being executed.

VC.C methods:

public:

 MyMainWindow(/*NonType*, CRuleBlock*, */DDebugCon troller*, RuleBlockList*,
RuleBlockList*, DTransformationList*);
 // constructor

 void displayRBInfo(char*, int, LCSubstring *, int , NonType*, NonType*,
SymbolList*, char*, CState*);
 // This is the central method of this class. It i s called from the breakLoop
 // method of the debug controller after it has fi gured out the values of all
 // of the above parameters. The first 3 parameter s are used to display the
 // text of the current transformation in main win dow, the next 4 parameters
 // are used to display the root and current KOLA trees in their respective
 // windows. The final parameter is the current st ate of the system and is
 // used by the setCurrInformation method to find the values of variables.
 // After passing all of this information to their respective windows, these
 // windows are refreshed.

 char** getParsedArray();
 // This method returns the parsedArray variable. It is called from the debug
 // controller when it is ready to analyze the inp ut.

 bool close(bool);
 // Calls the quit() slot.

 void insertConsoleText(const char*);
 // This method takes some text (toInsert) and ins erts it at the end of the
 // console window.

 void dealWithSelection(QString*);
 // This method is called when the user typed in a command. This command is
 // passed through the QString* parameter str. Thi s string is then parsed by
 // the debugger and control is returned to the De bug Controller.

 void clearParsedArray();
 // This method deletes every element in the membe r variable parsedArray and
 // frees its corresponding memory.

 void setCurrInformation(SymbolList*, char*, NonTy pe*, CState* s);
 // This method updates the important variables in every paint window that
 // displays the KOLA trees and the central widget (textual transformation
 // display) window. It deletes windows that are n o longer useful and
 // refreshes the ones that are.

 void enableDisable(int);
 // This method makes sure that both the break/con dition or clear options
 // aren't available at the same time. If the curr ent key number has any kind
 // of break on it, then the break and condition b uttons and commands (in the
 // command menu) are disabled while the clear but ton and command is enabled.
 // If the key number has not break, then the reve rse is done.

 int checkDoAgain(int);
 // This method takes an integer parameter (which) that specifies which of the
 // three dialog boxes to display. The corrospondi ng dialog box is then
 // the displyed, and the user response is returne d.

 int getDisplayRT();

 // This method checks to see if the root KOLA tre e display window is
 // currently being displayed. If so, then it retu rns true, otherwise false.

 int getDisplayCT();
 // This method checks to see if the current KOLA tree display window is
 // currently being displayed. If so, then it retu rns true, otherwise false.

 void setDisplayRT(int);
 // This method takes a variable int (x) and will display the root KOLA tree
 // display window to true if x == 0. Otherwise, i t will hide this window. It
 // updates the view menu accordingly.

 void setDisplayCT(int);
 // This method takes a variable int (x) and will display the current KOLA
 // tree display window to true if x == 0. Otherwi se, it will hide this
 // window. It updates the view menu accordingly.

 void setSVL(DSymbolVisList* svl);
 // This method sets the member variable _svl to b e equal to the symbol visual
 // display list parameter (svl)

 QPopupMenu* getView();
 // This method returns the view popupmenu stored in member variable: view

 int insertIntoView(char*);
 // This method inserts into the view menu an new item labeled by the
 // parameter: toInsert. It then connects this ite m SIGNAL to the SLOT:
 // showItem. Finally, it returns the index of thi s new inserted item in the
 // view menu.

 void removeFromView(int);
 // This method removes from the view menu the ite m with the index
 // corresponding to the int parameter: index.

 NonType* doIsolate(NonType*,DWhichList*);
 // This method refreshes the KOLA tree isolation starting from a particular
 // root tree (rootTree) using a particular Which List (wl). Each element
 // in wl is an integer indicating how to travese the root tree from the
 // given point by telling it which child to follo w. For instance, if the
 // which list contains: 2 1 1, then this means th at the isolation is the
 // second child of the first child of the first c hild of the root tree. This
 // method returns the tree derived from this isol ation algorithm.

 void insertIntoSVL(char*,DWhichList*,int,DScrollW idget*,DPaintWindow*,int);
 // This method simply passes along these paramete rs to the insert method of
 // the symbol visual display list. This list cont ains the windows of all of
 // the additional windows besides the root KOLA t ree and current KOLA tree
 // display windows (hence isolations and variable display windows).

 void displayStack();
 // This method recalculates what should be in the stack window by calling the
 // displayStack method on the _curr_rbList and th en sets the text of the
 // stack display window to be this returned text. The stack window is then
 // display and the view menu is updated according ly.

 void dbGo();
 // This method simply tells the debug controller that it is ok to regain
 // control by calling its setReadyToGo method.

 void removeFromTransList(char*);
 // If the user closed a transformation window, we assume that the user no
 // longer is interested in it, so it gets removed from the list of viewable
 // transformations.

 void expandTrans(char* transName = NULL);
 // This method will expand a transformation (mean ing it will open a new
 // window with the transformation code). Which tr ansformation is expanded can
 // be indicated in two ways. The first way is by simply passing the name of
 // the transformation to the method (parameter tr ansName). The other way is
 // by double clicking the appropriate line in the stack window which this
 // method can figure out by seeing which line is active in the stack display
 // window.

 void updatePaintWindows(NonType*, NonType*, Symbo lList*, char*);
 // This takes a pointer to the root KOLA tree (rt Tree) and current KOLA tree
 // (ctTree) and sets these to be the trees of the root display and current
 // display windows. In addition, it passes the Sy mbolList (sym) and execName
 // string to these windows. Finally it repaints t hem.

 void closeAllSVLWindows();
 // This method goes though each element in the sy mbol visual display list
 // (_svl) and closes and deletes each window.

public slots:

 void quit();
 // This slot gets called if the user tried to exi t the program (by pressing
 // the exit button, by closing the window, etc). This method places the word
 // quit on the console and returns control to the debug controller which
 // will make sure that the user really wants to q uit.

 void step();
 // This slot gets called if the step button is pr essed. The word "step" is
 // written to the console and control is given ba ck to the debug controller.

 void next();
 // This slot gets called if the next button is pr essed. The word "next" is
 // written to the console and control is given ba ck to the debug controller.

 void cont();
 // This slot gets called if the continue button i s pressed. The word
 // "continue" is written to the console and contr ol is given back to the
 // debug controller.

 void doBreak(); //breaking naming convention beca use break name not allowed
 // This slot gets called if the break button was pressed. It figures out
 // which key number the user wanted the place the break upon, and enters
 // break <kn> into the console, updates the parse dArray, and returns control
 // to the Debug Controller.

 void doCondition();
 // This slot gets called if the condition button was pressed. It figures out
 // which key number the user wanted the place the conditional clear break
 // upon, and enters condition <kn> into the conso le, updates the parsedArray,
 // and returns control to the Debug Controller.

 void doClear();
 // This slot gets called if the clear button was pressed. It figures out
 // which key number the user wanted the clear the break upon, and enters
 // clear <kn> into the console, updates the parse dArray, and returns control
 // to the Debug Controller.

 void doRun();
 // This slot gets called if the run button was pr essed. It places the word
 // "run" on the console and returns control to th e debug controller which
 // which make sure that the user really wanted to restart execution of the

 // root transformation.

 void toggleStack();
 // This slot gets called if the stack option in t he view menu is selected.
 // If the stack window was currently being displa yed, it gets hidden.
 // Otherwise it gets displayed.

 void doStack();
 // This slot gets called if the stack window is t o be refreshed or displayed.
 // It places the word "stack" on the console and returns control to the debug
 // controller.

 void showRT();
 // This slot will display the root KOLA tree wind ow if it is currently
 // hidden, and will hide it if it is currently be ing displayed. The view
 // menu is updated accordingly.

 void showCT();
 // This slot will display the current KOLA tree w indow if it is currently
 // hidden, and will hide it if it is currently be ing displayed. The view
 // menu is updated accordingly.

 void showItem(int);
 // This slot takes an int (index) which is the in dex of an item in the view
 // menu and will display that item if it is curre ntly hidden, and will hide
 // it if it is currently being displayed. The vie w menu is updated
 // accordingly.

 void showTransformation(int);
 // This slot takes an int (index) which is the in dex of an item (in
 // particular a transformation) in the view menu and will display that
 // transformation if it is currently hidden, and will hide it if it is
 // currently being displayed. The view menu is up dated accordingly.

 void doExpandTrans();
 // This slot is called from the popup menu derive d from right-clicking on
 // the stack window. It will put the words "track <name-of-trans> to the
 // console and allow the debugger to execute the command.

Conclusion

Visual COKO enables a query optimization developer to visually trace the execution of a

COKO transformation, one step at a time. It functions as a debugger by providing

commands that control the execution of the COKO code, allowing the programmer to

step through the code and to find the source that is causing the transformation to behave

unexpectedly. The debugger commands described (step, break, continue, etc.) are based

on the commands of common debuggers such as gdb. Visual COKO functions as a visual

aid by displaying the original KOLA query parse tree, along with branches of this tree

corresponding to variable bindings, zoomed views, and the current branch that the

transfomration is working on, throughout execution. These visual tools allow the user to

visually observe and understand how the COKO code and KOLA rules transform the

original query. By functioning both as a debugger and a visual aid, Visual COKO greatly

facilitates the COKO programming process and hence the development of a query

rewriting engine.

References

[1] M. Cherniack and S.B. Zdonik. Rule languages and internal algebras for rule-based
optimizers. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Montreal, Quebec, June, 1996.

[2] M. Cherniack and S.B. Zdonik. Changing the Rules: Transformations for rule-based
optimizers. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Seattle, WA, June, 1998.

[3] R. Ganski and H. Wong. Optimization of Nested SQL Queries Revisited. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 23-33, San Francisco, 1998.

[4] G. Graefe and D.J. DeWitt. The EXODUS Optimizer Generator. In Proceedings
ACM-SIGMOD International Conference on Management of Data, pages 160-172, San
Francisco,1987.

[5] L.M. Haas, J.C. Freytag, G.M. Lohman, and H. Pirahesh. Extensible Query
Processing in Starburst. In Proceedings ACM-SIGMOD International Conference on
Management of Data, pages 377-388, San Francisco,1987.

[6] J. Hellerstein and R. Avnur. Eddies: Continuously Adaptive Query Processing. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 261-272, Dallas, 2000.

[7] N. Kabra and D.J. DeWitt. Efficient Mid-Query Re-Optimization of Sub-Optimal
Query Execution Plans. In Proceedings ACM-SIGMOD International Conference on
Management of Data, pages 106-117, Seattle, 1998.

