CloudScale — a Novel Middleware for Building
Transparently Scaling Cloud Applications

Philipp Leitner, Benjamin Satzger, Waldemar Hummer, Christian Inzinger and

Schahram Dustdar
Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8, 1040 Vienna, Austria

{lasthame}@infosys.tuwien.ac.at

ABSTRACT

With the promise of seemingly unlimited IT resources, the
trend of cloud computing is currently revolutionizing soft-
ware engineering. However, at the moment, building ap-
plications for the cloud is a rather cumbersome and man-
ual task. In this paper, we introduce the CloudScale mid-
dleware for building applications on top of Infrastructure-
as-a-Service (TaaS) cloud offerings. CloudScale allows de-
velopers to build cloud applications like regular Java pro-
grams, without dealing with the intricacies of cloud hosts
(virtual machine) management, remoting, and code distri-
bution, without handing off control over the physical dis-
tribution of their application to commercial Platform-as-
as-Service (PaaS) providers. We numerically evaluate the
overhead introduced by CloudScale based on an example
application, and discuss advantages and limitations of the
system as compared to manually deploying the application
on an laaS cloud.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Distributed program-
ming; H.3.5 [Online Information Services|: Web-based
Services

General Terms

Management, Performance, Measurement

Keywords

Cloud Computing, Middleware, Scalability, Programming
Models

1. INTRODUCTION

In the last years, cloud computing [2], most importantly
the Infrastructure-as-a-Service (IaaS) paradigm [5, 8], has
been established as a global trend towards more “elastic”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’12 March 25-29, 2012, Trento, Italy.

Copyright 2012 ACM ACM 978-1-4503-0857-1/12/03 ...$10.00.

434

provisioning of IT resources. Resources, such as comput-
ing power or data storage, are no longer provisioned only
on-premise based on predictions of worst-case scenarios, but
instead flexibly rented on demand for just as long as the
resources are actually needed. Cloud computing usually
comes with pay-as-you-go pricing policies, which allow to
view IT costs as expenses rather than investments, that is,
the price tag of cloud computing is generally strictly usage-
based without any explicit upfront investments. This policy
is closely related to the advantage most commonly associ-
ated with cloud computing over traditional on-premise IT:
in cloud computing, I'T costs can be kept low by reducing the
upfront infrastructure investments close to zero, and paying
only what is actually used. In this way, IT costs can be
viewed as an expense rather than an investment [2]. Fur-
thermore, the flexibility offered by cloud computing enables
novel business models for start-up companies, which would
have been too risky a few years ago. As Amazon’s Jinesh
Varia puts it: “In the past, if you got famous and your sys-
tems or your infrastructure did not scale you became a vic-
tim of your own success. Conversely, if you invested heavily
and did not get famous, you became a victim of your fail-
ure.” [18].

However, at the moment, it is not easy for application
developers to realize the advantages promised by the cloud.
TaaS, despite all its features, provides a very low-level ab-
straction (virtual machines), leaving the intricate details of
building scaling cloud applications to the developer. Platform-
-as-a-Service (PaaS) offerings, such as Windows Azure' or
Google Appengine?, offer more developer support, but come
with their own limitations, including a tight vendor lock-in,
and limited control over the scaling and deployment behav-
ior of applications.

This paper introduces CloudScale, a Java-based middle-
ware for building abstract cloud applications, which seem
like regular Java applications but can easily be deployed onto
common JaaS clouds. CloudScale implements a declarative
deployment model, in which application developers specify
the scaling requirements and policies of their applications as
code annotations. To the developer, the application seems
like a local Java application. All distribution and scaling
related code is introduced at application startup time, using
aspect-oriented programming [12] (AOP) and bytecode ma-
nipulation. This relieves the developer from dealing with in-
tricate cloud deployment issues, without surrendering them
to a commercial third party, such as Google or Microsoft.

"http:/ /www.microsoft.com/windowsazure/
http://code.google.com/appengine/

Note that, even though we present a concrete Java-based
middleware in this paper, a similar middleware can easily
be implemented, e.g., on top of C#/.NET. Hence, the gen-
eral approach presented in this paper is not limited to Java,
even though we base our discussion on Java tooling.

The rest of this paper is structured as follows. Section 2 il-
lustrates the positioning of the CloudScale middleware, and
introduces a case study application. Section 3 presents the
actual contribution of the paper, the CloudScale middle-
ware. This middleware is evaluated in Section 4. Some
scientific related work is presented in Section 5. Finally, the
paper is concluded in Section 6.

2. MOTIVATION

In the following, we illustrate the ideas behind the de-
velopment of CloudScale based on an existing computing-
intense scientific prototype. Concretely, we use the cost-
based optimizer component from the PREvent toolkit, as
discussed in [7]. The cost-based optimizer uses various op-
timization algorithms, for instance memetic algorithms [14],
to identify the cost-optimal way to modify a running Web
service composition [4]. This tool is a non-trivial Java-based
application consisting of about 8000 source lines of code, ex-
cluding empty lines and generated code. An earlier version
of the tool has been distributed as part of the VRESCo
project [10] and is available online®. However, the concrete
goals and implementation of this tool are not important for
this paper.

As optimization is computationally expensive, there is ev-
idently a strong incentive to deploy this optimizer tool into
an laaS cloud, so that more optimization instances can be
handled in parallel. Using state-of-the-art technology, this
deployment is not trivial. One needs to split the application
into task manager and workers, setup virtual machines, in-
stall the respective application parts on the virtual machines
and, at runtime, monitor the virtual machines to make sure
that the application is not over- or underprovisioned. If
the application is deployed to the AWS cloud?, tools such
as AWS Elastic Beanstalk (deployment) or Amazon Cloud-
Watch (monitoring) can be used to ease these tasks to some
extend. However, even using these advanced tools, cloud
deployment quickly becomes a labor-intensive chore. If the
optimizer tool should be deployed on a private cloud, for
instance based on Eucalyptus®, the developer is mostly on
her own, anyway.

SaaS
SIMPLICITY Paas
Cloud

Scale
laaS

CONTROL
Figure 1: Taxonomy of Cloud Computing Offerings

With the CloudScale middleware, we aim at easing de-
ployment scenarios, such as this one. Our goal is that devel-
opers can deploy applications to any laaS cloud with very
limited changes to the application source code, and without

3http://sourceforge.net /projects/vresco/files/
“http://aws.amazon.com/
®http://www.eucalyptus.com/

explicitly setting up and managing virtual machines. In the
larger taxonomy of Cloud Computing offerings [5], Cloud-
Scale fills the space between PaaS and IaaS (Figure 1). It
offers more control over the behavior of the application than
typical PaaS solutions, and demands less programming, de-
ployment and monitoring effort than IaaS solutions. How-
ever, it should be noted that CloudScale is used on top of
Taa8S, i.e., “under the hood” the application is still executed
on a regular laaS offering, such as AWS EC2 or Eucalyptus.

3. CLOUDSCALE FRAMEWORK

On a high level, the CloudScale middleware handles two
tasks for applications. On the one hand, the middleware
manages virtual computing resources in the cloud, referred
to as cloud hosts (CHs). This includes monitoring the load
of CHs, instantiating new CHs if necessary (scaling up) or
terminating existing ones (scaling down). Furthermore, this
task includes cost control, i.e., making sure that the cloud
setup does not violate user-specified cost constraints. On
the other hand, the framework is responsible for managing
cloud objects (COs). COs are regular program-level objects,
which are abstractions of application logics, which should be
distributed over a cloud. Optimally, COs are highly cohe-
sive and very loosely coupled to the rest of the application.
In the optimizer tool, good COs are the classes implement-
ing the optimization: they do not depend much on the rest
of the application, but their execution is very computing-
intense (i.e., it makes sense to distribute those objects). For
each CO, the CloudScale middleware decides if the object
should execute locally, or alternatively selects a suitable CH
to deploy it on. CHs host COs. Any given CH can host one
or more COs. These COs are not restricted to having the
same type, i.e., every CH can host COs of various different

types.

1 MemeticAlgorithm . java:)
2 @CloudObject (cloudConfig = ”config.props”,

3 scaling = RoundRobinScaling.class)

4 public class MemeticAlgorithm {

5

6 ClientApp.java:

7 MemeticAlgorithm ma = new MemeticAlgorithm ();
8 ma.init (...);

9 ma.solve (...);

0

[

ma. getResult (...);

Figure 2: Example Client Application

To the client application, both tasks are transparent, i.e.,
the application does not need to know which CHs exist, or
which of its COs is executed on which CH. In fact, to the
client application, CloudScale is almost invisible. This is in-
dicated in the code snippet in Figure 2. The class Memetic-
Algorithm is declared as a C'O, and a round robin strategy
is used for distributing COs over CHs. The usage of this
class (in ClientApp.java) is in no way special.

The UML Collaboration Diagram in Figure 3 exemplifies
this based on Line 9 in Figure 2. The dashed arrow is what
the interaction seems like to the client application. The
filled arrows are what is actually executed by CloudScale:
the CO is transparently replaced by a client proxy object,
which notifies the local cloud manager about the planned
invocation. The cloud manager looks up the CH hosting the
actual object, and forwards the invocation to the CloudScale

invoke(p, 'solve!, ...)

5: ga = lookupCO(p)

1 i 1
i Local Machine i ! '
: Z ma. : :
| ' solve(...) | ma: !
i - + Memetic '
| ! ! Algorithm |
! 1
! 1: p.solve(...) 2 E E
I
1 ! 1 |
I I |
| m : Cloud ! ! | cs:Remote !
g 2:m.invoke | Manager ! 4ics ' Server !
| (p, 'solve’, ...) ! N ! '
I
1 | i !
| ; : |
' ! ! I
H ' I |

Figure 3: Example CloudScale Interaction

server component running on this host. Afterwards, the
server finds the correct object from its internal cache, and
finally issues the actual invocation. This implementation is
essentially an instantiation of the Broker remoting pattern,
as discussed in [20].

3.1 Middleware Overview

In the following, the basic architecture of the CloudScale
middleware is described. Figure 4 depicts the most impor-
tant components of a typical CloudScale application. Es-
sentially, the middleware consists of a client library, which
is deployed along with the client application. Additionally,
the framework utilizes an arbitray number of CHs, which
run a specific CloudScale server component. CHs are re-
sponsible for executing C'Os. There is a fixed pool of static
CHs, which is co-used by an arbitrary large number of client
applications. In addition, every application can scale up by
instantiating new on demand CHs. These are identical to
the hosts in the static cloud pool in every respect, except
that they are terminated as soon as the client application
releases them. The component responsible for deciding if
new on demand CHs are needed, or if existing ones should
be terminated, is the scaling manager. This is done by in-
terpreting the scaling policy that is given by the client ap-
plication as part of the CO definition (see Listing 2, Line
3). Obviously, scaling policies are usually based on moni-
toring information, as delivered by the host monitor. The
CloudScale approach to monitoring and scaling is described
in more detail in Section 3.2.

Cloud

Static Cloud Hosts -
Local Machine
—
CloudScale —
Cloud
—
Object Code
- Repository Repository
Scaling
Manager

Remote
Server

Cloud Manager
Client
App

Host
Monitor

Application Execution
Environments

“-—

Host
Repository
J L

| S

]
-
i
|
|
|
|
|
]
|
|
|
|
|
|

Repository '

L]

Figure 4: Architectural Overview

436

Both, static and on demand CHs, contain a remote server
component as central element. The remote server is re-
sponsible for communicating with the cloud manager on
the client side. Furthermore, C'Hs contain a C'O repository,
which stores all COs which are not currently executing. As
soon as an invocation for such an object is received by the
remote server, it will load the object from the repository,
move it into an application execution environment, and in-
voke the requested method. Application execution environ-
ments shield COs from each other, i.e., they make sure that
CloudScale hosts are multi-tenancy enabled. Additionally,
CHs contain a code repository, which stores the bytecode of
COs. This code is transferred to the host when a new class
of CO is deployed for the first time. The exact process of
code distribution is detailled in Section 3.3.

3.2 Cloud Object Instantiation and Scaling

One central task of the middleware is the management
of CO creation and deployment. Essentially, whenever the
client application creates a new instance of a CO, the Cloud-
Scale cloud manager component has to execute the follow-
ing steps. Firstly, the newly created local object is replaced
with a proxy, redirecting all future method invocations to
the cloud manager. Secondly, the cloud manager queries the
scaling manager component for a suitable CH to deploy the
new CO to. Essentially, the scaling manager has three pos-
sible options: (1) use an existing CH (e.g., because there are
sufficient resources to host the object), (2) instantiate a new
CH and use it, or (3) deem that, based on current policies,
no CH will be able to execute the C'O. Thirdly, if a suitable
CH has been found or created, the cloud manager contacts
the server component on the selected CH and requests it to
deploy the CO.

From these three steps, the selection of a CH is the most
interesting. This step is based on scaling policies, which
can be declaratively defined either for a single CO (as done
in Figure 2) or globally for all COs of an application. Ev-
idently, it is not feasible to define a single policy, which
behaves as expected for each application that can be built
using CloudScale. Hence, the middleware only provides a
limited set of simple default policies, such as Round-Robin-
Scheduling (assign COs in turn to each static CH, without
instantiating on demand CHs) or One-C0-Per-CH (assign at
most one CO to each CH, and instantiate new CHs if no free
CHs are available anymore). Typically, a client application
will define or derive its own custom policies, which are de-
veloped as regular Java classes implementing a well-defined
interface.

Scaling policies are usually defined on top of monitoring
information, as collected by the host monitor component.
At the moment, the host monitor periodically collects for
each CH (1) the average CPU utilization in the monitoring
period, (2) the average RAM utilization, (3) the average free
disk space, and (4) the data transfer into and out of each
CH. Based on this low-level load data, useful scaling poli-
cies can be defined. Specifically, in conjunction with pricing
information of the laaS provider, this data can be used to
monitor the costs of the cloud deployment, and implement
scaling policies based on costs.

Figure 5 depicts the lifecycle of a CO in CloudScale. Firstly,
when an object is created, it immediately goes into the Idle
state. In this state, the object is fully functional and awaits
invocations. If a method is invoked, the object goes into

renewlLease invokeMethod
new invokeMethod

Idle < >| Executing
all inv. finished

A

freeze | defrost destroy ‘Aun
Y
Suspended >| Destroyed

destroy

Figure 5: Cloud Object Lifecycle

the Executing state. Note that additional invocations can
asynchronously be executed on a single CO, just like on a
regular Java object. When all method invocations are fin-
ished, the CO goes back into the Idle state. If no invo-
cations for a CO are received for a defined period of time,
the object is moved out of the main memory and saved to
a permanent storage (either a disk or database), if possible.
The CO is then said to be in the Suspended state, and
is loaded back into memory when the next invocation for it
is received. If it is not possible to suspend an object to a
permanent storage (i.e., if the object or its state cannot be
serialized), the object moves directly into the Destroyed
state and is garbage collected. If a client application wishes
to prevent its COs from being suspended or destroyed, it
can issue requests to renew the lease on the COs. Finally,
objects can be destroyed from each state, either by explicitly
requesting destruction (by the client application) or by an
unrecoverable fault during the execution of a method invo-
cation. Note that a client cannot request object destruction
while the CO is still in the Executing state, i.e., while an
invocation is still ongoing.

3.3 Code Distribution

In order to be able to execute COs remotely, some means
to transparently distribute application code between client
application and CHs is necessary. This is similar to the idea
of mobile code [3], as often discussed in the context of agent-
based systems [6]. Essentially, as part of CO deployment,
the cloud manager component needs to make sure that the
CH has the correct version of the application code available,
and that all dependencies of the application are met. At the
moment, we assume that both, the client application and all
its dependencies, are available as Java archives, so that it is
easy to physically transport code over the network.

// In: Cloud Object co,
// Out: wvoid
transportCode (co)
appCode = getExecutingJar (co)
hash crc (appCode)
if (!cs.isInCache(hash))
uploadCode (app_code)

Remote Server cs

[e N

©

dependencies = getDependencies (co, STRATEGY)
foreach (dependency in dependencies)

hash crc(dependency)

if (!cs.isInCache (hash))

uploadCode (dependency)

[
S}

[y
.

[Er—
w N

Figure 6: Code Distribution Procedure

437

The overall procedure of code distribution is sketched in
Java-like pseudocode in Figure 6. Firstly, the Java archive
containing the CO is identified, and a cyclic redundancy
checking (CRC) hash is generated. Using this hash, we can
check whether the remote server component running on the
CH already has a copy of this archive in its internal code
repository. If this is not the case, we upload the archive. In
a second important step, we now need to identify which ad-
ditional archives this application requires. For each of those
archives, we proceed in the same way as for the application
archive itself.

CloudScale supports three different strategies for tracking
the dependencies of an application. The most simple strat-
egy is to assume that the entire classpath (excluding system
libraries) is required by the CO (classpath strategy). This
strategy is simple, relatively efficient to implement, and re-
quires no further configuration by the developer. However,
in many cases this pessimistic strategy will upload plenty of
code that is actually not needed, increasing the overhead of
the CloudScale framework and taking up unnecessary disk
space on the CH. Another conceptually simple strategy is to
let the developer explicitly specify the dependencies of each
CO (explicit strategy). This strategy is also very efficient to
implement, and (assuming that the developer specifies only
what is actually needed) reduces the overhead introduced
by code distribution to the minimum. However, for the de-
veloper, this strategy might be cumbersome, as she has to
track dependencies for each CO manually. The final depen-
dency tracking strategy is to analyze the import statements
of the CO and each class used by the CO (recursively), and
automatically identify in this way, which Java archives are
actually used (import strategy). This strategy also reduces
the runtime overhead of code distribution to the minimum,
and does not require any further configuration. However, for
complex objects this tracking is computationally expensive.
Furthermore, runtime classpath manipulation or class load-
ing will derail this strategy, leading to execution time errors.
The concrete strategy to use can be specified declaratively
by the application. By default, the classpath strategy is
used.

3.4 Implementation

Technically, the CloudScale middleware has been imple-
mented using aspect-oriented programming techniques, as
provided by the AspectJ® framework. AspectJ enables us to
shield the user almost entirely from the middleware, as all
necessary code changes (e.g., replacing application objects
with proxies, brokering invocations via CloudScale, insert-
ing and executing the necessary code for CH management)
can be done at load-time of the JVM (load-time weaving).

Minimally, the only four simple steps required for an ap-
plication developer to start using CloudScale are to annotate
the objects to distribute, as in Figure 2 with CloudObject
annotations, provide a configuration file that contains some
necessary cloud configuration parameters (e.g., access cre-
dentials for starting and terminating on demand CHs), add
a command-line parameter to enable load-time weaving in
the JVM (-javaagent:1lib/aspectjweaver. jar), and pro-
vide an aop.xml configuration to enable the single aspect
utilized by CloudScale. The most primitive version of this
configuration file is provided in Figure 7, but additional As-
pectJ directives can of course be added.

Shttp://www.eclipse.org/aspectj/

1 <aspectj>

2 <aspects>

3 <aspect

4 name="org.acm.sacl2.CloudObjectAspect”
5 />

6 </aspects>

7 </aspectj>

Figure 7: Enabling CloudScale in an Application

Hence, it is extremely easy to enable and disable Cloud-
Scale for an application, as one only needs to omit the re-
spective command-line parameter or disable weaving for the
CloudObjectAspect, and the client application will execute
locally, without being touched by CloudScale at all.

The CloudObject annotation, which is the only manda-
tory code-level change required for using CloudScale, takes
three optional parameters. Firstly, using the cloudConfig
parameter, a developer can specify the location of the Cloud-
Scale configuration file (if no custom location is given, the
configuration is expected to reside in META-INF/cloudconfig
.props). Secondly, the scaling policy to use for this CO can
be specified using the policy parameter. Thirdly, develop-
ers can specify the dependency tracking strategy for this CO
using the dependencyStrategy parameter. In addition, de-
velopers may annotate methods of COs using the Destruct
CloudObject annotation. This tells the middleware that the
CO is to be moved into the Destroyed state after the in-
vocation of this method has finished successfully.

To ease integration with external tooling, the CloudScale
remote server component (see Figure 4) is implemented as
a RESTful Web service [15] using the Apache CXF7 frame-
work. This allows us to query the status metadata provided
by CHs (e.g., which objects are currently hosted, what is the
state of a given CO, what is the current load of the host?)
using standard tooling, e.g., Web browsers. The code repos-
itory currently uses a simple file system based implementa-
tion. Conversely, the cloud object repository is implemented
as in-memory database. For the Eucalyptus laaS cloud, an
Ubuntu 10.04 Lucid Lynx based EMI (Eucalyptus Machine
Image), which launches all these server-side components on
startup, is included as part of the CloudScale middleware.
In order to use it with other clouds, e.g., Amazon EC2, a cus-
tom image that starts these components needs to be built.
We plan to release the first version of CloudScale as open
source software in the near future.

4. EVALUATION

In order to evaluate the CloudScale middleware, we will
firstly discuss some numerical observations based on real us-
age of CloudScale for scaling a non-trivial application (the
optimization toolkit described in Section 2). Afterwards, we
qualitatively discuss the implications of those numerical re-
sults, and the advantages and disadvantages of the current
incarnation of CloudScale.

4.1 Numerical Evaluation

In this section, we discuss numerical results measured
from using CloudScale to deploy a real application on a real
TaaS cloud. As IaaS infrastructure, we used a private cloud
implemented using Eucalyptus. The cloud setup consisted

"http://cxf.apache.org/

438

of a cloud controller and four node controllers, each run-
ning on a dedicated Dell blade server with two Intel Xeon
E5620 CPUs (2.4 GHz Quad Cores) and 16 GByte RAM.
We implemented three different cases. Firstly, we started
the optimizer on a regular desktop notebook (Macbook Pro
2.7 GHz Intel Core i7) and measured the performance in this
'non-cloud’ setup. This reflects the way how the optimizer
has been used so far. Secondly, we manually deployed the
optimizer on the Eucalyptus cloud described above. Thirdly,
we used CloudScale to deploy the application to said cloud.
Then we fed requests at an increasing rate to the different
setups, and measure the median time that the tool took to
process a single request. Note that for both types of cloud
deployment, a separate cloud machine was dedicated to each
request (i.e., for 10 parallel requests, we utilized 10 cloud
virtual machines). All experiments are the average of 30
repetitions, to reduce natural variations in the duration of
optimization. The results of this experiment are shown in
Figure 8. On the x-axis, the number of parallel requests are
plotted. The y-axis denotes the median time in seconds for
processing one request, i.e., for completing one optimization.

140 T T T T T T T
@ i i Local Deployment —+—
= Deployment with CloudScale
& 120 Manual Cloud Deployment ««-#--+ |
2 ‘ ‘ ‘ ‘ |
(0]
T 100 -]
9] / :
o
2 e0 ‘ ‘ g
'_
2 60 i
w0
173
S 40 .]
e ; sl rrarsiaT : : TR []
= Tonsees Woei PR f SEEEEE * £ A e x
S 20 ‘ .
(0]
= :

0 | | | | | | | |
1 2 3 4 5 6 7 8 9 10
Parallel Optimization Requests
Figure 8: Numerical Evaluation Results

In the figure, we can see that the 'non-cloud’ setup of the
tool does, in fact, not scale at all. Optimization is com-
putationally expensive, and the median time for processing
a single request increases linearly with the number of re-
quests that have to be handled in parallel. Hence, we have
stopped this experiment at six parallel requests. Both cloud
setups fare much better than that. For 10 parallel requests,
which already constitute full load on 10 virtual machines,
we cannot see a significant increase in the median process-
ing time. Realistically, we can assume that the median pro-
cessing time is increasing slightly, but this factor is small as
compared to the total time necessary for optimization. Fur-
thermore, we assume that CloudScale will, in the long run,
be slightly slower than the manually distributed setup, as
the additional indirection of CloudScale obviously induces
some overhead. However, in this experiment, this overhead
is small enough not to be statistically significant.

Another performance-related concern of using CloudScale
is that load-time AspectJ weaving potentially increases the
startup time of the application. In the case of the optimizer
tool, we experienced only a very minor startup time degra-
tion (from three to four seconds), which was irrelevant to us.

However, if the overhead of load-time weaving is problem-
atic, it is also possible to weave the necessary code changes
statically, as part of the application build process.

4.2 Discussion

As the numbers presented in Section 4.1 show, paralleliz-
ing the PREvent optimizer tool in the cloud makes a lot of
sense. It can be argued, that similar performance gains can
also be reached for other computing-intense applications,
e.g., applications from the ara of scientific computing. Fur-
thermore, we can see that using the CloudScale middleware
induces a very small overhead over completely manual distri-
bution in this case. For other applications, especially those
where single requests are faster served (e.g., typical Web ap-
plications, where load is typically produced by the concur-
rent execution of a very large number of simple tasks, such
as serving an HTML page), developers need to assess them-
selves whether the slight performance hit of using another
layer of indirection on top of the IaaS cloud is outweighted
by the advantages of the simpler programming model pro-
posed by CloudScale. As part of our future work, we plan
to conduct further research with regard to the suitability of
CloudScale for Web application development.

It should be noted, that there are a number of techni-
cal and conceptual limitations in the current incarnation of
CloudScale. Firstly, all parameters of constructors and non-
private methods of C'Os need to be marked as Serializable,
as the middleware needs to be able to transport parameters
to the executing CH. The same holds true for return val-
ues. Secondly, at the moment, all non-private methods and
constructors in COs use call-by-value semantics, which the
developer needs to be aware of. Essentially, this means that
if a developer passes the same object as parameter to the
invocation of two different C'Os, the invocation will be exe-
cuted on two different copies of the object. We plan to add
call-by-reference semantics in a future version of the middle-
ware. Thirdly, we currently do not support static fields in
COs, i.e., value changes in static fields are not propagated
to other instances of the object running on different hosts.
This feature is also scheduled for a future version of the
middleware. However, all of these limitations are to some
extend also prevalent if the application developer chooses
to cloud-deploy the application manually. That is, all these
limitations are actually more characteristics of distributed
computing, and not specific to the CloudScale middleware.

5. RELATED WORK

Various research efforts have previously tackled the prob-
lem of providing scalable software platforms in clouds. We
discuss the ones we consider most important in the following.
Most existing work has focused on efficiently deploying ap-
plications in the cloud. For instance, Mietzner et al. [11]
present the composite cloud application framework Cafe.
Liu [9] draws an analogy between virtual machine images/in-
stances and Java classes/objects, respectively, and intro-
duces the Rapid Application Configurator (RAC), which
seamlessly integrates with Amazon EC2.

Foundational work on distributed deployment and host-
ing of (Java) applications dates back to the era before Cloud
computing. Paal et al. [13] discuss important issues related
to class loading and namespace separation, which are also
relevant to our work. Our approach is also related to repli-
cating and clustering of Enterprise Java Beans (EJB), which

439

has been evaluated in [21]. However, most EJB implementa-
tions lack the dynamism of CloudScale, and do not provide
resource management strategies or transparent code distri-
bution. More recently, Sampaio et al. [16] have claimed
that programmers would ideally use a “single shared global
memory space (heap of objects) of mostly unbounded ca-
pacity”. In fact, CloudScale attempts to achieve a similar
goal by providing developers (near-)infinite resources while
maintaining the view of a program running locally.

Moreover, specialized programming models have been pro-
posed to let developers take direct advantage of the cloud
computing paradigm. Aneka [19] is a platform for deploy-
ment of .NET-based applications, employing a specialized
programming model. The BOOM initiative at UC Berkeley
aims at simplifying declarative programming for the cloud [1].
Whereas BOOM is mostly suited for data analytics, Cloud-
Scale is targeted at general-purpose programming and de-
ployment of arbitrary Java applications. Ibis [17] is a Java-
based programming environment tailored to parallel com-
putations in Grid environments. At its core, the platform
defines the Ibis Portability Layer (IPL), a set of commu-
nication primitives akin to the Message Passing Interface®
(MPT).

PaaS is a lucrative market and a plethora of commercial
offerings have recently sprung into existence (e.g., Cloud-
Bees®, which provides continuous integration of Java appli-
cations). From a technical viewpoint, these providers do
little more than allowing scalable remote access to existing
software developing platforms, enriched with rich user in-
terface and Web 2.0 experience. The Salesforce'® platform
goes beyond this point and defines the tailor-made Apez!?
programming language and proprietary APIs for access to
cloud storage. The main difference between CloudScale and
those commercial SaaS and PaaS solutions is that, when
using CloudScale, developers retain full control over their
application. That is, even though CloudScale hides some
scalability-related issues from developers, they are still free
to customize the way CloudScale works to their own needs,
either by implementing custom scaling policies, adapting the
CloudScale framework itself, or managing some COs in the
application manually.

The implementation of the CloudScale middleware is con-
ceptually similar to existing state-of-the-art tooling for Java-
based remoting, e.g., Java RMI, Enterprise Java Beans (EJB)
or CORBA. These frameworks, while technically similar,
provide only limited support for automated scaling. How-
ever, the ideas behind the CloudScale middleware could be
implemented on top of these technologies, enhancing, e.g.,
the CORBA remoting model with automated load balancing
in the cloud.

6. CONCLUSIONS

In this paper, we have introduced the CloudScale mid-
dleware for transparently scaling applications using an laaS
cloud. The CloudScale approach provides a middle ground
between common laaS offerings, which provide great control
over the application, but do so at the costs of high deploy-
ment effort, and PaaS offerings, which are easy to use, but

Shttp://www.mpi-forum.org/docs

“http://cloudbees.com
Ohttp:/ /salesforce.com
"http://www.salesforce.com/us/developer /docs/apexcode/

provide little control. The only change on source code level
necessary for using CloudScale is the introduction of some
declarative statements, to designate which application ob-
jects should be distributed over the cloud. CloudScale re-
lieves the developer from creating and managing virtual ma-
chines in the cloud, and automatically monitors the utiliza-
tion levels of used resources, scaling up and down as neces-
sary. We have discussed some performance aspects of using
the CloudScale middleware based on an existing Java-based
application.

As next steps, we plan to extend the middleware in the
following directions. Firstly, in the current version of Cloud-
Scale, COs are allocated to CHs when they are created,
based on the system state at creation time. In the future, we
will provide means to migrate running COs from one CH to
another, if the system state has significantly changed. Sec-
ondly, we will extend the framework with support for other
types resources besides computing, e.g., data storage ser-
vices, such as Amazon S3. Thirdly, we will provide means
for monitoring COs beyond generic performance data, such
as CPU load or RAM and disk utilization. To this end, the
next version of CloudScale will provide an interface to plug
in application-specific performance metrics (e.g., solutions
evaluated per second, in the case of the cost-based optimizer
tool). These application-specific metrics can then be used
in custom scaling policies.

Acknowledgements

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreements 215483
(S-Cube) and 257483 (Indenica).

7.
1]

REFERENCES

P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M.
Hellerstein, and R. Sears. Boom Analytics: Exploring
Data-Centric, Declarative Programming for the Cloud.
In 5th European Conference on Computer Systems
(EuroSys’10), pages 223-236. ACM, 2010.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia. A View of
Cloud Computing. Communications of the ACM,
53(4):50-58, 2010.

A. Carzaniga, G. P. Picco, and G. Vigna. Designing
Distributed Applications with Mobile Code
Paradigms. In Proceedings of the 19th International
Conference on Software Engineering (ICSE’97), pages
22-32, New York, NY, USA, 1997. ACM.

S. Dustdar and W. Schreiner. A Survey on Web
Services Composition. International Journal of Web
and Grid Services, 1(1):1-30, 2005.

D. Hilley. Cloud Computing: A Taxonomy of Platform
and Infrastructure-Level Offerings, 2009.

N. R. Jennings. An Agent-Based Approach for
Building Complex Software Systems. Communications
of the ACM, 44:35-41, April 2001.

P. Leitner, W. Hummer, and S. Dustdar. Cost-Based
Optimization of Service Compositions. IEEE
Transactions on Services Computing (TSC), 2012. To
appear.

440

[8] A. Lenk, M. Klems, J. Nimis, S. Tai, and

T. Sandholm. What’s Inside the Cloud? An
Architectural Map of the Cloud Landscape. In
Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing
(CLOUD’09), pages 23-31, Washington, DC, USA,
2009. IEEE Computer Society.

H. Liu. Rapid Application Configuration in Amazon
Cloud Using Configurable Virtual Appliances. In
ACM Symposium on Applied Computing (SAC’11),
Cloud Computing Track, pages 147-154, New York,
NY, USA, 2011. ACM.

A. Michlmayr, F. Rosenberg, P. Leitner, and

S. Dustdar. End-to-End Support for QoS-Aware
Service Selection, Binding, and Mediation in VRESCo.
IEEE Transactions on Services Computing, 3:193-205,
July 2010.

R. Mietzner, T. Unger, and F. Leymann. Cafe: A
Generic Configurable Customizable Composite Cloud
Application Framework. In R. Meersman, T. Dillon,
and P. Herrero, editors, On the Move to Meaningful
Internet Systems (OTM 2009), volume 5870, pages
357-364. Springer Berlin / Heidelberg, 2009.

F. P. Miller, A. F. Vandome, and J. McBrewster.
Aspect-oriented Programming. Alphascript Publishing,
2010.

S. Paal, R. Kammiiller, and B. Freisleben.
Customizable Deployment, Composition, and Hosting
of Distributed Java Applications. In 4th International
Symposium on Distributed Objects and Applications
(DOA’02). Springer, 2002.

N. Radcliffe and P. Surry. Formal Memetic
Algorithms. Fvolutionary Computing, 865:1-16, 1994.
L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly, 2007.

P. Sampaio, P. Ferreira, and L. Veiga. Transparent
Scalability with Clustering for Java e-Science
Applications. In 11th International Conference on
Distributed Applications and Interoperable Systems,
pages 270-277. Springer, 2011.

R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska,
R. F. H. Hofman, C. J. H. Jacobs, T. Kielmann, and
H. E. Bal. Ibis: a Flexible and Efficient Java-Based
Grid Programming Environment. Concurrency and
Computation: Practice & Ezxperience, 17:1079-1107,
2005.

J. Varia. Cloud Architectures, 2008.
http://jineshvaria.s3.amazonaws.com/public/-
cloudarchitectures-varia.pdf.

C. Vecchiola, X. Chu, and R. Buyya. Aneka: A
Software Platform for .NET-based Cloud Computing.
Computing Research Repository, 2009.

M. Voelter, M. Kircher, and U. Zdun. Remoting
Patterns: Foundations of Enterprise, Internet and
Realtime Distributed Object Middleware. Wiley
Software Patterns Series, 2004.

J. Yan Liu. Performance and Scalability Measurement
of COTS EJB Technology. In 14th Symposium on
Computer Architecture and High Performance
Computing, pages 212-219, 2002.

[9]

(10]

(11]

(12]

(13]

(14]
(15]

(16]

(17]

(18]

(19]

20]

(21]

