

J.C. Augusto et al. (Eds.): AmI 2013, LNCS 8309, pp. 275–280, 2013.
© Springer International Publishing Switzerland 2013

CAKE – Distributed Environments
for Context-Aware Systems

Jörg Cassens1, Felix Schmitt2, and Michael Herczeg2

1 Institute for Mathematics and Applied Informatics,
University of Hildesheim, Samelsonplatz 1, 31141 Hildesheim, Germany

cassens@cs.uni-hildesheim.de
2 Institute for Multimedia and Interactive Systems,

University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
{schmitt,herczeg}@imis.uni-luebeck.de

Abstract. In this paper, we introduce the distributed Context Awareness and
Knowledge Environment CAKE. The design objectives for CAKE were to de-
velop a system that is flexible enough to be used in different application
domains, that supports re-use of components with the help of a well-defined
plugin-system and application programming interface and that caters for priva-
cy concerns by giving users access to personal context aware environments that
share information selectively with other users’ context aware environments. We
describe related work on context middleware and the niche CAKE is targeting.
We also argue for taking privacy concerns into account and outline how our
framework addresses such issues. The concepts behind CAKE are introduced,
and we describe how reasoning engines based on different paradigms can be put
to work together in our framework. A first take on end-user programming is
outlined and a prototypical implementation of the system presented.

Keywords: Context Awareness, Context Middleware, Distributed Systems.

1 Introduction

We have previously developed a framework for ambient intelligent systems [16,17],
but its architecture had two main shortcomings. The first one was a lack of flexibility
and versatility with regard to how the system interacts with sensors and actuators, and
the second one was a lack of ability to deal with user concerns about privacy. These
shortcomings are a result of the genesis of the project: it started as a system to support
coordination and communication in small teams of knowledge workers.

To target the original application domain, we developed a centralized architecture
that supported the whole team, and we introduced specific protocols for communicat-
ing with sensors and actuators based on the Extensible Messaging and Presence
Protocol (XMPP)1. From a technical point of view, this meant that every sensor and
actuator had to either implement the whole stack up to the XMPP-layer, including

1 http://xmpp.org/

276 J. Cassens, F. Schmitt, and M. Herczeg

having its own XMPP-ID (or JID, for Jabber ID), or that they had to be connected to
an aggregator driving the specific sensor or actuator. This was not a problem for
teams of knowledge workers, since we could assume that the user’s PC would be used
to connect “dumb” devices with the central hub, but it placed an increasing burden on
the development of novel input and output devices for different application domains.

The centralized hub and spoke architecture introduced another set of problems.
While it was not unreasonable for small teams where the members trusted each other,
it became increasingly clear both from our own experience and the literature [3,12,14]
that users might not accept to share raw sensor data with a centralized architecture
where they had no control on how this data was to be used.

Therefore, it was decided to design a new framework building upon the lessons
learned with the existing system, eliminating the weaknesses identified while retain-
ing its strengths. The latter part is also the reason for not abandoning our own frame-
work completely in favor of one of the existing middleware solutions.

2 Related Work

The goal of the AmbieSense project [11] is to provide an “ambient landscape” where
personal, mobile computers connect to so-called context tags in the environment in
order to access context parameters. The devices can also make use of net-based in-
formation services. Communication and coordination of different personal devices is
not the main focus.

The ASTRA project [15] realizes a pervasive awareness system where personal
pervasive systems are connected to deliver information about the state of users to each
other. ASTRA provides means for end-user development in the form of rule sets that
define what information is shared and how one’s own environment reacts to changes
in other users’ environments. Privacy is a core aspect in ASTRA, but local reasoning
capabilities are limited.

UbiCollab [5] is a toolkit that supports collaboration in ubiquitous environments,
e.g. using mobile phones. It is a mature platform for developing mobile and ubiquit-
ous applications with a strong focus on CSCW-aspects.

The Integ Smart Home System [13] uses a wireless, ad-hoc sensor network to al-
low users to control their homes over the internet. The application domain and the
solutions to connect sensors and actuators via abstracted interfaces are very relevant
for our own work. However, the collaboration support is not very elaborated, and
underlying reasoning mechanisms seem to be restricted to a rule-based system.

The POSTECH U-Health Smart Home project [9] targets ambient assisted living,
another interesting application domain. U-Health also uses abstraction techniques to
access different system types. When it comes to connecting different environments,
the main focus is the ability to notify help personnel in case of emergencies. U-Health
exhibits learning capabilities to adapt to its users.

Ambient Dynamix [1] is a framework for connecting mobile applications and web-
sites with sensors and actuators in the real world. An interesting feature of Dynamix is

 CAKE – Distributed Environments for Context-Aware Systems 277

the concept of a context firewall, which allows different applications to limit access to
contextual information on a fine-grained level. The main focus lies on services for
mobile phones, and not so much on context reasoning.

3 Concept and Vision

The analysis of the literature combined with our own lessons learned lead to the fol-
lowing goals, which became central to the development of the new system:

1. Flexibility with regard to sensors and actuators: it should be comparatively easy
to connect new devices with the system, both for developers and users:
(a) It should be easy for developers to write new software components, and
(b) users should be able to easily and safely add such components by their means.

2. Flexibility with regard to the reasoning engines that can be used, in order to util-
ize different reasoning paradigms based on their suitability for the task at hand.

3. Reusability of sensors and actuators across different domains, where applicable.
4. A decentralized architecture that would allow every user to run his or her own

context-aware environment to address concerns about sharing raw data.
5. Further addressing privacy concerns by allowing for fine-grained and coarse-

grained control of who can access what information.
6. Feature parity with the existing system when it comes to sensors, actuators, rea-

soners and simulators.

4 Design and Architecture

In this section, we describe the basic design and architectural features of the new sys-
tem called CAKE (Context Awareness and Knowledge Environment). It is a distri-
buted system that allows every user to run his or her own CAKE instance and grant
other instances only access to selected raw or processed data. In the domain of team
coordination, for example, the user might give other team members access to limited
information only, while providing personal friends with more information from the
same CAKE instance [16].

CAKE is a modular system, based on a strict separation of concerns, where the dif-
ferent modules are only loosely coupled. The system is implemented predominantly
in JAVA. CAKE encompasses four different modules, as described in the following.

Plugin-Management. This module allows adding and removing sensor and actuator
plugins at runtime. It abstracts sensor data according to CAKE’s knowledge model. A
plugin provides connectivity for a specific sensor or actuator. The API demands a
manifest describing the plugin, a description how to calibrate the attached device, the
update rate and a unique ID plus version information. Plugins can be published in a
repository to be searched for and downloaded by other CAKE instances. Calibration
information can be used to calibrate sensors or actuators from inside the running
CAKE instance. For security reasons, each of the plugins runs in its own sandbox.

278 J. Cassens, F. Schmitt, and M. Herczeg

Logic. The logic module represents the known state of the world and connects the
different reasoning engines to work on and transform the information known. CAKE
uses a whiteboard to assemble all the information the system has about the world and
the state of its reasoners. The whiteboard has been inspired by multi-agent black-
boards [4], but it does not support the whole functionality needed for multi-agent
systems, like for example the control shell. Sensor values are written on the white-
board, and the different reasoners can subscribe to changes of these values. Results of
the reasoning process are again written onto the whiteboard. Those results can be
aggregated to “virtual sensors” which again can serve as input to other reasoners, or
the results can be used to change the state of actuators. Per default, information on the
whiteboard is only available to the CAKE instance where it runs, but it can selectively
be made accessible by other CAKE instances.

The world model used by the whiteboard is described in terms of an RDF graph,
but the system is agnostic with regard to the reasoning paradigms used by the differ-
ent reasoners. Attached reasoning engines can read the state of the whiteboard
through the RDF graph or via JAVA methods. Updates can, for now, only be done via
JAVA methods. The reasoners can add to the ontology that describes CAKE’s world
model by supplying additional RDF graphs. Reasoners that work on RDF representa-
tions can be added directly. Developers of reasoners using different paradigms have to
provide a mapping of their internal representation and the corresponding RDF model.
A myCBR-based2 case-based reasoner is being integrated.

A simple reasoner based on production rules [7] is built into the system. Users can
use this reasoner to develop their own production system, where they define how
actuators should react based on different sensor parameters. This provides basic end-
user development capabilities. However, making users define what basically are com-
plex, hierarchical if-then rules has poor transparency for non-expert users. Therefore
we are looking into other paradigms for end-user development as well.

Communication. The communication module provides a REST interface [6] for the
graphical user interface and connects to other CAKE instances through XMPP. For
the GUI part, it is possible to configure actuators or sensors, define new rules and add
or modify users, groups and permissions. Users who are given access to local data are
represented by their XMPP-ID (or JID). Specific XMPP-extensions to facilitate con-
necting different context-aware systems have been developed and make it possible to
connect to CAKE instances from other types of systems as well.

GUI. The web-based GUI-component adds user-facing administrative capabilities
such as user and group management, plugin management and the definition of pro-
duction rules as a means of end-user programming of context reasoners. The idea is
that the CAKE system can be deployed similarly to routers or modems: small
appliances that come with the necessary connectivity and are set up by the end user.

2 http://mycbr-project.net/

 CAKE – Distributed Environments for Context-Aware Systems 279

5 Conclusions and Further Work

Looking at how CAKE interfaces with its environment, the first goal of flexibility for
developers with regard to sensors and actuators is supported by a plugin architecture
that helps developers to write software components to access new sensors and
actuators. Flexibility for end users is supported by the integrated web GUI. Here,
users can not only perform administrative tasks like adding and removing sensors
and add, change or remove users and groups who are allowed to access one’s
own CAKE instance, but also define basic production rules to perform end-user
development.

In order to support the second goal of retaining flexibility with regard to reasoning
about context, the integrated whiteboard architecture allows for different application-
specific and general-purpose reasoners to access sensor information, change the state
of actuators and put processed information back onto the whiteboard for use by other
reasoners or sharing with other CAKE instances.

The third goal, reusability, is supported by the ability to make plugins available
to others and install and configure new plugins at runtime. Reusability of reasoners
is, for the time being, supported in a limited way. Reasoners can only be added or
changed when the system is not running, and updates from the reasoners are limited
to the JAVA object interface and cannot be done through manipulating the RDF
graph.

CAKE instances can be run by individual users or groups, and the integrated net-
working components make it easy to connect several instances so that e.g. members
of work teams can get access to their peers’ interruptibility status. Authorization and
authentication of different instances are handled by the underlying XMPP layer. This
fulfills the fourth goal of designing a distributed system.

Privacy issues, concerning the fifth goal, are handled by each instance through user
and group management, where different users or groups can get fine- or coarse-
grained permissions to access information or raw data. However, this approach does
not scale very well, and issues such as minimizing asymmetry in information flow [8]
can only be addressed by introducing meta-reasoners that monitor the information
flow. Further work in this direction, like adding the ability to add proxies for privacy
[10], has to be conducted.

Finally, the sixth goal of feature parity with the existing system has not been
reached yet. Several sensors and actuators from previous incarnations are not availa-
ble, and not all reasoners have been ported. However, we hope that we will able to
port those entities on a case by case basis, if the existing solutions prove worthwhile
to keep. This is especially true of our own simulation environment [2].

Acknowledgments. The authors wish to thank their students for their contributions in
designing and implementing CAKE: David Bouck-Standen, Tim Dubbels, Bjørn
Eberhardt, Eva Jehle, Sandro Kock, Alexander Schulze and Daniel Wilken.

280 J. Cassens, F. Schmitt, and M. Herczeg

References

1. Carlson, D., Schrader, A.: Dynamix: An open plug-and-play context framework for An-
droid. In: 3rd International Conference on the Internet of Things (IOT), pp. 151–158.
IEEE, New York (2012)

2. Cassens, J., Schmitt, F., Mende, T., Herczeg, M.: CASi – A Generic Context Awareness
Simulator for Ambient Systems. In: Paternò, F., de Ruyter, B., Markopoulos, P., Santoro,
C., van Loenen, E., Luyten, K. (eds.) AmI 2012. LNCS, vol. 7683, pp. 421–426. Springer,
Heidelberg (2012)

3. Consolvo, S., Smith, I.E., Matthews, T., LaMarca, A., Tabert, J., Powledge, P.: Location
disclosure to social relations: why, when, & what people want to share. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pp. 81–90. ACM, New
York (2005)

4. Corkill, D.D.: Blackboard systems. AI Expert 6(9), 40–47 (1991)
5. Divitini, M., Farshchian, B.A., Samset, H.: UbiCollab: collaboration support for mobile

users. In: Proceedings of the 2004 ACM Symposium on Applied Computing, pp.
1191–1195. ACM, New York (2004)

6. Fielding, R.T.: Architectural styles and the design of network-based software architectures.
PhD Thesis, University of California, Irvine (2000)

7. Giarratano, J.C., Riley, G.D.: Expert Systems: Principles and Programming. Brooks/Cole
Publishing Co., Pacific Grove (2005)

8. Jiang, X., Hong, J.I., Landay, J.A.: Approximate information flows: Socially-based model-
ing of privacy in ubiquitous computing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp
2002. LNCS, vol. 2498, pp. 176–193. Springer, Heidelberg (2002)

9. Kim, J., Choi, H., Wang, H., Agoulmine, N., Deerv, M.J., Hong, J.W.-K.: POSTECH’s U-
Health Smart Home for elderly monitoring and support. In: IEEE International Symposium
on a World of Wireless Mobile and Multimedia Networks (WoWMoM), pp. 1–6. IEEE,
New York (2010)

10. Kofod-Petersen, A., Cassens, J.: Proxies for Privacy in Ambient Systems. Journal of Wire-
less Mobile Networks, Ubiquitous Computing, and Dependable Applications 1(4), 63–75
(2010)

11. Kofod-Petersen, A.: A Case-Based Approach to Realising Ambient Intelligence among
Agents. PhD Thesis, Norwegian University of Sci. and Tech. (2007)

12. Lederer, S., Manko, J., Dey, A.K.: Who wants to know what when? Privacy preference de-
terminants in ubiquitous computing. In: CHI 2003 Extended Abstracts on Human Factors
in Computing Systems. ACM, New York (2003)

13. Mantoro, T., Ayu, M.A., Elnour, E.E.: Web-enabled smart home using wireless node in-
frastructure. In: Proceedings of the 9th International Conference on Advances in Mobile
Computing and Multimedia, pp. 72–79. ACM, New York (2011)

14. Nissenbaum, H.: Privacy in Context: Technology, Policy, and the Integrity of Social Life.
Stanford University Press, Palo Alto (2009)

15. Romero, N., Markopoulos, P., van Baren, J., de Ruyter, B., Ijsselsteijn, W., Farshchian, B.:
Connecting the family with awareness systems. Personal and Ubiquitous Computing 11(4),
299–312 (2006)

16. Ruge, L., Kindsmüller, M.C., Cassens, J., Herczeg, M.: How About a MATe for Aware-
ness in Teams? In: Proceedings of Context 2011, pp. 58–69. Springer, Heidelberg (2011)

17. Schmitt, F., Cassens, J., Kindsmüller, M.C., Herczeg, M.: Mental Models of Ambient Sys-
tems: A Modular Research Framework. In: Beigl, M., Christiansen, H., Roth-Berghofer,
T.R., Kofod-Petersen, A., Coventry, K.R., Schmidtke, H.R. (eds.) CONTEXT 2011.
LNCS, vol. 6967, pp. 278–291. Springer, Heidelberg (2011)

	CAKE – Distributed Environments for Context-Aware Systems
	1 Introduction
	2 Related Work
	3 Concept and Vision
	4 Design and Architecture
	5 Conclusions and Further Work
	References

