MAP-LAPKT: Omnipotent Multi-Agent Planning via
Compilation to Classical Planning

Christian Muise*, Nir Lipovetzky*, Miquel Ramirez’

*Department of Computing and Information Systems, University of Melbourne
TCollege of Engineering and Computer Science, Australian National University
*{christian.muise,nir.lipovetzky} @unimelb.edu.au, "miquel.ramirez@anu.edu.au

Introduction

In this paper we describe three related entries submitted to
the CoODMAP planning contest (Stolba, Komenda, and Ko-
vacs 2015). All three entries are configurations of the classi-
cal planning framework LAPKT (Ramirez, Lipovetzky, and
Muise 2015), and all three use the same pre-compiled input.
Our approach is based on the following insight:

The task of planning for multiple agents with heteroge-
neous access to fluent observability can be solved by
classical planners using the appropriate encoding.

The general approach is quite simple: we convert the un-
factored domain and problem file into a classical planning
problem such that the privacy of fluents and objects are re-
spected. The translation is both sound and complete, and
we solve the encoded problem using a centralized classical
planner. None of the factorization is passed to the classical
planner, because the encoded problem contains all the nec-
essary information as part of the problem itself.

In the remainder of the document, we outline (1) the sim-
ple encoding that we use to create a classical planning prob-
lem, (2) the planning framework that we use to solve the
encoded problems, and (3) the configurations that we sub-
mitted to the CODMAP contest.

Encoding

The model of privacy used for the CODMAP contest restricts
the number of objects and fluents that an agent has access to.
Any action that uses a fluent or object (in a precondition or
effect) that is not either (1) private to agent i or (2) public
to all agents, cannot be executed by agent i. That is, every
fluent and object mentioned in an action in order for agent
i to execute must be known by that agent. Crucially, the
privacy of objects and fluents are static, and thus we can
use classical planning techniques as long as any action that
violates the privacy restrictions is not allowed to occur.

We have two options for filtering out any action that vio-
lates the multi-agent privacy: (1) modify the planner to use
only those actions that adhere to the privacy; and (2) modify
the domain description so that any valid grounding respects
the privacy. We chose the latter option for our approach.

Every object o and agent ag in the domain has a corre-
sponding fluent (K-obj ag 0) added. If an action that is ex-
ecuted by agent ag uses object o, then a precondition of the

action is for (K-obj ag o) to hold. Similarly, we add fluents
(K-fluent-foo ag) for every agent ag and fluent foo in the
domain, and update the action preconditions accordingly.

The final step is to translate the privacy model provided in
the multi-agent description of the domain (unfactored rep-
resentation), into the initial state that fully defines which
agents have access to which fluents and objects. Everything
added to the model is encoded as action preconditions and
initial state fluents, and any modern classical planner will
strip away these auxiliary fluents because they are all static.

Any classical planner can use the resulting encoding, and
the solutions that the planner produces will correspond pre-
cisely to those plans for the original domain that do not vi-
olate the privacy model for the agents. While simple con-
ceptually, this transformation makes it possible to apply any
existing classical planner to the multi-agent setting used for
the centralized track of the CoODMAP competition.

LAPKT Planner Description:
Heuristic and Search Description

The algorithm [terated Width, or IW, consists of a sequence
of calls IW(i) fori = 0, 1, ..., |F| until the problem is solved.
Each iteration /W(i) is a breadth-first search that imme-
diately prunes any states that do not pass a novelty test;
namely, for a state s in IW(i) not to be pruned there must
be a tuple 7 of at most i atoms such that s is the first state
generated in the search that makes ¢ true. The time com-
plexities of IW(i) and IW are O(n') and O(n") respectively
where n is |F| and w is the problem width. The width of ex-
isting domains is low for atomic goals, and indeed, 89% of
the benchmarks can be solved by IW(2) when the goal is set
to any one of the atoms in the goal (Lipovetzky and Geftner
2012). The width of the benchmark domains with conjunc-
tive goals, however, is not low in general, yet such problems
can be serialized.

Serialized Iterative Width, or SIW, uses IW for serializing
a problem into subproblems and for solving the subprob-
lems. SIW uses IW greedily to achieve one atomic goal
at a time until all atomic goals are achieved jointly. In be-
tween, atomic goals may be undone, but after each invoca-
tion of IW, each of the previously achieved goals must hold.
SIW will never call IW more than |G| times where |G| is the
number of atomic goals. SIW compares surprisingly well

to a baseline heuristic search planner using greedy best-first
search and the h,,4, heuristic (Bonet and Geffner 2001), but
does not approach the level of performance of the most re-
cent planners. Nonetheless, SIW competes well in domains
with no dead-ends and simple serializations.

While the blind-search SIW procedure competes well
with a greedy best-first planner using the additive heuris-
tic, neither planner is state-of-the-art. To narrow the perfor-
mance gap, we use two simple extensions. The first involves
computing a relaxed plan once before moving on to the next
subgoal. This makes the pruning in the breadth-first proce-
dure less aggressive, while keeping IW exponential in the
width parameter. This new procedure called IW*(i), com-
putes a relaxed plan once from the initial state s so that
states s’ generated by IW*(i) keep a count on the number
of atoms m in the relaxed plan from s achieved on the way
to s’. For the state s’ in the breadth-first search underly-
ing IW*(i) not to be pruned, there must be a tuple ¢ with
at most i atoms, such that s" is the first state among the
states in the search that achieved m fluents from the initial
relaxed plan that makes the tuple ¢ true. The serialized al-
gorithm SIW that uses IW* is called SIW*. The second ex-
tension involves changing the greedy search for achieving
the goals one at a time, by a depth-first search that is able
to backtrack. The planner that incorporates both extensions
is called DFS* (Lipovetzky and Geffner 2014). Notice that
while DFS* computes a relaxed plan once for each IW* call,
DFS* does not use the relaxed plan for computing heuris-
tic estimates. Thus, DFS* remains a blind search planner,
which does not use any standard techniques such as heuris-
tics, multiple-search queues, helpful actions or landmarks.

In contrast with DFS*, we developed an additional stan-
dard forward-search best-first planner guided by an eval-
uation function that combines the notions of novelty and
helpful actions (Lipovetzky and Geffner 2012; Hoffmann
and Nebel 2001). In this planner, called BFS(f) (Lipovetzky
and Geftner 2012), ties are broken lexicographically by two
other measures: (1) the number of subgoals not yet achieved
up to a node in the search, and (2) the additive heuristic, A,q4.
The additive heuristic is delayed for non-helpful actions.

Implementation

All the planners have been implemented using the automated
planning toolkit LAPKT' (Ramirez, Lipovetzky, and Muise
2015). The toolkit is an extensible C++ framework that de-
couples search and heuristic algorithms from PppL parsing
and grounding modules, by relying on planner “agnostic”
data structures to represent (ground) fluents and actions. We
consider LAPKT to be a valuable contribution in itself since
it enables the community to develop planners, while rely-
ing on a collection of readily available implementations of
search algorithms and planning heuristics. These resulting
planners are independent from specific parsing modules and
grounding algorithms. For planners that acquire descriptions
of planning tasks from PppL specifications, the toolkit pro-
vides the means to plug in either FF (Hoffmann and Nebel
2001) or Fast-Downwarp (Helmert 2006) parsers. Alterna-

'Source code available from http://www.lapkt.org

tively, and more interestingly, the planner can be embedded
into complex applications, directly, if the “host” application
is written in C++, or indirectly when the host is written in
an interpreted language, such as PyTHoN, by wrapping the
planner with suitably generated marshalling code.

Entry Variations
Three variations of the LAPKT planning framework were
submitted to test their distinctive behaviour on the encoded
domains. Here, we briefly describe each in turn:

1. Anytime-LAPKT: The first configuration is sought by
SIW™*. Failing this, BFS(f) is called. After a first solu-
tion is computed, RWA* is invoked with the appropriate
bound, and solution quality is improved iteratively. The
motivation behind this configuration is to try and find high
quality plans within the time limit. This variation is both
sound and complete. In the limit, it is also optimal.

2. SIW*-then-BFS(f): The second configuration attempts
first to solve the problem using SIW*. Failing this,
BFS(f) is invoked and will run until a solution is found.
The motivation behind this configuration is to try and find
a solution as fast as possible, while retaining complete-
ness. This variation is both sound and complete.

3. DFS™: The third and final configuration tries to find a so-
lution extremely quickly using only DFS*. The motiva-
tion behind the third configuration is to see how many
problems can be solved using this simple approach. This
final variation is sound, but incomplete.

Summary

We have described three variations of a planner submitted
to the CODMAP contest. All three take as input a converted
version of the multi-agent problem such that the privacy of
objects and fluents are respected by any plan. Each varia-
tion has a different motivation that explores aspects such as
striving for plan quality versus speed to completion.

The specific characteristics that our planners have, as de-
fined by the CODMAP organizers, are as follows:

1. Planner complete? Configurations 1 and 2 are complete.
2. Planner optimal? Configuration 1 is optimal in the limit.

3. Is the agent factorization in the MA-PDDL files used?
Yes, the translation uses the agent factorization to deter-
mine which agents can execute the appropriate actions.

4. Is the private/public separation presented in the MA-
PDDL files used? Yes, the translation uses this informa-
tion to determine the initial configuration of K-obj and
K-fluent fluents.

5. Is the planner using MA-STRIPS private/public separa-
tion? Yes, as part of the translation.

6. What private information (or its derivative), in what form,
and how is it communicated in the planner? Nothing,
other than the newly encoded problem (i.e., the planner
is unaware it is solving a multi-agent planning problem).

7. What is the architecture of the planner (centralized or dis-
tributed; single or multi-threaded)? Centralized and sin-
gle thread for all three configurations.

Acknowledgements This research is partially funded
by Australian Research Council Discovery Grant
DP130102825, Foundations of Human-Agent Collabo-
ration: Situation-Relevant Information Sharing and the
Australian Research Council Linkage Grant LP11010015,
Making the Pilbara Blend: Agile Mine Scheduling through
Contingent Planning.

References

Bonet, B., and Geftner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5-33.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191-246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253-302.

Lipovetzky, N., and Geffner, H. 2012. Width and serializa-
tion of classical planning problems. In Proc. ECAI, 540—
545.

Lipovetzky, N., and Geffner, H. 2014. Width-based algo-
rithms for classical planning: New results. In Proc. ECAI,
1059-1060.

Ramirez, M.; Lipovetzky, N.; and Muise, C. 2015.
Lightweight Automated Planning ToolKiT. http://
lapkt.org/. Accessed: 2015-05-19.

Stolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Compe-
tition of Distributed and Multiagent Planners (CoDMAP).
http://agents. fel.cvut.cz/codmap/. Accessed:
2015-05-24.

