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ABSTRACT

Locking is widely used as a concurrency control mechanism
in database systems. As more OLTP databases are stored
mostly or entirely in memory, transactional throughput is
less and less limited by disk 10, and lock managers increas-
ingly become performance bottlenecks.

In this paper, we introduce very lightweight locking (VLL),
an alternative approach to pessimistic concurrency control
for main-memory database systems that avoids almost all
overhead associated with traditional lock manager opera-
tions. We also propose a protocol called selective contention
analysis (SCA), which enables systems implementing VLL
to achieve high transactional throughput under high con-
tention workloads. We implement these protocols both in
a traditional single-machine multi-core database server set-
ting and in a distributed database where data is partitioned
across many commodity machines in a shared-nothing clus-
ter. Our experiments show that VLL dramatically reduces
locking overhead and thereby increases transactional through-
put in both settings.

1. INTRODUCTION

As the price of main memory continues to drop, increas-
ingly many transaction processing applications keep the bulk
(or even all) of their active datasets in main memory at
all times. This has greatly improved performance of OLTP
database systems, since disk IO is eliminated as a bottle-
neck.

As a rule, when one bottleneck is removed, others appear.
In the case of main memory database systems, one common
bottleneck is the lock manager, especially under workloads
with high contention. One study reported that 16-25% of
transaction time is spent interacting with the lock manager
in a main memory DBMS [8]. However, these experiments
were run on a single core machine with no physical con-
tention for lock data structures. Other studies show even
larger amounts of lock manager overhead when there are
transactions running on multiple cores competing for access
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to the lock manager [9, 18, 14]. As the number of cores per
machine continues to grow, lock managers will become even
more of a performance bottleneck.

Although locking protocols are not implemented in a uni-
form way across all database systems, the most common way
to implement a lock manager is as a hash table that maps
each lockable record’s primary key to a linked list of lock
requests for that record [4, 2, 3, 20, 7]. This list is typically
preceded by a lock head that tracks the current lock state for
that item. For thread safety, the lock head generally stores
a mutex object, which is acquired before lock requests and
releases to ensure that adding or removing elements from
the linked list always occurs within a critical section. Every
lock release also invokes a traversal of the linked list for the
purpose of determining what lock request should inherit the
lock next.

These hash table lookups, latch acquisitions, and linked
list operations are main memory operations, and would there-
fore be a negligible component of the cost of executing any
transaction that accesses data on disk. In main memory
database systems, however, these operations are not negli-
gible. The additional memory accesses, cache misses, CPU
cycles, and critical sections invoked by lock manager opera-
tions can approach or exceed the costs of executing the ac-
tual transaction logic. Furthermore, as the increase in cores
and processors per server leads to an increase in concurrency
(and therefore lock contention), the size of the linked list of
transaction requests per lock increases—along with the as-
sociated cost to traverse this list upon each lock release.

We argue that it is therefore necessary to revisit the de-
sign of the lock manager in modern main memory database
systems. In this paper, we explore two major changes to
the lock manager. First, we move all lock information away
from a central locking data structure, instead co-locating
lock information with the raw data being locked (as sug-
gested in the past [5]). For example, a tuple in a main
memory database is supplemented with additional (hidden)
attributes that contain information about the row-level lock
information about that tuple. Therefore, a single memory
access retrieves both the data and lock information in a sin-
gle cache line, potentially removing additional cache misses.

Second, we remove all information about which transac-
tions have outstanding requests for particular locks from the
lock data structures. Therefore, instead of a linked list of
requests per lock, we use a simple semaphore containing the
number of outstanding requests for that lock (alternatively,
two semaphores—one for read requests and one for write-
requests). After removing the bulk of the lock manager’s



main data structure, it is no longer trivial to determine
which transaction should inherit a lock upon its release by a
previous owner. One key contribution of our work is there-
fore a solution to this problem. Our basic technique is to
force all locks to be requested by a transaction at once, and
order the transactions by the order in which they request
their locks. We use this global transaction order to figure
out which transaction should be unblocked and allowed to
run as a consequence of the most recent lock release.

The combination of these two techniques—which we call
very lightweight locking (VLL)—incurs far less overhead than
maintaining a traditional lock manager, but it also tracks
less total information about contention between transac-
tions. Under high-contention workloads, this can result in
reduced concurrency and poor CPU utilization. To amelio-
rate this problem, we also propose an optimization called se-
lective contention analysis (SCA), which—only when needed
—efficiently computes the most useful subset of the con-
tention information that is tracked in full by traditional lock
managers at all times.

Our experiments show that VLL dramatically reduces lock
management overhead, both in the context of a traditional
database system running on a single (multi-core) server,
and when used in a distributed database system that parti-
tions data across machines in a shared-nothing cluster. In
such partitioned systems, the distributed commit protocol
(typically two-phase commit) is often the primary bottle-
neck, rather than the lock manager. However, recent work
on deterministic database systems such as Calvin [22] have
shown how two-phase commit can be eliminated for dis-
tributed transactions, increasing throughput by up to an or-
der of magnitude—and consequently reintroducing the lock
manager as a major bottleneck. Fortunately, deterministic
database systems like Calvin lock all data for a transaction
at the very start of executing the transaction. Since this
element of Calvin’s execution protocol satisfies VLL’s lock
request ordering requirement, VLL fits naturally into the de-
sign of deterministic systems. When we compare VLL (im-
plemented within the Calvin framework) against Calvin’s
native lock manager, which uses the traditional design of a
hash table of request queues, we find that VLL enables an
even greater throughput advantage than that which Calvin
has already achieved over traditional nondeterministic exe-
cution schemes in the presence of distributed transactions.

2. VERY LIGHTWEIGHT LOCKING

The category of “main memory database systems” en-
compasses many different database architectures, including
single-server (multi-processor) architectures and a plethora
of emerging partitioned system designs. The VLL protocol
is designed to be as general as possible, with specific opti-
mizations for the following architectures:

e Multiple threads execute transactions on a single-server,
shared memory system.

e Data is partitioned across processors (possibly span-
ning multiple independent servers). At each partition,
a single thread executes transactions serially.

e Data is partitioned arbitrarily (e.g. across multiple
machines in a cluster); within each partition, multiple
worker threads operate on data.

The third architecture (multiple partitions, each running
multiple worker threads) is the most general case; the first
two architectures are in fact special cases of the third. In
the first, the number of partitions is one, and in the second,
each partition limits its pool of worker threads to just one.
For the sake of generality, we introduce VLL in the context
of the most general case in the upcoming sections, but we
also point out the advantages and tradeoffs of running VLL
in the other two architectures.

2.1 The VLL algorithm

The biggest difference between very lightweight locking
and traditional lock manager implementations is that VLL
stores each record’s “lock table entry” not as a linked list in
a separate lock table, but rather as a pair of integer values
(Cx,Cs) immediately preceding the record’s value in stor-
age, which represent the number of transactions requesting
exclusive and shared locks on the record, respectively. When
no transaction is accessing a record, its Cx and Cg values
are both 0.

In addition, a global queue of transaction requests (called
TxnQueue) is kept at each partition, tracking all active trans-
actions in the order in which they requested their locks.

When a transaction arrives at a partition, it attempts to
request locks on all records at that partition that it will
access in its lifetime. Each lock request takes the form of
incrementing the corresponding record’s Cx or Cg value,
depending whether an exclusive or shared lock is needed.
Exclusive locks are considered to be “granted” to the re-
questing transaction if C'x = 1 and C's = 0 after the request,
since this means that no other shared or exclusive locks are
currently held on the record. Similarly, a transaction is con-
sidered to have acquired a shared lock if C'x = 0, since that
means that no exclusive locks are held on the record.

Once a transaction has requested its locks, it is added
to the TxnQueue. Both the requesting of the locks and the
adding of the transaction to the queue happen inside the
same critical section (so that only one transaction at a time
within a partition can go through this step). In order to re-
duce the size of the critical section, the transaction attempts
to figure out its entire read set and write set in advance of
entering this critical section. This process is not always triv-
ial and may require some exploratory actions. Furthermore,
multi-partition transaction lock requests have to be coordi-
nated. This process is discussed further in Section 3.1.

Upon leaving the critical section, VLL decides how to pro-
ceed based on two factors:

e Whether or not the transaction is local or distributed.
A local transaction is one whose read- and write-sets
include records that all reside on the same partition;
distributed transactions may access a set of records
spanning multiple data partitions.

e Whether or not the transaction successfully acquired
all of its locks immediately upon requesting them. Trans-
actions that acquire all locks immediately are termed
free. Those which fail to acquire at least one lock are
termed blocked.

VLL handles each transactions differently based on whether
they are free or blocked:

e Free transactions are immediately executed. Once
completed, the transaction releases its locks (i.e. it



decrements every Cx or Cg value that it originally
incremented) and removes itself from the TxnQueue'.
Note, however, that if the free transaction is distributed
then it may have to wait for remote read results, and

therefore may not complete immediately.

e Blocked transactions cannot execute fully, since not
all locks have been acquired. Instead, these are tagged
in the TxnQueue as blocked. Blocked transactions are
not allowed to begin executing until they are explicitly
unblocked by the VLL algorithm.

In short, all transactions—free and blocked, local and dis-
tributed —are placed in the TxnQueue, but only free trans-
actions begin execution immediately.

Since there is no lock management data structure to record
which transactions are waiting for data locked by other trans-
actions, there is no way for a transaction to hand over its
locks directly to another transaction when it finishes. An al-
ternative mechanism is therefore needed to determine when
blocked transactions can be unblocked and executed. One
possible way to accomplish this is for a background thread
to examine each blocked transaction in the TxnQueue and ex-
amine the C'x and Cgs values of each data item for which the
transaction requested a lock. If the transaction incremented
Cx for a particular item, and now Cx is down to 1 and Cg
is 0 for that item (indicating that no other active transac-
tions have locked that item), then the transaction clearly
has an exclusive lock on it. Similarly, if the transaction in-
cremented Cgs and now Cx is down to 0, the transaction
has a shared lock on the item. If all data items that it re-
quested are now available, the transaction can be unblocked
and executed.

The problem with this approach is that if another trans-
action entered the TxnQueue and incremented Cx for the
same data item that a transaction blocked in the TxnQueue
already incremented, then both transactions will be blocked
forever since C'x will always be at least 2.

Fortunately, this situation can be resolved by a simple
observation: a blocked transaction that reaches the front
of the TxnQueue will always be able to be unblocked and
executed—no matter how large Cx and Cs are for the data
items it accesses. To see why this is the case, note that each
transaction requests all locks and enters the queue all within
the same critical section. Therefore if a transaction makes
it to the front of the queue, this means that all transactions
that requested their locks before it have now completed.
Furthermore, all transactions that requested their locks after
it will be blocked if their read and write set conflict.

Since the front of the TxnQueue can always be unblocked
and run to completion, every transaction in the TxnQueue
will eventually be able to be unblocked. Therefore, in addi-
tion to reducing lock manager overhead, this technique also
guarantees that there will be no deadlock within a partition.
(We explain how distributed deadlock is avoided in Section
3.1.) Note that a blocked transaction now has two ways
to become unblocked: either it makes it to the front of the
queue (meaning that all transactions that requested locks
before it have finished completely), or it becomes the only
transaction remaining in the queue that requested locks on

IThe transaction is not required to be at the front of the
TxnQueue when it is removed. In this sense, TxnQueue is
not, strictly speaking, a queue.

// Requests exclusive locks on all records in T’s
// WriteSet and shared locks on all records in T’s ReadSet.
// Tags T as free iff ALL locks requested were
// successfully acquired.
function BeginTransaction(Txn T)
<begin critical section>
T.Type = Free;
// Request read locks for T.
foreach key in T.ReadSet
datalkey].Cs++;
// Note whether lock was acquired.
if (datalkey].Cx > 0)
T.Type = Blocked;
// Request write locks for T.
foreach key in T.WriteSet
datalkey].Cx++;
// Note whether lock was acquired.
if (datalkey].Cx > 1 OR datalkey].Cs > 0)
T.Type = Blocked;
TxnQueue.Enqueue(T);
<end critical section>

// Releases T’s locks and removes T from TxnQueue.
function FinishTransaction(Txn T)
<begin critical section>
foreach key in T.ReadSet
data[key].Cs——;
foreach key in T.WriteSet
data[key].Cx——;
TxnQueue.Remove(T);
<end critical section>

// Transaction execution thread main loop.
function VLLMainLoop()
while (true)
// Select a transaction to run next...

// First choice: a previously-blocked txn
// that now does not conflict with older txns.
if (TxnQueue.front(). Type == Blocked)
Txn T = TxnQueue.front();
T.Type = Free;
Execute(T);
FinishTransaction(T);
// 2nd choice: Start on a new txn request.
else if (TxnQueue is not full)
Txn T = GetNewTxnRequest();
BeginTransaction(T);
if (T.Type == Free)
Execute(T);
FinishTransaction(T);

Figure 1: Pseudocode for the VLL algorithm.

each of the keys in its read-set and write-set. We discuss a
more sophisticated technique for unblocking transactions in
Section 2.5.

One problem that VLL sometimes faces is that as the
TxnQueue grows in size, the probability of a new transaction
being able to immediately acquire all its locks decreases,
since the transaction can only acquire its locks if it does not
conflict with any transaction in the entire TxnQueue.

We therefore artificially limit the number of transactions
that may enter the TxnQueue—if the size exceeds a thresh-
old, the system temporarily ceases to process new transac-
tions, and shifts its processing resources to finding trans-
actions in the TxnQueue that can be unblocked (see Sec-
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Figure 2: Example execution of a sequence of transactions {A, B,C, D, E} using VLL. Each transaction’s read

and write set is shown in the top left box.

Free transactions are shown with white backgrounds in the

TxnQueue, and blocked transactions are shown as black. Transaction logic and record values are omitted, since
VLL depends only on the keys of the records in transactions’ read and write sets.

tion 2.5). In practice we have found that this threshold
should be tuned depending on the contention ratio of the
workload. High contention workloads run best with smaller
TxnQueue size limits since the probability of a new transac-
tion not conflicting with any element in the TxnQueue is
smaller. A longer TxnQueue is acceptable for lower con-
tention workloads. In order to automatically account for
this tuning parameter, we set the threshold not by the size
of the TxnQueue, but rather by the number of blocked trans-
actions in the TxnQueue, since high contention workloads will
reach this threshold sooner than low contention workloads.

Figure 1 shows the pseudocode for the basic VLL al-
gorithm. Each worker thread in the system executes the
VLLMainLoop function. Figure 2 depicts an example execu-
tion trace for a sequence of transactions.

2.2 Single-threaded VLL

In the previous section, we discussed the most general ver-
sion of VLL, in which multiple threads may process different
transactions simultaneously within each partition. It is also
possible to run VLL in single-threaded mode. Such an ap-
proach would be useful in H-Store style settings [19], where
data is partitioned across cores within a machine (or within
a cluster of machines) and there is only one thread assigned
to each partition. These partitions execute independently of
one another unless a transaction spans multiple partitions,
in which case the partitions need to coordinate processing.

In the general version of VLL described above, once a
thread begins executing a transaction, it does nothing else

until the transaction is complete. For distributed transac-
tions that perform remote reads, this may involve sleeping
for some period of time while waiting for another partition
to send the read results over the network. If single-threaded
VLL were implemented simply by running only one thread
according to the previous specification, the result would
be a serial execution of transactions, since no transaction
would ever start until the previous transaction completed,
and therefore no transaction could ever block on any other.

In order to improve concurrency in single-threaded VLL
implementations, we allow transactions to enter a third state
(in addition to “blocked” and “free”). This third state,
“waiting”, indicates that a transaction was previously exe-
cuting but could not complete without the result of an out-
standing remote read request. When a transaction triggers
this condition and enters the “waiting” state, the main exe-
cution thread puts it aside and searches for a new transac-
tion to execute. Conversely, when the main thread is looking
for a transaction to execute, in addition to considering the
first transaction on the TxnQueue and any new transaction
requests, it may resume execution of any “waiting” trans-
action which has received remote read results since entering
the “waiting” state.

There is also no need for critical sections when running in
single-threaded mode, since only one transaction at a time
attempts to acquire locks at any particular partition.

2.3 Impediments to acquiring all locks at once

As discussed in Section 2.1, in order to guarantee that the



head of the TxnQueue is always eligible to run (which has
the added benefit of eliminating deadlocks), VLL requires
that all locks for a transaction be acquired together in a
critical section. There are two possibilities that make this
nontrivial:

e The read and write set of a transaction may not be
known before running the transaction. An example
of this is a transaction that updates a tuple that is
accessed through a secondary index lookup. With-
out first doing the lookup, it is hard to predict what
records the transaction will access—and therefore what
records it must lock.

e Since each partition has its own TxnQueue, and the
critical section in which it is modified is local to a par-
tition, different partitions may not begin processing
transactions in the same order. This could lead to dis-
tributed deadlock, where one partition gets all its locks
and activates a transaction, while that transaction is
“blocked” in the TxnQueue of another partition.

In order to overcome the first problem, before the trans-
action enters the critical section, we allow the transaction
to perform whatever reads it needs to (at no isolation) for
it to figure out what data it will access (for example, it per-
forms the secondary index lookups). This can be done in the
GetNewTxnRequest function that is called in the pseudocode
shown in Figure 1. After performing these exploratory reads,
it enters the critical section and requests those locks that it
discovered it would likely need. Once the transaction gets its
locks and is handed off to an execution thread, the transac-
tion runs as normal unless it discovers that it does not have
a lock for something it needs to access (this could happen if,
for example, the secondary index was updated immediately
after the exploratory lookup was performed and now returns
a different value. In such a scenario, the transaction aborts,
releases its locks, and submits itself to the database system
to be restarted as a completely new transaction.

There are two possible solutions to the second problem.
The first is simply to allow distributed deadlocks to occur
and to run a deadlock detection protocol that aborts dead-
locked transactions. The second approach is to coordinate
across partitions to ensure that multi-partition transactions
are added to the TxnQueue in the same order on each parti-
tion.

We choose the second approach for our implementation
in this paper. The reason is that multi-partition trans-
actions are typically bottlenecked by the commit protocol
(e.g. two-phase commit) that are run in order to ensure
ACID-compliance of transactional execution. Reducing the
lock manager overhead in such a scenario is therefore un-
helpful in the face of a larger bottleneck. However, recent
work on deterministic database systems [21, 22] shows that
the commit protocol may be eliminated by performing all
multi-partition coordination before beginning transactional
execution. In short, deterministic database systems such as
Calvin order all transactions across partitions, and this or-
der can be leveraged by VLL to avoid distributed deadlock.
Furthermore, since deterministic systems have been shown
to be a particularly promising approach in main memory
database systems [21], the integration of VLL and deter-
ministic database systems seems to be a particularly good
match.

2.4 Tradeoffs of VLL

VLL’s primary strength lies in its extremely low overhead
in comparison to that of traditional lock management ap-
proaches. VLL essentially “compresses” a standard lock
manager’s linked list of lock requests into two integers. Fur-
thermore, by placing these integers inside the tuple itself,
both the lock information and the data itself can be re-
trieved with a single memory access, minimizing total cache
misses.

The main disadvantage of VLL is a potential loss in con-
currency. Traditional lock managers use the information
contained in lock request queues to figure out whether a
lock can be granted to a particular transaction. Since VLL
does not have these lock queues, it can only test more selec-
tive predicates on the state: (a) whether this is the only lock
in the queue, or (b) whether it is so old that it is impossible
for any other transaction to precede it in any lock queue.

As a result, it is common for scenarios to arise under VLL
where a transaction cannot run even though it “should” be
able to run (and would be able to run under a standard lock
manager design). Consider, for example, the sequence of
transactions:

txn | writeset

A | x
B |y
C | x 2
D |z

Suppose A and B are both running in executor threads
(and are therefore still in the TxnQueue) when C and D come
along. Since transaction C conflicts with A on record = and
D conflicts with C on z, both are put on the TxnQueue in
blocked mode. VLL’s “lock table state” would then look like
the following (as compared to the state of a standard lock
table implementation):

VLL Standard
key Cx Cs key request queue
X 2 0 X A C
y 1 0 y B
z 2 0 z C, D
TxnQueue
A, B, C D

Next, suppose that A completes and releases its locks. The
lock tables would then appear as follows:

VLL Standard

key Cx Cs key request queue

be 1 0 X C
v 1 0 y B
z 2 0 z C,D
TxnQueue
B,C,D

Since C' appears at the head of all its request queues, a
standard implementation would know that C' could safely
be run, whereas VLL is not able to determine that.

When contention is low, this inability of VLL to immedi-
ately determine possible transactions that could potentially



be unblocked is not costly. However, under higher con-
tention workloads, and especially when there are distributed
transactions in the workload, VLL’s resource utilization suf-
fers, and additional optimizations are necessary. We discuss
such optimizations in the next section.

2.5 Selective contention analysis (SCA)

For high contention and high percentage multi-partition
workloads, VLL spends a growing percentage of CPU cycles
in the state described in Section 2.4 above, where no trans-
action can be found that is known to be safe to execute—
whereas a standard lock manager would have been able to
find one. In order to maximize CPU resource utilization, we
introduce the idea of selective contention analysis (SCA).

SCA simulates the standard lock manager’s ability to de-
tect which transactions should inherit released locks. It does
this by spending work examining contention—but only when
CPUs would otherwise be sitting idle (i.e., TxnQueue is full
and there are no obviously unblockable transactions). SCA
therefore enables VLL to selectively increase its lock man-
agement overhead when (and only when) it is beneficial to
do so.

Any transaction in the TxnQueue that is in the ’blocked’
state, conflicted with one of the transactions that preceded
it in the queue at the time that it was added. Since then,
however, the transaction(s) that caused it to become blocked
may have completed and released their locks. As the trans-
action gets closer and closer to the head of the queue, it
therefore becomes much less likely to be “actually” blocked.

In general, the " transaction in the TxnQueue can only
conflict now with up to (i —1) prior transactions, whereas it
previously had to contend with (up to) TxnQueueSizeLimit
prior transactions. Therefore, SCA starts at the front of the
queue, and works its way through the queue looking for a
transaction to execute. The whole while, it keeps two bit-
arrays, Dx and Dg, each of size 100kB (so that both will
easily fit inside an L2 cache of size 256kB) and initialized to
all 0s. SCA then maintains the invariant that after scanning
the first ¢ transactions:

e Dx[j] =1 iff an element of one of the scanned trans-
actions’ write-sets hashes to j

e Dg[k] = 1 iff an element of one of the scanned trans-
actions’ read-sets hashes to k

Therefore, if at any point the next transaction scanned (let’s
call it Theszt) has the properties

e Dx[hash(key)] = 0 for all keys in Theqt’s read-set
e Dx[hash(key)] = 0 for all keys in Theqt’s write-set
e Dglhash(key)] = 0 for all keys in Thezt’s write-set

then Thezt does not conflict with any of the prior scanned
transactions and can safely be run?.

In other words, SCA traverses the TxnQueue starting with
the oldest transactions and looking for a transaction that is
ready to run and does not conflict with any older transac-
tion. Pseudocode for SCA is provided in Figure 3.

2Although there may be some false negatives (in which an
“actually” runable transaction is still perceived as blocked)
due to the need to hash the entire keyspace into a 100kB
bitstring, this algorithm gives no false positives.

// SCA returns a transaction that can safely be run (or null
// if none exists). It is called only when TxnQueue is full.
function SCA()
// Create our 100kB bit arrays.
bit Dx[819200] = {0};
bit Ds[819200] = {0};
foreach Txn T in TxnQueue
// Check whether the Blocked transaction
// can safely be run
if (T.state() == BLOCKED)
bool success = true;

// Check for conflicts in ReadSet.
foreach key in T.ReadSet
// Check if a write lock is held by any

// earlier transaction.
int j = hash(key);

if (Dx(j] == 1)
success = false;
Dsfj] = 1;

// Check for conflicts in WriteSet.
foreach key in T.WriteSet
// Check if a read or write lock is held
/ by any earlier transaction.
int j = hash(key);
if (Dx[j] == 1 OR Ds[j] == 1)
success = false;
Dx[j] = 1;
if (success)
return T}
// If the transaction is free, just mark the bit-arrays.
else
foreach key in T.ReadSet
int j = hash(key);
Dsfj] = 1;
foreach key in T.WriteSet
int j = hash(key);
Dx[j] = L
return NULL;

Figure 3: SCA pseudocode.

SCA is actually “selective” in two different ways. First,
it only gets activated when it is really needed (in contrast
to traditional lock manager overhead which always pays the
cost of tracking lock contention even when this information
will not end up being used). Second, rather than doing an
expensive all-to-all conflict analysis between active transac-
tions (which is what traditional lock managers track at all
times), SCA is able to limit its analysis to those transactions
that are (a) most likely to be able to run immediately and
(b) least expensive to check.

In order to improve the performance of our implementa-
tion of SCA, we include a minor optimization that reduces
the CPU overhead of running SCA. Each key needs to be
hashed into the 100kB bitstring, but hashing every key for
each transaction as we iterate through the TxnQueue can be
expensive. We therefore cache the results of the hash func-
tion the first time SCA encounters a transaction inside the
transaction state. If that transaction is still in the TxnQueue
the next time SCA iterates through the queue, the algorithm
may then use the saved list of offsets that corresponds to the
keys read and written by that transaction to set the appro-



priate bits in the SCA bitstring, rather having to re-hash
each key.

3. EXPERIMENTAL EVALUATION

To evaluate VLL and SCA, we ran several experiments
comparing VLL (with and without SCA) against alterna-
tive schemes in a number of contexts. We separate our ex-
periments into two groups: single-machine experiments, and
experiments in which data is partitioned across multiple ma-
chines in a shared-nothing cluster.

In our single-machine experiments, we ran VLL (exactly
as described in Section 2.1) in a multi-threaded environment
on a multi-processor machine. As a comparison point, we
implemented a traditional two-phase locking (2PL) protocol
inside the same main-memory database system prototype.
This allows for an apples-to-apples comparison in which the
only difference is the locking protocol.

Our second implementation of VLL is designed to run
in a shared-nothing (multi-server) configuration. As de-
scribed in Section 3.1, the cost of running any locking proto-
col is usually dwarfed by the contention cost of distributed
commit protocols such as two-phase commit (2PC) that
are used to guarantee ACID for multi-partition transac-
tions. We therefore implemented VLL inside Calvin, a deter-
ministic database system that does not require distributed
agreement protocols to commit distributed transactions [22].
We compare our deterministic VLL implementation against
(1) Calvin’s default concurrency control scheme (which uses
standard lock management data structures to track what
data is locked), (2) a traditional distributed database imple-
mentation which uses 2PL (with a standard lock manager
on each partition that tracks locks of data in that parti-
tion) and 2PC, and (3) an H-Store implementation® [19]
that partitions data across threads (so that an 8-server clus-
ter, where each server has 8 hardware threads, is partitioned
into 64 partitions) and executes all transactions at each par-
tition within a single thread, removing the need for locking
or latching of shared data structures.

Our prototype is implemented in C++. All the exper-
iments measuring throughput were conducted on a Linux
cluster of a 2.6 GHz quad-core Intel Xeon X5550 machines
with 8 CPU threads and 12G RAM, connected by a single
gigabit Ethernet switch.

In order to minimize the effects of irrelevant components
of the database system on our results, we devote 3 out of 8
cores on every machine to those components that are com-
pletely independent of the locking scheme (e.g. client load
generation, performance monitoring instrumentation, intra-
process communications, input logging, etc.), and devote the
remaining 5 cores to worker threads and lock management
threads. For all techniques that we compare in the exper-
iments, we tuned the worker thread pool size by hand by
increasing the number of worker threads until throughput
decreased due to too much thread contention.

3.1 Multi-core, single-server experiments

This section compares the performance of VLL against
two-phase locking. For VLL, we analyze performance with

3 Although we refer to this system as “H-Store” in the dis-
cussion that follows, we actually implemented the H-Store
protocol within the Calvin framework in order to provide as
fair a comparison as possible.

and without the SCA optimization. We also implement two
versions of 2PL: a “traditional” implementation that detects
deadlocks via timeouts and aborts deadlocked transactions,
and a deadlock-free variant of 2PL in which a transaction
places all of its lock requests in a single atomic step (where
the data that must be locked is determined in an identical
way as VLL, as described in Section ). However, this mod-
ified version of 2PL still differs from VLL in that it uses a
traditional lock management data structure.

Our first set of single-machine experiments uses the same
microbenchmark as was used in [22]. Each microbenchmark
transaction reads 10 records and updates a value at each
record. Of the 10 records accessed, one is chosen from a
small set of ‘hot’ records, and the rest are chosen from a
larger set of ‘cold’ records. Contention levels between trans-
actions can be finely tuned by varying the size of the set
of hot records. In the subsequent discussion, we use the
term contention index to refer to the probability of any two
transactions conflicting with one another. Therefore, for this
microbenchmark, if the number of the hot records is 1000,
the contention index would be 0.001. If there is only one
hot record (which would then be modified by every single
transaction) the contention index would be 1. The set of
cold records is always large enough such that transactions
are extremely unlikely to conflict due to accessing the same
cold record.

As a baseline for all four systems, we include a “no lock-
ing” scheme, which represents the performance of the same
system with all locking completely removed (and any iso-
lation guarantees completely forgone). This allows us to
clearly see the overhead of acquiring and releasing the locks,
maintaining lock management data structures for each scheme,
and waiting for blocked transactions when there is contention.

Figure 4 shows the transactional throughput the system is
able to achieve under the four alternative locking schemes.

When contention is low (below 0.02), VLL (with and with-
out SCA) yields near-optimal throughput. As contention in-
creases, however, the TxnQueue starts to fill up with blocked
transactions, and the SCA optimization is able to improve
performance relative to the basic VLL scheme by selectively
unblocking transactions and “unclogging” the execution en-
gine. In this experiment, SCA boosts VLL’s performance
by up to 76% under the highest contention levels.

At the very left-hand side of the figure, where contention
is very low, transactions are always able to acquire all their
locks and run immediately. Looking at the difference be-
tween “no locking” and 2PL at low contention, we can see
that the locking overhead of 2PL is about 21%. This number
is consistent with previous measurements of locking over-
head in main memory databases [8, 14]. However, the over-
head of VLL is only 2%, demonstrating VLL’s lightweight
nature. By co-locating lock information with data to in-
crease cache locality, and by representing lock information
in only two integers per record, VLL is able to lock data
with extremely low overhead.

As contention increases, the throughput of both VLL and
2PL decrease (since the system is “clogged” by blocked trans-
actions), and the two schemes approach one another in per-
formance as the additional information that the 2PL scheme
keeps in the lock manager becomes increasingly useful (as
more transactions block). However, it is interesting to note
that 2PL never overtakes the performance of VLL with SCA,
since SCA can quickly construct the relevant part of trans-
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Figure 4: Transactional throughput vs. contention
under a deadlock-free workload.

actional data dependencies on the fly. In fact, it appears
that the overhead of repeatedly running SCA at very high
contention is approximately equal to the overhead of main-
taining a full lock manager. Therefore, VLL with the SCA
optimization has the advantage that it eliminates the lock
manager overhead when possible, while still reconstructing
the information stored in standard lock tables when this is
needed to make progress on transaction execution.

With increasing contention, the deadlock-free 2PL imple-
mentation saw a greater throughput reduction than the tra-
ditional 2PL implementation. This is because in traditional
2PL, transactions delay requesting locks until actually read-
ing or writing the corresponding record, thereby holding
locks for shorter durations than the deadlock-free version
in which transactions request all locks up front.

Since this workload involved locking only one hot item per
transaction, there is (approximately) no risk of transactions
deadlocking®. This hides a major disadvantage of 2PL rel-
ative to VLL, since 2PL must detect and resolve deadlocks,
while VLL does not, since VLL is always deadlock-free re-
gardless of the transactional workload (due to the way it
orders its lock acquisitions). In order to model other types
of workloads where multiple records per transaction can be
contested (which can lead to deadlock for the traditional
lock schemes), we increase the number of hot records per
transaction in our second experiment. Figure 5 shows the
resulting throughput as we vary contention index. Frequent
deadlocks causes throughput for traditional 2PL to drop dra-
matically, which results in VLL with SCA outperforming
2PL by at least 163% in most cases, and as much as 18X
in the extreme high contention case (the right-most part of
the figure).

Although traditional 2PL performance changes significantly
between Figures 4 and 5, the deadlock-free 2PL variant is
not affected (as expected). However, since it still uses a tra-
ditional lock manager data structure, it has higher overhead
than VLL at low contention levels. Furthermore, the criti-
cal section in which all locks are acquired is more expensive

4The exception is that deadlock is possible in this workload
if transactions conflict on cold items. This was rare enough,
however, that we observed no deadlocks in our experiments.
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Figure 5: Transactional throughput vs. contention
under a workload in which deadlocks are possible.

than the corresponding critical section for VLL (since it in-
cludes the more expensive hash table and queue operations
associated with standard lock table implementations instead
of VLL'’s simple integer operations) and therefore continues
to be outperformed by VLL even at higher contention levels.

3.2 Distributed Database Experiments

In this section, we examine the performance of VLL in
a distributed (shared-nothing) database architecture. We
compare VLL against three other concurrency control de-
signs for distributed main memory databases: traditional
distributed 2PL, H-Store’s lock-free protocol, and Calvin’s
deterministic locking protocol.

The first comparison point we use is traditional distributed
2PL, which uses a traditional lock manager (exactly as in
the single-server experiments) on each partition, and uses
the two-phase commit (2PC) protocol to commit distributed
transactions.

The H-Store implementation [19] eliminates all lock man-
ager overhead by removing locking entirely and executing
transactions serially. In order to make use of multiple cores
(and multiple machines), H-Store partitions data across cores
and runs transactions serially in a single thread at each par-
tition. If a transaction touches data across multiple parti-
tions, each participating partition blocks until all partic-
ipants reach and start to process that transaction. The
main disadvantage of this approach is that, in general, par-
titions are not synchronized in their execution of transac-
tions, so partitions participating in a distributed transaction
may have to wait for other, slower participants to reach the
same point in execution to complete the transaction (and
since transactions are executed serially, the waiting par-
ticipant cannot apply idle CPU resources to other useful
tasks while waiting). Furthermore, even after each partition
starts on the same transaction, there can be significant idle
time while waiting for messages to be passed between parti-
tions. Therefore, H-Store performs extremely well on “em-
barrassingly partitionable” workloads—where every trans-
action can be executed within a single partition—but its per-
formance quickly degrades as distributed transactions enter
the mix.



The third comparison point is Calvin, a deterministic database

system prototype that employs a traditional hash-table-of-
request-queues structure in its lock manager. Previous work

has shown that Calvin performs similarly to traditional database

systems when transactions are short and only access memory-
resident data, worse when there are long-running transac-
tions that access disk (due to the additional inflexibility as-
sociated with the determinism guarantee), and better when
there are distributed transactions (since the determinism
guarantee allows the elimination of two-phase commit) [21,
22]. For these experiments, all transactions are completely
in-memory (so that Calvin is expected to perform approx-
imately as well as possible as a comparison point), and we
vary the percentage of transactions that span multiple par-
titions.

Since VLL acquires locks for each transaction all at once,
it is possible for it to also be used in a deterministic system.
We simply require that each transaction acquires its locks
in the same order as the deterministic transaction sequence.
This is more restrictive than the general VLL algorithm—
which allows transactions to (atomically) request their locks
in any order—but allows for a more direct comparison with
Calvin, since by satisfying Calvin’s determinism invariant,
VLL too can use Calvin’s determinism invariant to eschew
two-phase commit. To further improve the quality of com-
parison, we allow H-Store to omit the two-phase commit
protocol as well (even though the original H-Store papers
implement two-phase commit).

For these experiments, we implement the single-threaded
version of VLL as described in Section 2.2, since, as ex-
plained in that section, this allows for locks to be acquired
outside of critical sections. The main disadvantage of single-
threaded VLL is that in order to utilize all the CPU re-
sources on a multi-core server, data must be partitioned
across each core (with a single thread in charge of process-
ing transactions for that core), which leads to the overhead
of dealing with multi-partition transactions for transactions
that touch data controlled by threads on different cores.
However, since this “distributed” set of experiments has to
deal with multi-partition transactions anyway (for transac-
tions that span data stored on different physical machines),
the infrastructure cost of this extra overhead has already
been incurred. Therefore, we use the multi-threaded ver-
sion of VLL for the single-server (multi-core) experiments,
and the single-threaded version of VLL for the distributed
database experiments.

Since we are running a distributed database, we dedicate
one of the virtual cores on each database server node to
handle communication with other nodes (in addition to the
three other virtual cores previously reserved for database
components described above), leaving 4 virtual cores dedi-
cated to transaction processing. For H-Store and both VLL
implementations, we leveraged these 4 virtual cores by cre-
ating 4 data partitions per machine, so every execution en-
gine used one core to handle transactions associated with
its partition, and for distributed 2PL, we left 4 virtual cores
dedicated to worker threads®. Similarly to distributed 2PL,
Calvin does not partition data within a node. We found

5For 2PL, we hand-tuned the number of worker threads for
each experiment, since workloads with more multi-partition
transactions require more worker threads to keep the CPU
occupied (because many worker threads are sleeping, wait-
ing for remote data). With enough worker threads, the ex-
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Figure 6: Microbenchmark throughput with low
contention, varying how many transactions span
multiple partitions.
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Figure 7: Microbenchmark throughput with high
contention, varying how many transactions span
multiple partitions (distributed 2PL results omitted
due to large amounts of distributed deadlock).

that Calvin’s scheduler (which includes one thread that per-
forms all lock manager operations) fully utilized one of the
four cores that were devoted to transaction processing.

3.2.1 Microbenchmark experiments

In our first set of distributed experiments, we used the
same microbenchmark from Section 3.1. For these experi-
ments, we vary both lock contention and the percentage of
multi-partition transactions.

We ran this experiment on 8 machines, so H-Store and
VLL split data across 32 partitions, while the Calvin and
distributed 2PL deployments used a single partition per ma-
chine for a total of 8 partitions (each of which was 4 times
the size of one H-Store/VLL partition). For the low con-
tention test (Figure 6), each H-Store/VLL partition con-

tended contention footprint of 2PC eventually becomes the
bottleneck that limits total throughput.



tained 1,000,000 records of which 10,000 were hot, and each
Calvin partition contained 4,000,000 records of which 40,000
were hot. Since VLL and H-Store had a smaller number of
hot records per partition, they ended up having a slightly
larger contention index than Calvin and distributed 2PL
(0.0001 for VLL/H-Store vs. 0.000025 for Calvin/2PL).
Calvin and distributed 2PL therefore had a slight advantage
in the experiments relative to VLL and H-Store. Similarly,
for the high contention tests (Figure 7), we used 100 hot
records for each H-Store/VLL partition and 400 hot records
for each Calvin partition, resulting in contention indexes of
0.01 for VLL/H-Store and 0.0025 for Calvin.

Before comparing VLL to the other schemes, we exam-
ine VLL with and without the SCA optimization. Under
high contention, SCA is extremely important, and VLL’s
throughput is poor without it. Under low contention how-
ever, the SCA optimization actually hinders performance
slightly when there are more than 60% multi-partition trans-
actions. There are three reasons for this effect. First, under
low contention, very few transactions are blocked waiting for
locks, so SCA has a smaller number of potential transactions
to unblock.

Second, since multi-partition transactions take longer than
single-partition transactions, the TxnQueue typically con-
tains many multi-partition transactions waiting for read re-
sults from other partitions. The higher the percentage of
multi-partition transactions, the longer the TxnQueue tends
to be (recall that the queue length is limited by the number
of blocked transactions, not the total number of transac-
tions). Since SCA iterates through the TxnQueue each time
that it is called, the overhead of each SCA run therefore
increases with multi-partition percentage.

Third, since low contention workloads typically have more
multi-partition transactions per blocked transaction in the
TxnQueue, each blocked transaction has a higher probabil-
ity of being blocked behind a multi-partition transaction.
This further reduces the effectiveness of SCA’s ability to
find transactions to unblock, since multi-partition transac-
tions are slower to finish, and there is nothing that SCA can
do to accelerate a multi-partition transaction.

Despite all these reasons for the reduced effectiveness of
SCA for low contention workloads, SCA is only slower than
regular VLL by a small amount. This is because SCA runs
are only ever initiated when the CPU would otherwise be
idle, so SCA only comes with a cost if the CPU would have
left its idle state before SCA finishes its iteration through
the TxnQueue.

VLL with SCA always outperforms Calvin in both experi-
ments. With few multi-partition transactions, the lock man-
ager overhead is clearly visible in these plots. Calvin keeps
one of its four dedicated transaction processing cores (or
25% of its available CPU resources) saturated running the
lock manager thread. VLL is therefore able to outperform
Calvin by up to 33% by eliminating the lock manager thread
and devoting that extra core to query execution instead.
As the number of multi-partition transactions increases, the
lock management overhead becomes less of a bottleneck as
throughput becomes limited by communication delays nec-
essary to process multi-partition transactions. Therefore,
the performance of Calvin and VLL (with SCA) become
more similar.

As in the single-server experiments, the full contention
data tracked by the standard lock manager becomes use-
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ful at higher contention workloads, since information con-
tained in the lock manager can be used to unblock trans-
actions, so Calvin outperforms the default version of VLL
under high contention (especially when there are more multi-
partition transactions that fill the TxnQueue and prevent
blocked transactions from reaching the head of the queue).
However, the SCA optimization is able to reconstruct these
transactional dependencies when needed, nullifying Calvin’s
advantage.

Both VLL and Calvin significantly outperform the H-
Store (serial execution) scheme as more multi-partition trans-
actions are added to the workload. This is because H-Store
partitions have no mechanism for concurrent transaction ex-
ecution, and so must sit idle any time it depends on an out-
standing remote read result to complete a multi-partition
transaction®. Since H-Store is designed for partitionable
workloads (fewer than 10% multi-partition transactions), it
is most interesting to compare H-Store and VLL at the left-
hand side of the graph. Even at 0% multi-partition trans-
actions, H-Store is unable to significantly outperform VLL,
despite the fact that VLL acquires locks before executing a
transaction, while H-Store does not. This further demon-
strates the extremely low overhead of lock acquisition in
VLL.

Both VLL and Calvin also significantly outperform the
traditional distributed 2PL scheme (usually by about 3X).
This is largely due to the fact that the distributed 2PL
scheme pays the contention cost of running 2PC while hold-
ing locks (which Calvin and VLL do not). Furthermore,
while Calvin, VLL, and H-Store all avoid deadlock, tradi-
tional distributed databases that use 2PL and 2PC must
detect and resolve deadlocks. We found that under our high
contention benchmark, distributed deadlock rates for the

5Subsequent versions of H-Store proposed to speculatively
execute transactions during this idle time [10], but this can
lead to cascading aborts and wasted work if there would
have been a conflict. We do not implement speculative exe-
cution in our H-Store prototype since H-Store is designed for
workloads with small percentages of multi-partition trans-
actions (when speculative execution is not necessary), and
our purpose for including it as a comparison point is only
to analyze how it compares to VLL on these target single-
partition workloads.
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Figure 9: TPC-C throughput.

distributed 2PL scheme were so high that throughput ap-
proached 0. We therefore omitted the distributed 2PL line
from Figure 7.

Figure 8 shows the results of an experiment in which we
test the scalability of the different schemes at low contention
when there are 10% and 20% multi-partition transactions.
We scale from 1 to 24 machines in the cluster. This figure
shows that VLL is able to achieve similar linear scalability
as Calvin, and is therefore able to maintain (and extend) its
performance advantage at scale. Meanwhile, traditional dis-
tributed 2PL does not scale as well as VLL and Calvin, again
due to the contention cost of 2PC. We observed very sim-
ilar behavior under the higher contention benchmark (plot
omitted due to space constraints).

3.2.2 TPC-C experiments

To expand our benchmarking efforts beyond our simple
microbenchmark, we present in this section benchmarks of
VLL on TPC-C. The TPC-C benchmark models the OLTP
workload of an eCommerce order processing system. TPC-
C consists of a mix of five transactions with different prop-
erties. In order to vary the percentage of multi-partition
transactions in TPC-C, we vary the percentage of New Or-
der transactions that access a remote warehouse.

For this experiment, we divided 96 TPC-C warehouses
across the same 8-machine cluster described in the previous
section. As with the microbenchmark experiments, VLL
and H-Store partitioned the TPC-C data across 32 three-
warehouse partitions (four per machine), while Calvin par-
titioned it across 8 twelve-warehouse partitions (one per ma-
chine).

Figure 9 shows the throughput results for VLL, Calvin,
and H-Store. (Again, we omit the distributed 2PL scheme
because high amounts of distributed deadlocks caused near-
zero throughput). Overall, the relative performance of the
different locking schemes is very similar to the high-contention
microbenchmark results. The high contention in TPC-C re-
sults in the SCA optimization improving performance rela-
tive to regular VLL by 35% to 109% when multi-partition
transactions are numerous.

The shape of the Calvin and H-Store lines relative to the
two versions of VLL is also similar to the high contention
microbenchmark experiments. At low percentages of multi-

partition transactions, the lock manager overhead of Calvin
reduces its performance, but at higher percentages of multi-
partition transactions, it is able to use the information in
the lock manager to unblock stuck transactions and is able
to outperform VLL unless the SCA optimization is used.

3.3 CPU costs

The above experiments show the performance of the dif-
ferent locking schemes by measuring total throughput under
different conditions. These results reflect both (a) the CPU
overhead of each scheme, and (b) the amount of concurrency
achieved by the system.

In order to tease apart these two components of perfor-
mance, we measured the CPU cost per transaction of re-
questing and releasing locks for each locking scheme. These
experiments were not run in the context of a fully loaded
system—rather, we measured the CPU cost of each mecha-
nism in complete isolation.

per-transaction
locking mechanism CPU cost (pus)
Traditional 2PL 20.13
Deterministic Calvin | 20.16
Multi-threaded VLL 1.8
Single-threaded VLL 0.71

Figure 10: Locking overhead per transaction.

Figure 10 shows the results of our isolated CPU cost evalu-
ation, which demonstrates the reduced CPU costs that VLL
achieves by eliminating the lock manager. We find that the
Calvin and 2PL schemes (which both use traditional lock
managers) have an order of magnitude higher CPU cost
than the VLL schemes. The CPU cost of multi-threaded
VLL is a little larger than the cost of single-threaded VLL,
since multi-threaded VLL has the additional cost of acquir-
ing and releasing a latch around the acquisition of locks.

4. RELATED WORK

The System R lock manager described in [6] is the lock
manager design that has been adopted by most database
systems. In order to reduce the cost of locking, there have
been several published methods for reducing the number
of lock calls [11, 15, 17]. While these schemes may par-
tially mitigate the cost of locking in main-memory systems,
but they don’t address the root cause of high lock man-
ager overhead—the size and complexity of the data struc-
ture used to store lock requests.

[12] presented a Lightweight Intent Lock (LIL), which
maintains a set of lightweight counters in a global lock table.
However, this proposal doesn’t co-locate the counters with
the raw data (to improve cache locality), and if the transac-
tion doesn’t acquire all of its locks immediately, the thread
blocks, waiting to receive a message from another released
transaction thread. VLL differs from this approach in using
the global transaction order to figure out which transaction
should be unlocked and allowed to run as a consequence of
the most recent lock release.

The idea of co-locating a record’s lock state with the
record itself in main memory databases was proposed al-
most two decades ago [5, 16]. However, this proposal in-
volved maintaining a linked list of “Lock Request Blocks”
(LCBs) for each record, significantly complicating the un-
derlying data structures used to store records, whereas VLL



aims to simplify lock tracking structures by compressing all
per-record lock state into a simple pair of integers.

Given the high overhead of the lock manager when a
database is entirely in main memory [8, 9, 14], some re-
searchers observe that executing transactions serially that
without concurrency control can buy significant throughput
improvement in main memory database systems [10, 19, 23].
Such an approach works well only when the workload can be
partitioned across cores, with very few multi-partition trans-
actions. VLL enjoys some of the advantages of reduced lock-
ing overhead, while still performing well for a much larger
variety of workloads.

Other attempts to avoid locks in main memory database
systems include optimistic concurrency control schemes and
multi-version concurrency control schemes [1, 4, 13, 14].
While these schemes eliminate locking overhead, they in-
troduce other sources of overhead. In particular, optimistic
schemes can cause overhead due to aborted transactions
when the optimistic assumption fails (in addition to data
access tracking overhead), and multi-version schemes use
additional (expensive) memory resources to store multiple
copies of data.

S. CONCLUSION AND FUTURE WORK

We have presented very lightweight locking (VLL), a pro-
tocol for main memory database systems that avoids the
costs of maintaining the data structures kept by traditional

lock managers, and therefore yields higher transactional through-

put than traditional implementations. VLL co-locates lock
information (two simple semaphores) with the raw data, and
forces all locks to be acquired by a transaction at once. Al-
though the reduced lock information can complicate answer-
ing the question of when to allow blocked transactions to ac-
quire locks and proceed, selective contention analysis (SCA),
allows transactional dependency information to be created
as needed (and only as much information as is needed to
unblock transactions). This optimization allows our VLL
protocol to achieve high concurrency in transaction execu-
tion, even under high contention.

We showed how VLL can be implemented in traditional
singer-server multi-core database systems and also in deter-
ministic multi-server database systems. The experiments
we presented demonstrate that VLL can outperform stan-
dard two-phase locking, deterministic locking, and H-Store
style serial execution schemes significantly—without inhibit-
ing scalability, or interfering with other components of the
database system. Furthermore, VLL is highly compatible
with both standard (non-deterministic) approaches to trans-
action processing and deterministic database systems like
Calvin.

Our focus in this paper was on database systems that up-
date data in place. In future work, we intend to investigate
multi-versioned variants of the VLL protocol, and integrate
hierarchical locking approaches into VLL.
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