
20th European Conference on Artificial Intelligence ECAI 2012

Thomas Roth-Berghofer, David B. Leake, Jörg Cassens (Eds.)

Explanation-aware Computing
ExaCt 2012

ECAI 2012 Workshop, Montpellier, France
28 July 2012
Proceedings of the Seventh International ExaCt workshop

Preface

Explanation-awareness in computing system development aims at making sys-
tems able to interact more effectively or naturally with their users, or better able
to understand and exploit knowledge about their own processing. Explanation-
awareness in software engineering looks at new ways to guide software designers
and engineers to build purposeful explanation-aware software systems. When the
word “awareness” is used in conjunction with the word “explanation” it implies
some consciousness about explanation.

Outside of artificial intelligence, disciplines such as cognitive science, linguis-
tics, philosophy of science, psychology, and education have investigated expla-
nation as well. They consider varying aspects, making it clear that there are
many different views of the nature of explanation and facets of explanation to
explore. Two relevant examples of these are open learner models in education,
and dialogue management and planning in natural language generation.

This volume contains the papers presented at the ECAI 2012 workshop on
Explanation-aware Computing (ExaCt 2012) held on July 28, 2012 in Montpel-
lier, France. The main goal of the workshop was to bring researchers, scientists
from both industry and academia, and representatives from diverse communities
and fields as Informatics, Philosophy, and Sociology, together to study, under-
stand, and explore the aspects of explanation in IT-applications. The papers
presented in this volume illustrate some of the variety of perspectives on expla-
nation and recent progress.

There were seven submissions to ExaCt 2012. Each submission was reviewed
by three program committee members. The committee decided to accept six
papers for oral presentation. This volume was produced using the EasyChair
system.1

ExaCt 20122 continued a series of workshops begun with a AAAI Fall sym-
posium in 2005 in Washington followed by yearly workshops at such conferences
as AAAI, ECAI, and IJCAI. The workshop series aims to draw on multiple per-
spectives on explanation, to examine how explanation can be applied to further
the development of robust and dependable systems and to illuminate system
processes to increase user acceptance and feeling of control.

Readers who would like to participate in further discussions on this topic or
like to receive further information about future workshops might consider join-
ing the Yahoo!-group explanation-research3. More information on explanation
research is available on a dedicated website4.

July 2012
London, UK

Thomas Roth-Berghofer
David B. Leake

Jörg Cassens

1 http://www.easychair.org
2 http://exact2012.workshop.hm. See also the link to related workshops there.
3 http://tech.groups.yahoo.com/group/explanation-research/
4 http://on-explanation.net

Workshop Organisation

Chairs

Thomas Roth-Berghofer, University of West London, UK
David B. Leake, Indiana University, USA
Jörg Cassens, University of Lübeck, Germany

Programme Committee

Agnar Aamodt Department of Computer and Information Science,
Norwegian University of Science and Technology

David W. Aha Navy Center for Applied Research in AI, Washing-
ton DC, USA

Martin Atzmüller University of Kassel, Germany
Ivan Bratko University of Ljubljana, Slovenia
Patrick Brézillon University of Paris 6, France
Ashok Goel Georgia Institute of Technology, USA
Pierre Grenon EBI, UK
Anders Kofod-Petersen SINTEF ICT, Norway
Hector Munoz-Avila Lehigh University, USA
Miltos Petridis CMS, Greenwich University, UK
Enric Plaza IIIA-CSIC, Catalonia (Spain)
Christophe Roche Equipe Condillac - Universit de Savoie, France
Olga C. Santos Spanish National University for Distance Education,

Spain
Gheorghe Tecuci George Mason University, Fairfax, VA, USA
Doug Walton University of Windsor, Canada

Table of Contents

Explaining the reactions of a smart environment . 1
Sebastian Bader

Argument and explanation in the context of dialogue 6
Floris Bex, Katarzyna Budzynska and Douglas Walton

Visualization of intuitive explanations using Koios++ 11
Björn Forcher, Nils Petersen, Andreas Dengel, Michael Gillmann and
Zeynep Tuncer

A brief review of explanation in the Semantic Web . 16
Rakebul Hasan and Fabien Gandon

Enhancing the explanation capabilities of the CBR-WIMS framework
for the intelligent monitoring of business workflows . 21

Stelios Kapetanakis and Miltos Petridis

Using canned explanations within a mobile context engine 26
Christian Severin Sauer, Anna Kocurova, Dean Kramer and Thomas
Roth-Berghofer

Explaining the Reactions of a Smart Environment
Sebastian Bader1

Abstract. A system’s ability to explain its decision making is cru-
cial for the acceptance and the user’s trust in it. This is in particu-
lar the case while using smart environments in which the assistance
functionality is distributed over multiple devices and emerges from
the interplay of them. In this paper, we show how to derive expla-
nations automatically. For this a description of the system’s current
state and history is transformed into discourse representation struc-
tures and finally into natural language explanations. The generation
procedure has been implemented and deployed into a smart meeting
room and a first user study indicates that the generated explanations
are understandable and natural.

1 INTRODUCTION

The design and control of smart environments is a challenging task
and an open research problem. Such environments are best charac-
terised as heterogeneous dynamic ensembles – dynamic groups of
co-located devices of different types. Smart and proactive environ-
ments should support their users by providing automatic assistance
functionality. This can be done by inferring the current user inten-
tions from sensory input and by computing a suitable sequence of
actions to support the resulting user goals.

To gain user confidence in an automatic assistance system, the sys-
tem should be able to provide explanations for the actions taken and
for the current state of the environment. In this paper, we show how
to generate explanations of a control system automatically. We fo-
cus on the generation of human readable explanations in natural lan-
guage which are meant to be shown to the user on request. But while
doing so, we generate a formal explanation in the form of an explana-
tion graph and discourse representation structures, which are finally
used to generate the natural language sentences. The area of explana-
tion aware computing has recently gained attention as indicated, for
example, by the successful series of Explanation-aware computing
(ExaCt) workshops (e.g., [18]) held over the last five years.

Below, we show how to generate natural language explanations
automatically. The types of desired explanations have been identified
in a first user study. Our study validated and extended the results ob-
tained in [14] within the application area of smart meeting rooms. We
also conducted a second study to evaluate a first prototype that gen-
erates explanations automatically. This evaluation showed that the
approach itself is feasible and the generated explanations sound nat-
ural, are understandable to humans, and contain enough details to
explain the reactions of the laboratory and its assistance system.

While building our system, we developed a pragmatic approach
for natural language generation, which should also be applicable in
other application domains. It is based on the construction of a graph-
based representation of causes and reactions. We then use subgraph

1 University of Rostock, email: sebastian.bader@uni-rostock.de

filters to identify interesting fragments of the graph and generate dis-
course representation structures (DRS) from the fragments. Those
DRSs are finally combined and translated into statements of a natural
language generation framework to obtain the explanations in English.
We show how to apply this general idea in one concrete setting and
thus show its feasibility as well as the possibility of generating ex-
planations for automatic assistance systems for smart environments.

In this paper, we discuss the results of a user study identifying
important questions to be answered automatically within a smart en-
vironment. We show how to generate natural language sentences to
explain the reactions of an automatic assistant system for a smart
meeting room. Based on a graph-based formal description of the cur-
rent state of the environment, DRSs are constructed which can easily
be transformed into natural language using a natural language sur-
face realiser. Finally, we present first evaluation results showing that
the system generates natural and understandable explanations.

2 PRELIMINARIES AND RELATED WORK

As mentioned above, smart environments can be characterised as het-
erogeneous dynamic ensembles. Those are dynamically changing en-
sembles of sensors, actuators and software modules. All members of
such ensembles might be of different types, manufactured by differ-
ent vendors, or implemented by different developers. Nonetheless,
the ensemble in total is supposed to provide automatic assistance
functionality to its user. For example, the automatic control of de-
vices and the optimisation of the user’s environment can be expected.
Several approaches have been proposed in the literature, e.g. [4, 12].
As pointer to further approaches we also refer to [3, 12, 15, 16].

Our Laboratory is equipped with various actuators and sensors,
like dimmable lamps, projectors and projection surfaces, cameras,
microphones, localisation systems and others. Different meeting
room scenarios serve as use-cases for our experiments and the lab
itself as hardware platform. While building context aware assistance
systems, we follow the paradigm of goal-based interaction, as out-
lined in [10] and [20]. Based on the known state of the world and
sensory inputs, the system tries to infer the current goals of the user,
that is the user’s intentions. Taking the available devices and their
capabilities into account, the system computes a sequence of device
actions to support the user. We use the terms intention recognition
and strategy synthesis to refer to the two stages of this process. The
interface between them are sets of goals to be achieved.

The traditional way to build control systems is to decompose the
problem into sensing, planning and execution. The input data, gen-
erated by sensors, is used to update the corresponding values of an
abstract world model. On the basis of the world model, a planning
algorithm computes the action sequence needed to achieve a spec-
ified goal. Brooks’ ‘Subsumption Architecture’ is an alternative to
this ‘sense–plan–act’ approach [2]. This approach has been success-

1

fully applied in various areas of robotics. Brooks’ ideas and his con-
trol system inspired other researchers. The goalaviour-based system
[1] described below implements such a behaviour-based approach to
control a smart environment in a distributed manner.

Research on intelligibility is concerned with the automatic gen-
eration of explanations. An explanation is a sequence of statements
describing the current state or behaviour of a system and which clar-
ifies the underlying causes, the context, and the consequences. It in-
cludes a system’s ability to explain its own reactions, its internal state
and the implemented functionality. As pointed out by Dey in [5], it
is one of the big challenges for the near future of ubiquitous com-
puting. The required technology to build intelligent environments is
available (in principle), but approaches to explain the reactions and
behaviour are still under research [13]. In particular, while consid-
ering dynamic and heterogeneous device ensembles, it is yet com-
pletely unclear how to design appropriate user interfaces and how to
construct human readable explanations automatically. Nonetheless,
providing explanations is necessary to gain the trust of the users into
the assistance provided by the system.

Automatic assistance systems need to make their decision based
on the perceived context. But, because neither the context, nor the
internal rules of the systems are accessible by the user, the system
itself appears as a black box. To provide insights into the systems in-
ternals, explanations are needed to describe why certain actions are
taken, or why certain actions are not taken. In principle, two types of
explanations can be distinguished: those meant for automatic analy-
sis and those meant for humans. The first type is needed if the expla-
nations of one system need to be forwarded to a second one. Here we
concentrate on explanations which are generated in natural language
and are meant for human users. In Section 3.2 we discuss a set of
questions and show how to answer those questions automatically.

Natural language generation (NLG) is concerned with the gen-
eration of natural language from a formal representation. Several
approaches have been proposed in the past. A fairly up-to-date
overview can be found on the website of the Special Interest Group
on Natural Language Generation (SIGGEN). NLG systems are usu-
ally constructed in layers [17]: Layer 1 (Document planner) deter-
mines the content and the structure of the document to convey the
communicative goal. Layer 2 (Micro-planner) performs the lexical-
isation, referencing and aggregation of paragraphs and sentences.
Layer 3 (Surface realiser) applies grammar rules to convert an ab-
stract representation into text. In our system described below, the
document- and part of the micro-planning is done by the explana-
tion generation process. As surface realiser, we use the SimpleNLG
framework [8], which is also able to perform some micro-planning
(in particular the aggregation), provides a lexicon with a fair cover-
age of English words and performs the morphological realisation.

Discourse representation theory (DRT) provides an abstract and
formal representation of meaning in natural language and allows
to handle references within and across sentences [11]. It em-
ploys so-called discourse representation structures (DRS) to rep-
resent the meaning of sentences. Without going into details, we
present a slightly adapted example taken from [11]: The mean-
ing of the sentences “Jones owns Ulysses. It fascinates him.” is
represented within the following DRS: [X,Y] : [jones(X),
ulysses(Y), owns(X,Y), fascinates(Y,X)]. A DRS
consists of two parts, a list of referents and a list of conditions. Those
data structures can be used in natural language understanding and in-
terpretation as well as for the generation of natural language. For
example the Attempto Controlled English (ACE) project uses similar
structures to interpret and construct natural language sentences [7].

3 EXPLAINING A RULE-BASED CONTROL
SYSTEM

After introducing our goalaviour-based control system, we discuss
how to explain its reactions. The explanation generation described
below has been implemented in SWI-Prolog2 and the output is gen-
erated in HTML to be easily presentable to the user. The results are
discussed in Section 3.7. After describing a rule- and goal-based con-
troller, we discuss necessary explanation types and show how to an-
swer certain questions automatically.3

3.1 Goal- and Rule-based Control
The paradigm of goalaviour-based control was introduced in [1]. As
in Brooks original idea, the control system is implemented within
small independent behaviours. But instead of controlling the actua-
tors of the environment directly, those behaviours produce goals4 –
describing the desired (partial) state of the world. All goal-emitting
behaviours create their output solely based on the current state of the
world, and are independent of each other. The goals are merged and a
sequence of device actions is computed that leads to the desired state
of the world.

Example 1 One goalaviour could emit the goal to turn on a lamp
whenever a user is close to it. Another goalaviour could emit the goal
to turn off all lamps to save energy. In combination, both goalaviours
result in some kind of intelligent light control in which the user’s
position is illuminated and other lights are turned off to save energy.

Here, we consider crisp context information only. That is, the state
of every entity in the world (physical device, user or software com-
ponent) can be described as a mapping from properties to values. To
simplify the notation we use a set-based representation containing
entity–property–value triples (EPVs). The state of the world is de-
scribed as a consistent set of such triples. A set s is called consistent
if and only if for every entity–property pair (e, p) there is at most
one entry (e, p, x) ∈ s. We use W to denote the set of all consistent
world states. To express a certain goal to be achieved by the con-
troller, partial world states are used as customary in the automatic
planning community [9, 19]. Thus, a desired state of the world is de-
scribed by the corresponding set of entity–property–value triples. We
use G to refer to the set of all possible goals.

Example 2 Let l be a lamp, which can be switched on and off and
also be dimmed, with a dim-value of 1 indicating full brightness.
The formalisation of the goal to switch on the lamp and turn it to full
brightness is:5 {(l, on,>), (l, dim, 1)}.

Every goal represents a partial state of the world which has to be
achieved. A goalaviour g maps the current state of the world to a set
of goals: g : W → P(G). In contrast to the original idea, we restrict
goalaviours below to be precondition–goal rules. In particular, we
consider the precondition to be a set of entity–property–value triples
and the rules to be expressed as follows: Let {p1, p2, . . . , pn} ∈
W be a set of preconditions and let {g1, g2, . . . , gm} ∈ G be
a goal. Then the corresponding rule is expressed using the pair:
〈{p1, p2, . . . , pn}, {g1, g2, . . . , gm}〉.
2 See http://www.swi-prolog.org
3 Please note that all examples described below have been simplified to show

the most important issues only, and might thus appear sometimes over-
simplistic. In particular we assume that there is only one room involved.

4 Therefore they have been called goalaviours – goal-producing behaviours.
5 We use > and ⊥ to denote the truth values true and false, respectively.

2

http://www.swi-prolog.org

Example 3 The goalaviour IlluminateUser tries to set a lamp l
to full brightness whenever a user u is at the lamp’s position:
〈{(u, at-position, l)}, {(l, dim, 1.0)}〉. A second goalaviour, called
IlluminateRoom, tries to set the dim-value of all lamps to 0.5 to il-
luminate the room slightly, whenever a user is present in the room:
〈{(u, at-position, ?)}, {(l, dim, 0.5)}〉.6

Obviously, the two goalaviours described in Example 1 contra-
dict each other. To solve such conflicts, a priority is attached to the
goalaviours. Every device filters the goals with respect to the pri-
ority of the emitting goalaviour and selects only those with highest
priority. In addition, so-called merge-functions are attached to every
property, which are used to merge a set of values into a single one.
All goals for one property are merged to obtain the final goal. Let p
be some property of a given entity and let Dp be the domain of its
values. A merge-function fp attached to p is a function from a set
values to a single value: fp : P(Dp) → Dp.

Example 4 Below we use the logical disjunction to merge the power
status of a lamp and the average for the dim-value. Merging the out-
put of the two goalaviours from Example 3 yields a value of 0.75 for
the dim-value of the lamp next to a user.

After filtering and merging the goals for a given entity of the en-
semble, this entity is supposed to achieve the desired state. This can
be done by attaching simple planners to it, which are parametrised
with a formal description of all available methods. Based on the cur-
rent state of the entity, the desired goal state and the available meth-
ods, the planner computes a sequence of actions to be performed to
achieve the goal. As mentioned above, further details including a dis-
cussion of consistency can be found in [1].

3.2 Explanation Types in Smart Environments
As mentioned above, different types of questions to be answered have
been identified in the literature [14]. To validate them for our setting,
a user study has been conducted to evaluate different automatic con-
trol systems and to identify desired types of explanations [6]. The
subjects (23 in total) have been asked to perform a number of tasks
while being supported by our systems. While going through three
increasingly complex scenarios (simple lab usage, team discussion,
lecture with students and multiple projectors), the lightening condi-
tions, projectors and surfaces were controlled automatically. About
90% of the participants explicitly stated that they liked the automatic
assistance provided by our systems.

In addition to evaluating the automatic assistance, the users have
been asked to write down all remarks and questions that came to their
mind. While performing the experiment, the users asked for the fol-
lowing information: ‘Why has my output been put to projection sur-
face X?’, ‘Will there be some reaction? If yes, when will that be?’,
‘Why has the lamp X been dimmed?’, ‘Why has the projector not
been turned off (yet)?’, ‘Why was the output of laptop X not moved
to surface Y?’, and ‘What happens next?’. In addition to the ‘Why ...’
and ‘Why not ...’ questions identified in [14] and discussed in Sec-
tion 2, the users asked for timing information in form of ‘When ...’
and ‘Why not ... yet?’ questions. This is of importance in such an
environment, because some actions are time-dependent. For exam-
ple, projectors should not be turned on and off repeatedly, but only
after being idle for a certain time interval. Below we discuss how to
generate the answers to some of those questions automatically.

6 Having a position implies to be within the room.

(lamp1, dim, 0.75)

Merger
Average

Goalaviour
illuminateUser(Alice)

Goalaviour
illuminageRoom

lamp1 is dimmed to
75%

illuminate the whole
room slightlyilluminate the position

of Alice

(lamp1, dim, 1.0) (lamp1, dim, 0.5)

(Alice, atPosition,
lamp1) Alice is near lamp1

lamp1 is dimmed to
50%

lamp1 is dimmed to
100%

Action
dim(lamp1, 0.75)

is effect
of

tries totrie
s

to

dim lamp1 to 75%

requested
by requested

by

m
erged

using

re
ce

ive
 in

pu
t

fro
m

receive input

from

has

precondition

ha
s

pr
ec

on
dit

ion

Figure 1. Explanation graph for the dim-value of lamp1. The grey boxes
are not part of the specification but contain comments.

node(p_lamp1_dim_075, epv,
[e=lamp1,p=dim,v=0.75,pr=’is dimmed to’]).

edge(merged_using,p_lamp1_dim_075,m_lamp1_dim_075).

Figure 2. Part of the Prolog specification of the EG from Fig. 1.

3.3 Explanation Graphs
To enable the automatic generation of answers, all events emit-
ted by devices, all executed plans, their underlying goals and the
goalaviours that emitted the goals are collected and stored. Based
on this data an explanation graph (EG) is constructed as shown in
Figures 1 and 2 (restricted to the fragment important to explain the
dim-value of lamp1). Based on the history of events and actions, the
causes of state changes can be tracked to either human interactions
or actions invoked by the assistance system. In addition, the internal
reasoning of the controller can be reconstructed from this data.

An explanation graph contains nodes for all ground instances of
desired and merged EPVs, actions, goalaviours and mergers involved
while achieving a given EPV. Those nodes are linked by labelled
edges, representing the following dependencies: merged using: links
EPVs and the merger used to obtain the value, received input from:
links merger and goalaviours providing input, requested by: links
goalaviours and desired EPVs, tries to: links goalaviours with their
goal descriptions, has precondition: links goalaviours with precon-
dition EPVs, and is effect of: links EPVs and causing actions. An
explanation graph constructed at a given point in time contains all
information needed to construct explanations for the current state of
the world. As described below, it can automatically be transferred
into DRSs and finally into natural language.

3.4 Discourse Representation Structures and
Natural Language Generation

We use discourse representation structures (DRSs) as abstract rep-
resentation for the generation of explanations. Subgraphs of the full
explanation graph are transformed into DRSs, usually representing
one sentence each. The subgraph highlighted by double strokes in
Figure 1 is transformed into the DRS shown in Figure 4. We use a
syntactically slightly modified form of DRSs used in the ACE sys-
tem [7]. Instead of listing all referents occurring, we keep only those
which refer to the syntactic structure to be realised, which is for ex-
ample the phrase P2 in Figure 4.

To construct DRSs from a given explanation graph, we use Prolog
rules as shown in Figure 3. Each rule consists of a subgraph identifi-
cation part (only the first line in Fig. 3, because this example converts
a single property node only, which only needs to be a member of the
EG) and a DRS composition part. The code shown in Figure 3 gen-
erates the first three lines of the DRS shown in Figure 4.7

7 The mechanism to construct unique identifiers as P1,P2,... has been

3

drs(EG, [PS]:Conditions) :- % EG to one DRS
member(node(ID,epv,NC), EG),% identify subgraph
members([e=E,v=V,pr=Pr],NC),% access node content
Conditions = [E=object(E), % construct object
V=object(V), % construct verb
PS=predicate(E, Pr, V), % construct predicate
feature(PS,’Feature.TENSE’,’Tense.PAST’)]).

Figure 3. Prolog code to transform parts of an EG into a DRS.

[P2]:[P1=object(lamp1), P3=object(0.75),
P2=predicate(P1,’is dimmed to’,P3),
feature(P2,’Feature.TENSE’,’Tense.PAST’)])
G1=object(’IlluminateUser(Alice)’),
G2=object(’IlluminateRoom’),
GS1=conjunction([G1,G2]), M1=modifier(P2,by,GS1)]

Figure 4. DRS for the subgraph highlighted by double strokes in Fig. 1.

To actually generate explanations in natural language, we rely on
the SimpleNLG toolkit developed at the University of Aberdeen
[8]. The toolkit is a realiser which allows to generate correct En-
glish sentences based on an abstract representation. Based on the
DRSs constructed above SimpleNLG code is constructed automat-
ically. For this we adapted the syntax of the DRSs slightly. Instead
of writing object(P1,lamp1) we use P1=object(lamp1)
to indicate that this should be transformed into an object creation
statement within the SimpleNLG framework. This notation allows
to sort all conditions specified within a DRS such that in the
right hand side only initialised objects occur. That is the condition
P2=predicate(P1,’is dimmed to’,P3) should be evalu-
ated only after evaluating the conditions defining P1 and P3, as it
refers to them. After sorting the conditions, they are transformed
into SimpleNLG statements as shown in Figure 5. Executing that
code results in the string “lamp1 was dimmed to 0.75 by Illumina-
teUser(Alice) and IlluminateRoom”. As mentioned above, the exam-
ple has been simplified to show the key ideas here. The complete
description is shown below.

3.5 Answering Why Questions
Based on the full explanation graph constructed above, why ques-
tions can be answered as follows. The system shows a list of entity–
property–value triples to the user. This list is generated from nodes
in the explanation graph representing EPVs not updated later, that
is only those nodes corresponding to entity–property–value triples
(e, p, v1) such that there is no edge coming from a node (e, p, v2).
In our running example, the list includes the triples (lamp1, on,>),
(lamp2, on,>), (lamp1, dim, 0.75) and (lamp2, dim, 0.5). Start-
ing from the selected triple, the graph is traversed following the out-
going edges. Figure 1 shows the subgraph obtained for the dim-
value of lamp1, that is starting from the node corresponding to
(lamp1, dim, 0.75). Once the subgraph is obtained, DRSs are gen-
erated as described above. Finally, every DRS is transformed into
natural language using SimpleNLG.

Example 5 After running the controller and the two goalaviours
described in Example 3, the lamp1 (which is next to user Alice) is
dimmed to 0.75. For this, the following explanation is generated:

“The dim-value of lamp1 was set to 0.75, because the
goalaviours IlluminateUser(Alice) and IlluminateRoom are ac-
tive. The goalaviour IlluminateUser(Alice) tries to illuminate the

omitted here, it is based on the gensym feature of SWI-Prolog.

P1 = createNounPhrase("lamp1");
P3 = createNounPhrase("0.75");
P2 = createClause(P1, "is dimmed to", P3);
P2.setFeature(Feature.TENSE, Tense.PAST);
G1 = createNounPhrase("IlluminateUser(Alice)");
G2 = createNounPhrase("IlluminateRoom");
GS1 = new CoordinatedPhraseElement(G1,G2);
P2.addModifier(createPrepositionPhrase("by", GS1));
return realiser.realise(P2);

Figure 5. Part of the SimpleNLG Java code obtained for the DRS in Fig. 4.

position of Alice. Setting the dim-value of lamp1 to 1.0 is a direct
goal of IlluminateUser(Alice). The goalaviour IlluminateRoom
tries to illuminate the full room slightly. Setting the dim-value of
lamp1 to 0.5 is a direct goal of IlluminateRoom. The goalaviours
are merged using the average. The dim-value of lamp1 has been
set to 0.75 while performing action lamp1:dim(0.75). The
goalaviour IlluminateUser(Alice) was activated because Alice is
at position lamp1. The goalaviour IlluminateRoom was activated
because Alice is at position lamp1.”

3.6 Answering Why-not and other Questions
Why-not questions can be answered similarly. But instead of finding
the goalaviours which have been active, we need to determine those
which might have led to the questioned state of the world. In princi-
ple, three cases can be distinguished: (1) A corresponding goalaviour
has been active, but has been overwritten by another goalaviour with
higher priority. (2) A corresponding goalaviour has been active, but
the merging changed the result. (3) No corresponding goalaviour has
been active. Generating explanations for the first two cases can be
done similar to the generation for why-questions described above.

Example 6 An automatic response to “Why has lamp1 not been
dimmed to 1.0?” (case 2 above) is:

“The dim-value of lamp1 was set to 0.75, because the out-
puts of the goalaviours IlluminateUser(Alice) and Illuminate-
Room were merged using the average. The goalaviour Illumi-
nateUser(Alice) tries to illuminate the position of Alice. Set-
ting the dim-value of lamp1 to 1.0 is a direct goal of Illumina-
teUser(Alice). The goalaviour IlluminateRoom tries to illuminate
the full room slightly. Setting the dim-value of lamp1 to 0.5 is a
direct goal of IlluminateRoom.

In case 3, we first need to identify potential goalaviours which
could lead to the questioned state, but have not been active. Then, the
missing preconditions need to be identified and explanations have to
be generated describing how to make those preconditions true.

3.7 Evaluation
A small user study has been conducted to evaluate a first version of
the system. The running example from above has been described to
the users and the generated answers were presented. The participants
(14 in total) have been asked to rate the understandability, the amount
of information provided within the answers (too much, or too little),
and the naturalness of the generated explanations. Most of the users
have been using our room and heard about the control system before,
and about half of them have also participated in other user studies
conducted in the lab. That is, the results are not meant to be repre-
sentative for ‘normal’ users. Nonetheless, they show that experienced
users benefit from the explanations and judge them as helpful.

4

●●●

●

a b c d

0
1

2
3

4

Figure 6. Results of the evaluation of a first prototype depicted as box plot,
showing the median (line), the lower and upper quantile (box), and outliers.

Figure 6 shows a summary of the results. All users have been asked
to answer the following questions: (a) ‘Are the answers understand-
able?’, (b) ‘Do the answers contain enough details?’, (c) ‘Do the an-
swers contain too much details?’ and (d) ‘Do the explanations sound
natural?’ on a Likert scale ranging from 4 = ‘yes completely’, 3 =
‘yes’, 2 = ‘more or less’, 1 = ‘no’, 0 = ‘not at all’. The users con-
sidered the answers to be understandable, to sound natural and to
contain (more or less) the right amount of detail. In addition to an-
swering the questions listed in the table, the users were asked to list
missing information. Most of the participants asked for information
on the merging policy used to combine the outputs of the different
sentences. This information (as contained in Examples 5 and 6) was
not yet included in the tested prototype, but added later.

4 CONCLUSIONS AND FUTURE WORK
We showed how to generate explanations for the actions taken by an
automatic assistance system for smart environments. The system’s
ability to explain its behaviour and internal decision making is cru-
cial for the acceptance and the users trust in it. The explanation gen-
eration has been implemented for a distributed control system pro-
viding assistance in a smart meeting room. We showed how to gen-
erate human readable explanations for the overall behaviour of such
a system. In particular, we discussed how to answer why and why-
not questions. To the best of our knowledge, there is no such system
which is able to support users in some real environment and to ex-
plain its actions and the current state of the world in human readable
natural language.

The system employs an explanation graph to represent the history
of the system and to identify underlying causes. Based on that, dis-
course representation structures are constructed. Those structures are
later transformed into natural language sentences using a surface re-
aliser for English. The whole explanation generation has been imple-
mented in Prolog. A small user study has been conducted to evaluate
the explanations. The users rated the explanations to be both under-
standable and natural.

The system, as discussed above, demonstrates the general feasibil-
ity of an automatic generation of natural language explanations for
the reactions of smart environments. Nonetheless there are open is-
sues to be addressed in the near future. The explanations generated
for why-not questions are so far quite general, because sometimes
it is hard to detect the correct preconditions needed to explain why
something did not happen, or has not been achieved. Here ideas from
the area of abduction may help to provide better explanations.

We furthermore need to extend the approach to allow chaining
of explanations. The presented approach, based on the explanation
graph and the DRSs, is powerful enough, but we need to investigate
where to stop while identifying the true reasons, because so far only
‘level 2’ explanations are generated. This needs to be explored in a

larger user study. In addition to evaluating the questions and answers,
we plan to explore suitable user interfaces including speech interac-
tions. Another open issue is the fine-tuning of the micro-planning for
the language generation. In particular cross sentence references need
to be included to make the explanations even more natural.

Finally, we plan to extend the approach to a probabilistic setting.
This is necessary due to the inherent probabilistic nature of such en-
vironments. Most actions are taken based on probabilistic reasoning,
which needs to be integrated into the generated explanations. And
as pointed out in [13] the acceptance of explanations depends on the
certainty with which they are derived.

Acknowledgment
The author has been supported by DFG graduate school 1424
MuSAMA at the University of Rostock, Germany and would like
to thank three anonymous reviewers for their comments.

REFERENCES
[1] S. Bader and M. Dyrba, ‘Goalaviour-based control of heterogeneous

and distributed smart environments’, in Proceedings of IE’11, pp. 142–
148. IEEE, (2011).

[2] R. A. Brooks, ‘A robust layered control system for a mobile robot’,
IEEE Journal of Robotics and Automation, RA-2(1), 14–23, (1986).

[3] D. J. Cook and S. K. Das, Smart Environments, Wiley, 2005.
[4] D. J. Cook, M. Huber, D. Gopalratnam, and M. Youngblood, ‘Learn-

ing to control a smart home environment’, Innovative Applications of
Artificial Intelligence, (2003).

[5] A. K. Dey, ‘Modeling and intelligibility in ambient environments’, J.
Ambient Intell. Smart Environ., 1, 57–62, (2009).

[6] M. Dyrba, R. Nicolay, S. Bader, and T. Kirste, ‘Evaluation of two con-
trol systems for smart environments’, in Proceedings of CoSDEO at
Mobiquitous 2011, (2011).

[7] N. E. Fuchs, U. Schwertel, and R. Schwitter, ‘Attempto controlled en-
glish - not just another logic specification language’, in Logic-Based
Program Synthesis and Transformation, ed., P. Flener, number 1559 in
LNCS. 8th International Workshop LOPSTR’98, Springer, (1999).

[8] A. Gatt and E. Reiter, ‘Simplenlg: A realisation engine for practical
applications’, in Proceedings of ENLG-2009, (2009).

[9] M. Ghallab, C. K. Isi, S. Penberthy, D. E. Smith, Y. Sun, and D. Weld,
‘PDDL - The Planning Domain Definition Language’, Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision
and Control, (1998).

[10] T. Heider and T. Kirste, ‘Supporting goal-based interaction with dy-
namic intelligent environments’, in Proceedings of ECAI 2002, pp.
596–600, (2002).

[11] H. Kamp and U. Reyle, From Discourse to Logic, Kluwer, 1993.
[12] J. A. Kientz, S. N. Patel, B. Jones, E. Price, E. D. Mynatt, and Gre-

gory D. Abowd, ‘The georgia tech aware home’, in CHI ’08 Extended
Abstracts on Human Factors in Computing Systems, pp. 3675–3680.
ACM, (2008).

[13] B. Y. Lim and A. K. Dey, ‘Design of an intelligible mobile context-
aware application’, in MobileHCI ’11, pp. 157–166. ACM, (2011).

[14] B. Y. Lim, A. K. Dey, and D. Avrahami, ‘Why and why not explana-
tions improve the intelligibility of context-aware intelligent systems’,
in Proceedings of the 27th international conference on Human factors
in computing systems, CHI ’09, pp. 2119–2128. ACM, (2009).

[15] Handbook of Ambient Intelligence and Smart Environments, eds.,
H. Nakashima, H. Aghajan, and J. C. Augusto, Springer, 2010.

[16] S. Poslad, Ubiquitous Computing: Smart Devices, Environments and
Interactions, Wiley, 2009.

[17] E. Reiter and R. Dale, Building Natural Language Generation Systems,
Studies in natural language processing, Cambridge Press, 2000.

[18] Thomas Roth-Berghofer, Nava Tintarev, and David B. Leake, eds. Pro-
ceedings of Explanation-aware Computing Exact 2011, 2011.

[19] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
Prentice Hall, 2 edn., 2003.

[20] U. Saif, H. Pham, J. M. Paluska, J. Waterman, C. Terman, and S. Ward,
‘A case for goal-oriented programming semantics’, in Proceedings of
UbiSys at UbiComp 2003, (2003).

5

Argumentation and explanation in the context of dialogue
Floris Bex1 and Katarzyna Budzynska2 and Douglas Walton 3

Abstract. Whilst computational argumentation and explanation
have both been studied intensively in AI, models that incorporate
both types of reasoning are few and far between. The two forms of
reasoning need to be clearly distinguished, as they may influence di-
alogue protocol and strategy. Using the language of the Argument
Interchange Format, we show that the distinction can be made by
considering the speech acts used in a dialogue, and explore some of
the implications of the combination of argument and explanation.

1 INTRODUCTION
Reasoning can be characterized as the process of moving from cer-
tain starting statements, assumptions or premises, to other state-
ments, conclusions [17]. At the same time, reasoning is also the out-
come of this process (i.e. the product), a static structure. Reasoning
is typically used in the context of argumentation, where premises are
offered as proof of a conclusion or a claim often in order to persuade
someone or settle an issue. However, reasoning is also used in the
context of explanation, where the explananda (facts to be explained)
are explained by a coherent set of explanans (facts that explain). The
usual purpose of explanation is not to convince someone but rather
to help someone understand why the explananda are the case, that
is, to help the explainee understand something that she claims she
does not now understand, or does not completely understand [19].
In this paper, we aim to explore the similarities and differences be-
tween argumentation and explanation and make a first step towards
an integrated computational model of the two.

Argumentation and explanation are well-presented in their respec-
tive sub-fields of AI. Computational models of argumentation have
emerged and matured in the past twenty-or-so years [11]. Compu-
tational models for explanation are mainly based on the technique
of abductive (model-based) reasoning, and have been studied in the
context of medical and system diagnosis and natural language under-
standing (e.g. [4, 9, 5, 14]). Despite the important role explanations
can play in argumentative dialogue, there have not been many at-
tempts to combine argumentation and explanation into one formal
model. Perhaps the most thorough work thus far is by Bex et al. [3],
who combine structured arguments with abductive-causal reasoning
into one model of inference to the best explanation. Other examples
of work in which argumentation and explanation are combined are
[9, 16].

Argumentation and explanation are often used in concert when
performing complex reasoning: the explanations can be the subject of

1 School of Computing, University of Dundee, Dundee, UK, DD1 4HN,
email: florisbex@computing.dundee.ac.uk

2 Department of Logic and Cognitive Science, Institute of Philosophy
and Sociology Polish Academy of Sciences, Poland email: budzyn-
ska.argdiap@gmail.com

3 Centre for Research in Reasoning, Argumentation and Rhetoric (CRRAR),
University of Windsor, Canada email: dwalton@uwindsor.ca

argumentation or they may be used in an argumentative way. Hence,
we need a model that integrates argumentation and explanation, in
which the two types of reasoning are clearly distinguished; argumen-
tation and explanation have different properties and the reasoning
with arguments and explanations adheres to different patterns.

In our opinion, the only way to distinguish between argumentation
and explanation is by looking at the context in which the reasoning
was originally performed. In this paper, we concentrate on the con-
textual property of the intention of the speaker. We are interested in
how to represent the connection between the intentions and the static
reasoning structure under consideration. In this paper, we show that
this connection can be made by using ideas from speech act theory
[15]. More specifically, we argue that it is the illocutionary force of
the speech act in a dialogue that determines whether reasoning is ar-
gumentation or explanation. We will use the conceptual model of the
Argument Interchange Format [6, 13] so as to provide a model that
is not tied to any specific dialogue or argument formalism.

The rest of this paper is organized as follows. In section 2 we elab-
orate on the (structural and contextual) similarities and differences
between argumentation and explanation and we give some examples
of both. Section 3 discusses our ideas for a framework for argumen-
tation and explanation. Section 4 briefly explores the ramifications
of combining argumentation and explanation in one comprehensive
model of dialogical reasoning, and section 5 concludes the paper.

2 ARGUMENTATION AND EXPLANATION

Argumentation is a type of reasoning used in a specific probative
function, to prove a claim [17]. By its very nature, it involves some
sort of opposition between parties4 and reasons are not just given to
support a conclusion but also to remove an opponent’s doubts about
this conclusion. For example, a reasoning α ` β is argumentation
when β is questioned (dubious) and a proponent of this argument
uses α not only to support β, but also to remove an opponent’s doubts
about β. Explanation, on the other hand, has not as its main goal to
prove but rather to explicate why something is the case. Explanation
in its purest form is not inherently dialectical: an explanation is given
to help the other party, not to convince them. Consider the following
example. Say I arrive at work at ten in the morning and my boss asks
why I am late. I can either explain to him that the bridge was open
and that I had to wait or I can argue that I am not “late”, because my
contract does not specify the exact hours I have to be at the office.
In first case, I am answering my boss’ question by explaining to him
what caused my being late. In the latter case, I am arguing against my
boss claim that I am late. Thus, explanations are usually offered for
propositions that both parties agree on (i.e. we agree I am “late” and

4 Hence the use of the term “calculi of opposition” for argumentation-
theoretic semantics that allow one to calculate the acceptability of argu-
ments

6

I explain why) whilst arguments are offered for propositions that are
not immediately agreed upon (i.e. I contest the fact that I am “late”).

Argumentation and explanation are often used in conjunction. Ex-
planations can themselves be the subject of argumentation, as one
may argue in support or in opposition of a particular explanation or
parts of it. For example, if my boss questions my explanation by
arguing that I never cross a bridge on my way to work, I can ar-
gue (e.g. by providing evidence) that I do. Furthermore, explanations
may be used in an argumentative way, as having someone agree to
a particular explanation of a phenomenon might help us to persuade
them. For example, if my boss accepts my explanation for being late
I might convince him not to fire me. The most thorough work on
combining argumentation and explanation thus far is [3], who com-
bines tree-structured arguments in the ASPIC+ framework [10] with
abductive-causal reasoning based on standard models of explanation
[9] into a hybrid theory of inference to the best explanation. The ba-
sic idea of this hybrid approach is as follows. A logical model of
abductive-causal reasoning takes as input a causal theory (a set of
causal rules) and a set of observations that has to be explained, the
explananda, and produces as output a set of hypotheses that explain
the explananda in terms of the causal theory. Arguments can be used
to support and attack stories, and these arguments can themselves be
attacked and defeated. Thus, it is possible to reason about, for ex-
ample, the extent to which an explanation conforms to the evidence.
This is important when comparing explanations: the explanation that
is best supported and least falsified by arguments is, ceteris paribus,
the best explanation.

2.1 Distinguishing Argumentation and
Explanation

Because argumentation and explanation are often intertwined in
complex reasoning, they can sometimes be hard to distinguish from
one another. However, it is important that we do distinguish the two
types of reasoning. Apart from providing a measure of conceptual
neatness, there are also more concrete reasons for not confusing
the two types of reasoning. One of them is that circular arguments
are usually considered fallacious while circular explanations are not.
Take Walton’s [18] recession example. An economist is asked why
the economy is in recession in a certain state at present, and she
replies: “Right now a lot of people are leaving the state, because taxes
are too high”. But when asked why taxes are so high, she responds:
“Well, a lot of people are unemployed, because of the recession”.
The economist has not committed the fallacy of arguing in a circle,
because he was explaining human behavior which has inherent feed-
back loops. The second reason for correctly distinguishing between
argument and explanation is that the type of reasoning used might
influence the allowed and desired moves in a dialogue. The ways in
which to correctly respond to an explanation are different from the
ways in which one should respond to argumentation; for example, it
does often not make sense for the other party to deny the explananda
whilst it does make sense to deny the conclusion of an argument.
Similarly, a request for information is often better met by explaining
something than by arguing that something is the case.

One possible way of distinguishing between argumentation and
explanation might be to look at the product of reasoning, that is, the
argument or the explanation put forth, and the structure and type of
this product. At first sight, it often seems an explanation is abductive
and causal whilst an argument is modus-ponens style, non-causal
reasoning. The basic idea of abductive inference is that if we have
a general rule α −→ β, meaning α causes β, and we observe β,

we are allowed to infer α as a possible explanation of β. In contrast,
argumentation is often seen as reasoning from a premise α to a con-
clusion β through an inference rule α −→ β, where this rule need
not necessarily be causal. However, as it turns out it is also possible
to give abductive or causal arguments (see e.g. Walton’s [21] argu-
ment from evidence to hypothesis and causal argument). Similarly,
one may perform explanatory reasoning by taking a rule β −→ α,
meaning β is evidence for α (see Bex et al. [3] for a discussion on
evidential and causal reasoning).

In our opinion, the distinction between argumentation and expla-
nation is not one that is inherent to the product of reasoning, the static
structure. Rather, the distinction follows from the dialogical context
in which the reasoning was originally performed. In order to deter-
mine this context, we need not just look at the original intention of
the speaker but also at the broader dialogical context, such as the ut-
terance that was replied to by the speaker and the intentions of the
other participants. In other words, the context is largely determined
by the speech acts that were performed. According to the pragmatic
theory of speech act [15] argumentation and explanation are different
speech acts. A speech act Fα, such as: claimα, whyα, consists of an
illocutionary force F and a propositional content α. An illocutionary
force is an intention of uttering a propositional content. That is, the
performer of a speech act may utter α with an intention of assert-
ing, asking, promising and so on. Thus, argumentation and explana-
tion are both instances of illocutionary acts that represent a relation
between premises and conclusions: argue(α, β) and explain(α, β),
where α denotes a conclusion and β denotes premises. The distinc-
tion between argumentation and explanation cannot just be made by
looking at the original speech act; one also needs to consider the
broader dialogical context. In the next section, we show how this can
be represented in the AIF core ontology.

3 ARGUMENTATION AND EXPLANATION IN
THE ARGUMENT INTERCHANGE FORMAT

The Argument Interchange Format (AIF) is a communal project
which aims to consolidate some of the defining work on computa-
tional argumentation [6]. Its aim is to facilitate a common vision and
consensus on the concepts and technologies in the field so as to pro-
mote the research and development of new argumentation tools and
techniques. In addition to practical aspirations, such as developing a
way of interchanging data between tools for argument manipulation
and visualization [7], a common core ontology for expressing argu-
mentative information and relations is also developed. Thus, the AIF
ontology aims to provide a bridge between linguistic, logical and for-
mal models of argument and reasoning.

The AIF core ontology is first and foremost an abstract, high-level
specification of information and the various argumentative relations
(e.g. inference, conflict) between this information.5 The core ontol-
ogy is intended as a conceptual model of arguments and the schemes
or patterns arguments generally follow. It defines arguments and their
mutual relations as typed graphs [6, 12], which is an intuitive way of
representing argument in a structured and systematic way without
the formal constraints of a logic [6]. This section briefly describes
how in general the AIF describes argument and its dialogical context
(Section 3.1). Then, we propose how to model argumentation and
explanation in the language of the AIF (Section 3.2).

5 The name Argument Interchange Format is in this respect somewhat mis-
leading, as it seems to imply that AIF is a file format, whereas the AIF
ontology can be implemented in a number of specific formats (XML, DOT,
SQL). However, the name is retained for historical reasons.

7

3.1 The AIF Core Ontology
The AIF core ontology [6, 12] and its dialogical extension [13] al-
lows for the explicit representation of both reasoning structure and
the context of dialogue in which it is put forth. More concretely, it en-
ables to connect the locutions uttered during a dialogue (argument2)
and the underlying arguments expressed by the content of those lo-
cutions (argument1).

In the ontology, argument1 is represented by two kinds of nodes:

• information (I-) nodes, which refer to data, and
• scheme (S-) nodes, which refer to the passage between informa-

tion nodes, which are classified into three groups:

– rule application (RA-) nodes which correspond to inference or
support,

– conflict application (CA-) nodes which correspond to conflict
or refutation,

– preference application (PA-) nodes which correspond to value
judgements or preference orderings.

The argument2 is also described by two types of nodes:

• locution nodes (L-), which refer to utterances and constitute a sub-
class of information nodes, and

• transition application (TA-) nodes, which refer to the passage be-
tween locutions.

The TA-nodes are governed by the protocol of a dialogue system,
recording e.g. that a given assertion has been made in response to an
earlier question [13, 2].

The interaction between argument1 and argument2 is captured by
means of two types of illocutionary application (YA-) nodes [13]:

• the YA-nodes between I-nodes and L-nodes, and
• the YA-nodes between RA-nodes and TA-nodes.

For example, an YA-node may represent the relation between an as-
sertion claimαwith its propositional content α. The YA-link is deter-
mined and warranted (authorized) by the constitutive rules for speech
acts [15]. These rules determine what constitutes a successful speech
act. For example, an assertion may be unsuccessful and attacked, if
its performer did not have enough evidence for the statement or he
declared what he actually disbelieves.

3.2 The Distinction between Argument and
Explanation in AIF

In this section, we propose the specification of argumentation and
explanation in the AIF core ontology. We will illustrate it on the ex-
ample adapted from Walton [18].

Allen The Evanston City Council should make it illegal to tear down
the citys old warehouses.

Beth Whats the justification for preserving them?
Allen The warehouses are valuable architecturally.
Beth Why are they so valuable?
Allen The older buildings lend the town its distinctive character.

As is pointed out by Walton and Bex [20], Beth’s first question
clearly asks for an argument (a justification). Beth’s second question
is ambiguous: it could ask for either an argument or an explanation.
This depends on whether Beth does not understand why the buildings
are valuable or whether Beth has doubts about the buildings’ value.

This in turn depends on Beth’s beliefs or commitments about ‘The
warehouses are valuable architecturally’; if Beth believes or is openly
committed to this proposition, we can assume that she is asking for
an explanation, as there is no doubt. For our example, we assume that
Beth is asking for an explanation.

In the dialogue between Allen and Beth (see Fig. 1), the argument2
consists of five speech acts represented by L-nodes (we use abbrevia-
tion Li to denote subsequent locution nodes). The argument1 consists
of three propositions represented by I-nodes (Ii means subsequent
information nodes). The interaction between the argument2 and the
argument1 is described by means of the YA-nodes. The speech acts
L1, L3 and L5 have assertive illocutionary force connecting them
with propositional contents I1, I2 and I3, respectively. The passage
between L1 (resp. L3, L5) and I1 (resp. I2, I3) is represented by YA1

(resp. YA4, YA7). The illocutionary node YA2 (resp. YA5) links the
directive L2 (resp. L4) and its propositional content I1 (resp. I2): not
all YA-nodes are assertive schemes.

The most interesting is the complex type of illocutionary force
which could be treated as intention of arguing and explaining. In the
AIF core ontology, the complex illocution is represented by the YA-
nodes between RA-nodes and TA-nodes [13]. In Fig. 1, there are two
such nodes: YA3 and YA6. According to the assumption made above,
YA3 corresponds to argumentation and YA6 to explanation. The il-
locution YA3 links Allen’s response to Beth’s challenge (i.e. TA2)
with the argument “The warehouses are valuable architecturally” for
the claim “The Evanston City Council should make it illegal to tear
down the citys old warehouses” (i.e. RA1). This captures the intu-
ition that Allen’s argumentation is invoked by Beth’s challenge. The
illocution YA6, however, links Allen’s response to Beth’s request for
information (i.e. TA4) with the explanation “The older buildings lend
the town its distinctive character” for the claim “The warehouses are

L1 Allen: The Evanston
City Council should make
it illegal to tear down the

city’s old warehouses

L2 Beth: What’s
the justification for
preserving them?

L3 Allen: The
warehouses are

valuable architecturally

L4 Beth: I don’t
understand. Why are

they so valuable?

L5 Allen: The older
buildings lend the town
its distinctive character

I1 The City Council
should make it illegal

to tear down the
city’s old warehouses

I2 The
warehouses are

valuable
architecturally

I3 The older buildings
lend the town its

distinctive character

TA1

TA4

TA3

TA2

RA1

RA2

YA1

YA2

YA4

ARG
YA3

YA5

YA7

EXP
YA6

Figure 1. The AIF core ontology description of the example from [22]

8

valuable architecturally” (i.e. RA2). This captures the intuition that
Allen’s explanation is invoked by Beth’s request for information.

Observe that we could represent argumentation and explanation as
YA4 and YA7, respectively. However, in such a representation they
are indistinguishable from simple assertion. Assigning argumenta-
tion and explanation to the TA- and RA-nodes captures the intuition
that they are social processes that emerge from the interaction be-
tween agents such that one agent responds to interlocutor’s request
for justification or explanation.

4 SCHEMES FOR ARGUMENTATION AND
EXPLANATION

Using the machinery of the AIF core ontology described in section 3,
we can distinguish between argumentation and explanation accord-
ing to the dialogical context in which they are used. This allows us
to combine argumentation and explanation in a principled way and
paves the way for complex reasoning where, for example, arguments
are used to justify explanations (cf. [3]) or explanation is used to
clarify parts of an argument (as is the case in the example in Fig. 1,
where the premise of the argument RA2 is explained).

The introduction of explanation into the AIF core ontology has
a profound effect on the patterns of reasoning that are included in
the ontology. Recall that the AIF core ontology is not only intended
as a conceptual model of (object-level) arguments and explanations
like the ones presented in section 3, but also as a repository of the
schemes or patterns arguments generally follow. To this end, the core
ontology also includes a so-called Forms Ontology, which contains
these schemes. So in the ontology, relations like inference, conflict,
transition and so on are treated as genera of a more abstract class of
schematic relationships, which allows the three types of relationship
to be treated in more or less the same way, which in turn greatly sim-
plifies the ontological machinery required for handling them. Thus,
inference schemes, conflict schemes and transition schemes in the
Forms Ontology embody the general principles expressing how it is
that q is inferable from p, p is in conflict with q, and p is answerable
with q, respectively. The individual RA-, CA- and PA-nodes that ful-
fil these schemes then capture the passage or the process of actually
inferring q from p, conflicting p with q and answering p with q, re-
spectively.

Inference schemes in the AIF ontology are similar to the rules of
inference in a logic, in that they express the general principles that
form the basis for actual inference. They can be deductive (e.g. the
inference rules of propositional logic) or defeasible (e.g. argumenta-
tion schemes). Take, for example, the inference scheme for Argument
from Expert Opinion [21]:

• premises: E is an expert in domain D, E asserts that P is true, P
is within D;

• conclusion: P is true;
• presumptions: E is a credible expert, P is based on evidence;

Now, AIF arguments fulfil these schemes in a similar way to how
inferences in logic instantiate inference schemes. For example, the
argument Peter says that the buildings are valuable architecturally
and Peter is an expert on architecture −→ RA3 −→ the buildings
are valuable architecturally would fulfil the scheme for argument
from expert opinion. Note that the presumption, that Peter is credible
and that his assertion is based on evidence, is not explicitly needed in
the argument that fulfils the scheme: the idea of presumptions is that
they can be assumed to hold unless proven otherwise. Thus, specific

(but still generalizable) knowledge can be modelled in the AIF in a
principled way using argumentation schemes, for which we can as-
sume, for example, a raft of implicit assumptions which may be taken
to hold and exceptions which may be taken not to hold. These argu-
mentation schemes then tell us how we can build valid and coherent
arguments.

4.1 Transition Schemes
An argumentative dialogue (i.e. argument2) has an (often implicit)
reply structure that contains the connections between the locutions in
a dialogue. In the language of the AIF core ontology, these connec-
tions are explicitly rendered as transitions or TA-nodes (section 3).
These transitions form the “glue” that keeps the locutions together
and makes a dialogue coherent. This is analogous to non-dialogical
argument, where logical (inference) connections (in the form of RA-
nodes) form the glue between the individual propositions. The exact
principles that make a dialogue coherent have been formulated and
studied in the literature on formal dialogue systems [8]. At the heart
of these systems are the dialogue protocols that describe a dialogue
games permitted locutions, how and when the dialogue starts and
ends and, perhaps most importantly, how locutions may be combined
into exchanges.

In [2], the authors discuss transition schemes (following earlier
work by Reed et al. [13]), schematic representations of a single tran-
sition in a dialogue. These transition schemes which can be instan-
tiated to form transitions (i.e. a step in a dialogue), and these transi-
tions can then be chained to form a dialogue. Note that the ontolog-
ical machinery at work here is (intentionally) very similar to that of
argumentation schemes, schematic representations of inference that
can be instantiated to form inferences, which can be chained to form
arguments. As an example of a transition scheme, consider the transi-
tion TA3 in Fig. 1, which is a particular instantiation of the following
general scheme.

• start locution: Assert P ;
• end locution: Request Explanation P

This scheme stands for the fact that assertions may be responded
to by requesting an explanation of the information that is asserted.
Another scheme is the one that is fulfilled by TA4, which says that
an explanation can be given if the other party requests it.

• start locution: Request Explanation P ;
• end locution: Explain P

Thus transition schemes can be used to enforce, for example, that
(as in the above scheme) an explanation may only be given when the
other party asks for it. As Bex and Reed [2] show, it is also possi-
ble to define presumptions for transition schemes. For example, we
might say that in order for someone to request an explanation af-
ter an assertion, the requesting party must somehow not understand
the assertion completely (recall that explanations are often aimed at
improving understanding). This can be incorporated into the above
assert – request explanation scheme as a presumption, which means
that the fact that the requester does not understand the assertion is im-
plicitly assumed. That is, the requester does not have to explicitly say
“I don’t understand” unless his understanding is actively challenged
(i.e. “Why are you asking for an explanation, I think you understand
perfectly!”).

Exactly which transition schemes are important and which condi-
tions on these schemes (in the form of presumptions) we need has

9

been discussed in [19], where pre- and postconditions for the use of
explanation are proposed. It remains to be investigated which types
of conditions would be appropriate for a combination of argumen-
tation and explanation. For example, one would only request an ar-
gument for some claim if there is doubt about this claim, and one
would only request an explanation about a claim if there is a lack
of understanding. Exactly how doubt or understanding should be de-
fined remains as of yet an open question.

4.2 Explanation Schemes

In addition to argumentation schemes, there has also been work on
what we call explanation schemes or scripts [14]. An explanation
scheme is a generic scenario, an abstract rendering of a sequence of
actions or events of a kind that is familiar to both the explainer and
the explainee based on their common knowledge of how things can
be normally expected to go in situations they are both familiar with.
For example, the restaurant-script [14] contains information about
the standard sequence(s) of events that take place when somebody
goes to dine in a restaurant. Similar to argumentation and transition
schemes, general explanation schemes can be instantiated by partic-
ular explanations and the scheme in a sense provides the conditions
for the explanation’s coherence (just as the argumentation scheme
tells us what a coherent argument is and a combination of transition
schemes tells us what a coherent dialogue is).

Take, for example, a man who enters a restaurant, orders some
soup and gets his soup from the waiter. A natural continuation of this
script would be that the man proceeds to eat his soup. If, for example,
the man would instead remove his pants and offer them to the waiter,
the story would be less coherent, because it does not seem to adhere
to the typical restaurant scheme. But if this story fits another expla-
nation scheme it can still be coherent. Suppose information is added
to the script that the waiter spilled the hot soup on the man’s legs.
This new information would fill out the story in such a way that it
hangs together as a coherent script about what happens when some-
one spills hot liquid on one’s clothes. An expanded version of the
story provides an explanation that helps the explainee to understand
what happened. The explanation may be causal, motivational, tele-
ological, or represent other kinds of explanations. We can represent
the sequence of actions and events in this kind of story at a higher
level of abstraction by fitting the script into an explanation scheme
as an instance of it.

While the use of explanation schemes in argumentation has been
explored recently [1], it is still unclear how they might be used in
dialogue. Furthermore, what is currently also lacking is a principled
exploration of different types of explanation schemes. Such explo-
rations have been performed for argumentation schemes (e.g. [21])
and recently also for transition schemes [2].

5 CONCLUSIONS

In the paper, we propose the basic framework (based on the AIF on-
tology) for representing the difference between argumentation and
explanation as a difference in illocutionary force (represented as YA-
nodes in the AIF ontology). Thus, we lay the basis for a principled
combination of argumentation and explanation not only as reason-
ing structures but also in the context of reasoning processes or dia-
logues. We further explore some of the ramifications of combining
argumentation and explanation, and how this combination is going
to influence future work on reasoning schemes or patterns.

ACKNOWLEDGEMENTS
We gratefully acknowledge the support of EPSRC under grant
EP/G060347/1 for Floris Bex, and the support from Polish Na-
tional Science Center for Katarzyna Budzynska under grant
2011/03/B/HS1/04559 and the support of the Social Sciences and
Humanities Research Council of Canada for Insight Grant 435-2012-
0101 for Douglas Walton.

REFERENCES
[1] F. Bex, T. Bench-Capon, and B.Verheij, ‘What makes a story plausible?

the need for precedents’, in Legal Knowledge and Information Systems.
JURIX 2011: The Twenty-Fourth Annual Conference, ed., K.D. Atkin-
son, pp. 23–32, (2011).

[2] F.J. Bex and C. Reed, ‘Dialogue templates for automatic argument
processing’, in Computational Models of Argument. Proceedings of
COMMA 2012, (2012). to appear.

[3] F.J. Bex, P.J. van Koppen, H. Prakken, and B. Verheij, ‘A hybrid formal
theory of arguments, stories and criminal evidence’, Artificial Intelli-
gence and Law, 2, 123–152, (2010).

[4] T. Bylander, D. Allemang, M. C. Tanner, and J. R. Josephson, ‘The
computational complexity of abduction’, Artificial Intelligence, 49, 25–
60, (1991).

[5] A. Cawsey, Explanation and Interaction: The Computer Generation of-
Explanatory Dialogues, MIT Press, Cambridge, MA, 1992.

[6] C.I. Chesñevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari,
M. South, G. Vreeswijk, and S. Willmott, ‘Towards an argument in-
terchange format’, The Knowledge Engineering Review, 21, 293–316,
(2006).

[7] J. Lawrence, F. Bex, M. Snaith, and C. Reed, ‘Aifdb: Infrastructure for
the argument web’, in Computational Models of Argument. Proceed-
ings of COMMA 2012, (2012). to appear.

[8] Peter Mcburney and Simon Parsons, ‘Dialogue Games for Agent Argu-
mentation’, in Argumentation in Artificial Intelligence, eds., Iyad Rah-
wan and Guillermo Simari, volume 22, 261–280, Springer, (2009).

[9] D. Poole, A. Mackworth, and R. Goebel, Computational Intelligence,
Oxford University Press, 1998.

[10] H. Prakken, ‘An abstract framework for argumentation with structured
arguments’, Argument and Computation, 1, 93–124, (2010).

[11] H. Prakken and G.A.W. Vreeswijk, ‘Logics for defeasible argumen-
tation’, in Handbook of Philosophical Logic, eds., D. Gabbay and
F. Günthner, volume 4, 219–318, Kluwer Academic Publishers, Dor-
drecht/Boston/London, second edn., (2002).

[12] I. Rahwan, F. Zablith, and C. Reed, ‘Laying the foundations for a world
wide argument web’, Artificial Intelligence, 171, 897–921, (2007).

[13] C.A. Reed, S. Wells, K. Budzynska, and J. Devereux, ‘Building argu-
ments with argumentation : the role of illocutionary force in computa-
tional models of argument’, in Proceedings of COMMA 2010, (2010).

[14] R. Schank, Explanations Patterns: Understanding Mechanically and
Creatively, Lawrence Erlbaum, Hillsdale, NJ, 1986.

[15] J. Searle, Speech Acts: An Essay in the Philosophy of Language, Cam-
bridge University Press, 1969.

[16] G. Tecuci, D. Marcu, M. Boicu, D.A. Schum, and Russell K., ‘Com-
putational theory and cognitive assistant for intelligence analysis’, in
Proceedings of the Sixth International Conference on Semantic Tech-
nologies for Intelligence, Defense, and Security, pp. 68–75, (2011).

[17] D. Walton, ‘What is reasoning? what is an argument?’, The Journal of
Philosophy, ((87)8), 399–419, (1990).

[18] D. Walton, ‘Epistemic and dialectical models of beggingthe question’,
Synthese, (152), 237–284, (2006).

[19] D. Walton, ‘Dialogical models of explanation’, in Papers from the 2007
AAAI Workshop, Association for the Advancement of Artificial Intel-
ligence Technical Report WS-07-06, pp. 1–9, Menlo Park, California,
(2007). AAAI Press.

[20] D. Walton and F.J. Bex, ‘Combining explanation and argumentation in
dialogue’, in Computational Models of Natural Argument - Prooceed-
ings of CMNA12. Springer, (2012). to appear.

[21] D.N. Walton, C.A. Reed, and F. Macagno, Argumentation Schemes,
Cambridge University Press, Cambridge, 2008.

10

Visualization of Intuitive Explanations using Koios++
Björn Forcher1, Nils Petersen2, Andreas Dengel3, Michael Gillmann4, Zeynep Tuncer5

Abstract. In a certain sense, explanations in computer science are
answers to questions and often an explanatory dialog is necessary to
support users of a software tool. In this paper, we introduce the con-
cept of intuitive explanations representing the first explanations in
an explanatory dialog. Based on an abstract approach of explanation
generation we present the generic explanation component Koios++
applying Semantic Technologies to derive intuitive explanations. We
illustrate our generation approach by means of the information ex-
traction system smartFIX and put a special emphasis on visualizing
explanations as semantic networks using a special layouting algo-
rithm. smartFIX itself is a product portfolio for knowledge-based ex-
traction of data from any document format. The system automatically
determines the document type and extracts all relevant data for the re-
spective business process. In this context, Koios++ is used to justify
extraction results.

1 Introduction

In a certain sense, explanations in computer science are answers to
questions [7] and often an explanatory dialog [1] is necessary to sup-
port users of a software tool. In this paper we introduce the concept
of intuitive explanations that can be illustrated by means of a daily
situation. Imagine, a nine year old child complains about dizziness
and visits the doctor for an examination. After the examination the
doctor concludes that the child suffers from the Mènière’s disease.
The child does not know this particular disease and asks the doctor
what it is. In other words, the child requests an explanation that helps
to understand what dizziness and Mènière’s disease have to do with
each other. Probably, the doctor will not elaborate on the Mènière’s
disease nor he will make use of foreign words. On the contrary, he
will roughly estimate the knowledge of the child and, based on that,
he will give a short explanation. For instance, Mènière’s disease is a
disease of the inner ear which causes, for instance, dizziness is an
understandable explanation, enabling the child to take up the given
information and ask further questions. In the figurative sense, intu-
itive explanations represent the first explanations in an explanatory
dialog in which the explainer tries to give an understandable expla-
nation based on a rough estimation of the knowledge of his counter-
part. The explanation enables the consumer of the explanation to ask
further questions leading to a complex explanatory dialog.

1 German Research Center for Artificial Intelligence (DFKI) GmbH, Ger-
many, email: bjoern.forcher@dfki.de

2 German Research Center for Artificial Intelligence (DFKI) GmbH, Ger-
many, email: nils.pertersen@dfki.de

3 German Research Center for Artificial Intelligence (DFKI)
GmbH,Germany, email: andreas.dengel@dfki.de

4 Insiders Technologies GmbH, Germany, email: m.gillmann@insiders-
technologies.de

5 John Deere European Technology Innovation Center, Germany,
email:TuncerZeynep@johndeere.com

In smartFIX documents are classified automatically on the basis of
free form and forms-analysis methods [5]. Relevant data is extracted
using different methods for each document type and is validated and
valuated via database matching and other sophisticated knowledge-
based methods. Due to mathematical and logical checks data quality
is enhanced. Data that is accurately recognized is released for direct
export. In contrast, unreliably recognized data is forwarded to a ver-
ification workplace for manual checking. In many cases, users have
no difficulties to extract information from a document. Consequently,
they often do not understand the difficulties of smartFIX during the
extraction process. Making the system more transparent, smartFIX
creates a semantic log that is used by the generic explanation com-
ponent Koios++ to justify extraction results. As explanations are an-
swers to questions, explanations represent some kind of information
that can be externalized by text or by charts. Currently, Koios++ uses
semantic networks along with a special layouting algorithm to visu-
alize explanations. We will point that this kind of visualization is a
useful alternative to textual explanations enabling intuitive explana-
tions and thus the start of an explanatory dialog.

This paper is structured as follows. The next section gives a short
overview about relevant research on explanations and describes an
abstract explanation generation approach. Sect. 3 presents the smart-
FIX system and motivates its explanation need by an intuitive ex-
ample. Sect. 4 presents the generic explanation component Koios++
whereas the following describes the explanation-aware layouting al-
gorithm. We conclude the paper with a brief summary and outlook.

2 Related Work

Wick and Thompson [12] developed the expert system REX, which
implements the concept of reconstructive explanations. REX trans-
forms a trace, a line of reasoning, into a plausible explanation story,
a line of explanation. The transformation is an active, complex
problem-solving process using additional domain knowledge. The
degree of coupling between the trace and the explanation is con-
trolled by a filter that can be set to one of four states regulating the
transparency of the filter. The more information of the trace is let
through the filter, the more closely the line of explanation follows
the line of reasoning. In this work, we describe how semantic tech-
nologies can be applied to (re-) construct explanations.

In [2] we described our conceptual work on explaining smartFIX.
In our explanation scenario (Fig. 1) we distinguish three main par-
ticipants: the user who is corresponding with the software system
via its user interface (UI), the originator, the tool that provides the
functionality for the original task of the software and the explainer.
Originator (smartFIX) and explainer (Prof. Smart) need to be cou-
pled in order to provide the necessary knowledge about the inner
workings of the originator for the explainer. In (rule-based) expert
systems looking at the rule trace was the only way of accessing the

11

originator’s actions. Given that the inference mechanism is fixed in
those systems the trace was all the explainer needed.

Figure 1. Explanation Generation [2].

The mentioned scenario implies that the originator has to provide
detailed information about its behavior and solutions. Therefore it
is necessary that the originator prepares some kind of log represent-
ing the initial starting point for the explainer to generate explana-
tions. Regarding user questions, this information is step-by-step be-
ing transformed into an adequate explanation. Thus, a multi-layered
explanation model is constructed, whereas each step contributes a
layer to the model, i. e., the transformation result.

Depending on the coupling, originator and explainer share infor-
mation that is required for problem solving and for explanation gen-
eration as well. In Fig. 1, this information is contained in the expla-
nation knowledge base (EKB). The originator may have access to
information which is hidden from the explainer and vice versa. At
least, they have to share the semantic log. As its name implies, the
logging process collects all information with respect to the behavior
of the originator for building the log.

Users communicate their explanation needs by keywords or in nat-
ural language. As the formal language of originator and explainer is
often completely different from the user’s language an interpretation
process is necessary. In simplified terms, relevant parts of the seman-
tic log and EKB must be identified and the exact explanation needs of
the user must be determined. The result of the interpretation process
is called translation layer.

The translation layer does not necessarily represent adequate ex-
planation information. Until this stage, the explainer is only aware of
the users’ explanation problem concerning, for instance, an incom-
prehensible result of the originator. However, the information that
solves the users’ explanation problem completely has not been de-
rived. This is the task of construction process which is similar to the
concept of reconstructive explanations. The result of that process is
called content layer representing useful explanation information. As
understandability is a very important aspect of explanation [10, 11],
explanations should not contain too much or too confusing informa-
tion. Furthermore, it takes up the knowledge of the user and reveals
a connection between known and unknown information enabling the
user to ask follow-up questions.

Explanation is information that is communicated by text, charts,
tables, etc. Each communication form has different application pos-
sibilities in an explanation scenario. Text can describe complicated
conceptions whereas charts can reveal qualitative connections be-
tween concepts in a simple way [13]. The externalization process
transforms the content layer into a formal description for communi-
cating explanations, namely the externalization layer. In this work,
we put a special emphasis on semantic networks based on mathemat-

ical graphs for depicting explanations.
However, this layer does not include layout and style information.

This is task of the presentation process which transforms the content
of the externalization layer into the presentation layer. The informa-
tion of the last mentioned layer can be used by special renderer to
visualize the explanation. As explained, the presentation process and
the layouting of the semantic network is the main contribution of this
work. We will show how the layout can contribute to intuitive expla-
nations and the explanatory dialog.

The explainer creates some kind of meta log that is indicated
by the arrow between EKB and explainer. In a way, the explainer
is aware of single transformation processes and layers and thus, it
knows how it explains a certain explanation problem. This knowl-
edge is essential to continue the explanatory dialog and offers so-
phisticated interaction possibilities.

So far, we described an abstract method to generate explanations.
In the next chapters we describe a realization of that method with the
help of Semantic Technologies.

3 smartFIX

smartFIX extracts data from paper documents as well as from many
electronic document formats (e.g., faxes, e-mails, MS Office, PDF,
HTML, XML, etc.). Regardless of document format and structure,
smartFIX recognizes the document type and any other important in-
formation during processing.

Basic image processing such as binarization, despeckling, rotation
and skew correction is performed on each page image. If desired,
smartFIX automatically merges individual pages into documents and
creates processes from individual documents. For each document, the
document class and thus the business process to be triggered in the
company is implicitly determined. smartFIX subsequently identifies
all relevant data contained in the documents and related to the respec-
tive business process. In this step, smartFIX can use customer rela-
tion and enterprise resource planning data (ERP data) provided by
a matching database to increase the detection rate. A special search
strategy searches for all entries from the customer’s vendor database
on the document. The procedure works independently of the location,
layout and completeness of the data on the document. Within smart-
FIX this strategy is called “Top Down Search”. Moreover, smartFIX
provides self-teaching mechanisms as a highly successful method for
increasing recognition rates. Both general and sender-specific rules
are applied. An automatic quality check is then performed on all rec-
ognized values. Beside others, Constraint Solving [4] and Transfer
Learning methods [8] are used. Values that are accurately and un-
ambiguously recognized are released for direct export; uncertain [9]
values are forwarded to a verification workplace for manual checking
and verification. The quality-controlled data is then exported to the
desired downstream systems, e.g., an enterprise resource planning
system like SAP for further processing. An overview of the system
architecture is also presented in [2].

Let us illustrate exemplary an actual scenario that currently results
in support calls and internal research and clarification effort by ex-
perts.

Often, several subcompanies of the same trust are resident at the
same location or even in the same building. If one smartFIX system
has to analyze, for instance, invoices of more than one of those com-
panies, very similar database entries can be found in the customer’s
master database.

The company’s master data is an important knowledge source used
by Top Down Search during the analysis step of smartFIX. When

12

smartFIX analyzes an invoice sent to such a subcompany it may be
unable to identify a clear and unambiguous extraction result due to
the high degree of similarity of the master data entries. So, smartFIX
has to regard all the subcompanies as possible hits.

smartFIX extracts the most reliable result based on extraction
rules. Here, it does not valuate that result as reliable but as a sug-
gestion [9]. Fig. 2 presents a look into the smartFIX Verifier in that
case. You see that the recipient’s name and identifier are correctly
extracted but the values are marked blue which means “uncertain” in
the smartFIX context.

Figure 2. Analysis results presented in smartFIX Verifier

With this picture on screen, the user wonders why the system asks
for interaction (here, for pressing the Return key to confirm the cor-
rect extraction results) although she can clearly and easily read the
full recipient’s address on the invoice. This scenario holds, too, and
becomes more intransparent the more extraction rules and sophisti-
cated extraction and valuation methods come into operation.

smartFIX creates a semantic log that is based on the smartFIX
Ontology (SMART) that is an extension of the OWL-S ontology6

and the EXACT ontology as well. OWL-S provides a set of repre-
sentation primitives capable of describing features and capabilities
of Web services in unambiguous, machine-interpretable form. This
includes, among other things, the possibility to describe how the ser-
vice works. OWL-S comprises general constructs to represent pro-
cesses, results and intermediate results. The EXACT ontology pro-
vides representational constructs to describe the explanation gener-
ation approach including primitives for semantic networks (nodes,
edges, ...), layouting (cell-layout, box-layout, ...) and presentation
(fonts, ...). The SMART ontology integrates both ontologies regard-
ing smartFIX specific aspects. This allows not only describing the
behavior of smartFIX in an abstract way, but also to instantiate a
concrete log with respect to the Semantic Logging step as presented
in section 2.

4 Explanation Component Koios++
In this section we present an implementation of the abstract explana-
tion generation method as presented in section 2 by means of Seman-
tic Technologies. As mentioned before, smartFIX creates a semantic
log that is encoded with the SMART ontology. A specific log is lever-
aged by the generic explanation component Koios++ and thus, it is
starting point for the generation processes Interpretation, Construc-
tion, Externalization und Presentation. The semantic log represents

6 http://www.w3.org/Submission/OWL-S/

an RDF-Graph which is stepwise transformed into the RDF-Graph
of the presentation layer.

At its core, Koios++ represents a semantic search engine that en-
ables keyword-based search on graph-shaped RDF data [6]. In ad-
dition, it includes various manipulation strategies with which any
RDF-Graph can be transformed into another RDF-Graph. For in-
stance, Koios++ employs the Quadruple Prolog Language (QPL) [3]
to transform an RDF-Graph into another one by means of set of pre-
defined Prolog rules. As a consequence, Koios++ offers all prereq-
uisites to realize the abstract explanation generation method as pre-
sented in chapter 2. In this section, we describe how Koios++ is used
to explain the smartFIX system in order to justify extraction results.

For interpreting the user’s explanation needs the semantic search
algorithm of KOIOS++ is applied, realizing a keyword-based search
on the semantic log. The search engine maps keywords to elements
of the log and searches for connections between them. More pre-
cisely, every keyword k1 to kz is mapped to a set of mapping ele-
ments m1 to mz . The mapping element sets were distributed to the
threads t1 to tz and in each thread tg a graph exploration is per-
formed for each mapping element egu ∈ mg and thus, many paths
were determined starting from egu . In case there is a log element r
that is reached by any path in each thread a connecting subgraph of
the log can be constructed consisting of z paths. To conclude, the
engine determines a set of subgraphs representing basic explanation
information including an articulation point r that is called root or
connecting element. Regarding the example as presented in Sect. 3
a user may use the keywords analyser, recipient and uncertain re-
sult in order to find out why the recipient is not identified correctly.
A subgraph that connects the corresponding elements represents the
basic information to understand why the result is unreliable. In gen-
eral, users do not use the same keywords to specify their explanation
need depending on the user’s level of expertise. For that reason, we
enrich the SMART ontology with synonyms taken from the WordNet
thesaurus7. As a result, users can also use unsure result instead of un-
certain result. However, keywords generally map on several elements
of the log. Hence, subgraphs are ranked depending on the weighting
of the graph elements representing possible explanation alternatives.

As explained above, the Interpretation step determines an extract
of the log. Potentially, this extract is still not understandable for non-
expert smartFIX users. After initially experimenting with explana-
tions of smartFIX it turned out that the extract of the log contains
too much information. Primarily, the log includes a long sequence of
subprocess which contradicts the concept of intuitive explanations.
For that reason, we focused in particular on shortening the deter-
mined extract of the log. For shortening we defined several QPL rules
that leverage the transitivity characteristic of the subprocess relation
that do not affect the truth content of the explanation. Hence, the
construction process transforms the log extract into a smaller RDF-
Graph. Apart from that, connecting or mapping elements are never
removed and there is always a connection between all mapping el-
ements. Actually, this is the content of the explanation that must be
visualized only that is described in the next chapter.

Fig. 4 is an extract of the construction layer regarding the example
as described in section 3. It contains the information, that process
root process has a subprocess called top down search.

5 Explanation-Aware Graph-Layouting
As explained, the construction process returns the informational con-
tent of the explanation that must be externalized. We decided to use
7 http://wordnet.princeton.edu/

13

Figure 3. Extract of the construction layer

semantic networks that have three reasons. First, semantic networks
are understandable alternative to textual information enabling a fast
recognition of qualitative connections. Second, RDF-Graphs can be
easily transformed into semantic networks and third, they enable var-
ious interaction possibilities and hence, the continuation of the ex-
planatory dialog.

In linguistics, an entity of the real world is characterized by three
components, namely label, connections to other entities and a com-
plex pattern of perceptual origin. The label is used to communicate
the entity in natural language and in many cases the entity is per-
ceived visually. As described above, the construction layer contains
only informational content of the explanation and thus, it includes la-
bels but no visual information. Images, for instance, make sense in a
semantic network but not in a pure textual explanation. For that rea-
son, the construction layer includes class relations that can be used in
texts to characterize instances more precisely, for example, top down
research process. Regarding semantic networks it is possible to use
both, labels and symbols to characterize an entity. If an instance can-
not be associated with an individual symbol, it is may be possible
to characterize the instance with a class symbol, for example, a gear
symbol to represent the class owls:Process. The transformation of
the construction layer is illustrated in Fig. 4. The figure shows the
root process smart:Instance1 of Fig. 3 is transformed into node of
the semantic network which is the source of an edge and which has a
label and a symbol. It should be noted, that mapping and connecting
elements of the interpretation layer correspond to mapping and con-
necting nodes in the externalization layer. The connecting node of a
subgraph is still an articulation point where all paths starting from
the mapping nodes meat.

Figure 4. Extract of the externalization layer

The externalization layer describes the information paradigm that
is used to communicate the explanation content. It does not provide
information about the design of the semantic network nodes or the lo-
cation of nodes on the drawing area (graph layout). This information
is added in the presentation process. The layout of the semantic net-
work influences the progress of the dialog and the understandability
of explanation itself. In context of a keyword-based search, there are
four requirements of layouting the intuitive explanation. First, it must
be clear which keywords are mapped to elements of the log. Second,
it must also be clear what the root or connecting element is. Third,
the semantic network must not contain overlaps of edges. Finally, it
must be possible to fade-in supporting nodes with respect to the third
point. Fig. 5 visualizes a rendered intuitive explanation. The map-
ping elements are located at the very top of chart and are arranged
at random. The connecting element can be found in the center at the
bottom of the chart. The other nodes are positioned in such a way
that no node is directly under or above another node. The remaining
place can be used to fade-in supporting nodes under the base nodes
without hiding information. Here, the mouse-over events can be used.
In Fig. 5 the node labeled with unsure result may be extended with
the information corresponding field in the verifier is colored blue.
Furthermore, mouse-click events on nodes represent a suitable mean
to continue the explanatory dialog. Currently, these kind of events
center the corresponding node in the explanation panel showing a se-
lection of connections to other nodes. This represents some kind of
conceptual explanations and thus, they give an answer to What is the
meaning of...

Figure 5. Visualization with explanation-aware layout

For realizing the described layout we divide the explanation panel
into a matrix of cells of equal size and assign each node exactly one
cell - similar to the Java CellLayout. After the assignment a check
is performed whether there are overlaps of edges. If that is true the
procedure starts again whereas a new random order of the mapping
elements is calculated. After a certain number of iterations the entire
process stops and the last assignment is used for layouting the nodes.
The number of cells in both, horizontal and vertical direction depends
on the number of paths between mapping and connecting nodes and
the maximum number of nodes in a path. The entire procedure is de-
scribed in Alg. 1. The input for the procedure is the connecting node
r and the paths of the connecting subgraph p1 to pv . Here, the path
length is equal to the number of nodes in the path and is denoted with
l1, to lv . The variables row and col represent the number of rows

14

and columns of the matrix, nab is node number b in path number a,
cab(x, y) represents a cell assignment for nab located at column x
and row y, cr(a, b) belongs to r, c(d,k) is any cell, and finally CA
contains all cell assignments.

Algorithm 1 Assigning cells to network nodes
col := 0
CA = ∅
colIndex := −1
rowIndex := −1
anyIndex := −1
forward := true
col := max(l0 . . . lv)
row := ((col − 1) ∗ v) + 1
rowRoot := row − 1
if (t mod 2) == 0 then

colRoot := (cols− 1)/2
else

colRoot := ((v + 1) ∗ (row − 1))/2
end if
add cr(colRoot, rowRoot) to CA
for i = 0 to (v-1) do

for all j such that 0 ≤ j < (row − 1) do
if j < v then

node := nji

else
node := null

end if
rowIndex := rowIndex+ 1
if forward is true then

colIndex := colIndex+ 1
anyIndex := colIndex

else
anyIndex := anyIndex− 1

end if
if node != null and c(anyIndex, rowIndex) 6∈ CA then

add cji(anyIndex, rowIndex) to CA
end if
if (colIndex + 1) == rowRoot then

forward := false
colInde := colIndex + 1
exit from most inner loop

end if
end for
rowIndex := −1
anyIndex := colIndex+ row

end for

The information about the layout, cells and corresponding nodes
is content of the presentation layer. That means, in the end we have
detailed description of the intuitive explanation that can be rendered
by the explanation renderer that is part of the user interface. At this
point we do not provide further details about the presentation layer,
for example, fonts of the labels or layout of the nodes because this
would exceed the scope of this work.

6 Conclusion and Outline
In this paper, we presented the generic explanation component
KOIOS++ that realizes an abstract approach for intuitive explana-
tion generation based on Semantic Technologies. In addition, we de-

scribed a representative explanation problem in the information ex-
traction system smartFIX and illustrated how intuitive explanations
can be used to justify extraction results in order to make the system
more transparent for users. Currently, intuitive explanations are vi-
sualized as semantic networks whereas a special layouting algorithm
is used to arrange network nodes clearly and to enable suitable start
for an explanatory dialog, for example, the mouse over triggers the
fade-in of supporting network nodes.

In a future version of smartFIX the explanation component will
not only be able to justify extraction results but also to give practical
hints to avoid low quality extraction results. In addition, we provide
further forms of explanation externalization, for instance, semantic
networks combined with text.

ACKNOWLEDGEMENTS
This work was funded by the German Federal Ministry of Educa-
tion and Research (BMBF) in the EMERGENT project under grant
number 01IC10S01.

REFERENCES
[1] G. Du, M. Richter, and G.Ruhe, ‘An explanation oriented dialogue ap-

proach and its application to wicked planning problems’, Computers
and Artificial Intelligence, 25(2-3), (2006).

[2] B. Forcher, S. Agne, A. Dengel, M.Gillmann, and T. Roth-Berghofer,
‘Towards understandable explanations for document analysis systems’,
in Proceedings of 10th IAPR International Workshop on Document
Analysis Systems, (2012).

[3] B. Forcher, M. Sintek, T. Roth-Berghofer, and A. Dengel, ‘Explanation-
aware system design of the semantic search engine koios’, in Proceed-
ings of the ECAI-10 workshop on Explanation-aware Computing (Ex-
ACt 2010), (2010).

[4] Andreas Fordan, ‘Constraint solving over ocr graphs’, in Proceedings
of the Applications of prolog 14th international conference on Web
knowledge management and decision support, INAP’01, pp. 205–216,
Berlin, Heidelberg, (2003). Springer-Verlag.

[5] B. Klein, A. Dengel, and A. Fordan, ‘smartfix: An adaptive system
for document analysis and understanding’, in Reading and Learning
-Adaptive Content Recognition, eds., Andreas Dengel, Markus Junker,
and A. Weisbecker, 166–186, Springer Publ., (3 2004). LNCS 2956.

[6] M. Liwicki, B. Forcher, P. Jaeger, and A. Dengel, ‘Koios++: A query-
answering system for handwritten input’, in Proceedings of 10th IAPR
International Workshop on Document Analysis Systems, (2012).

[7] Thomas R. Roth-Berghofer and Michael M. Richter, ‘On explanation’,
Künstliche Intelligenz, 22(2), 5–7, (May 2008).

[8] F. Schulz, M. Ebbecke, M. Gillmann, B. Adrian, S. Agne, and A. Den-
gel, ‘Seizing the treasure: Transferring layout knowledge in invoice
analysis’, in ICDAR-09, July 26-29, Barcelona, Spain, pp. 848–852.
IEEE, Heidelberg, (2009).

[9] B. Seidler, M. Ebbecke, and M. Gillmann, ‘smartFIX Statistics – To-
wards Systematic Document Analysis Performance Evaluation and Op-
timization’, in Proceedings of the 9th IAPR International Workshop on
Document Analysis Systems (DAS), Boston, MA, USA, (2010).

[10] W. R. Swartout and S. W. Smoliar, ‘Explanation: A source of guidance
for knowledge representation’, in Knowledge Representation and Or-
ganization in Machine Learning, ed., K. Morik, 1–16, Springer, Berlin,
Heidelberg, (1989).

[11] William R. Swartout, Cécile Paris, and Johanna D. Moore, ‘Explana-
tions in knowledge systems: Design for explainable expert systems’,
IEEE Expert, 6(3), 58–64, (1991).

[12] Michael R. Wick and William B. Thompson, ‘Reconstructive expert
system explanation’, Artif. Intell., 54(1-2), 33–70, (1992).

[13] Patricia Wright and Fraser Reid, ‘Written information: Some alterna-
tives to prose for expressing the outcomes of complex contingencies’,
Journal of Applied Psychology, 57 (2), 160–166, (1973).

15

A Brief Review of Explanation in the Semantic Web
Rakebul Hasan1 and Fabien Gandon2

Abstract. Semantic Web applications use interconnected dis-
tributed data and inferential capabilities to compute their results. The
users of Semantic Web applications might find it difficult to under-
stand how a result is produced or how a new piece of information
is derived in the process. Explanation enables users to understand
the process of obtaining results. Explanation adds transparency to
the process of obtaining results and enables user trust in the process.
The concept of providing explanation was first introduced in expert
systems and later studied in different application areas. This paper
provides a brief review of existing research on explanation in the Se-
mantic Web.

1 INTRODUCTION

Semantic Web applications use interconnected distributed data and
inferential capabilities to compute their results. A user might not
be able to understand how a Semantic Web application has solved
a given query deriving new information and integrating information
from data sources across the Web, and therefore the user might not
trust the result of such a query. Semantic Web applications should
provide explanations about how they obtain results in order to ensure
their effectiveness and increase their user acceptance [21]. Semantic
Web applications should not only provide explanations about how
the answers were obtained, they should also explain and allow users
to follow the flows of information between them [20].

Expert systems were among the first software systems to include
explanation facilities [13, 22, 28]. Explanation facilities in expert
systems have evolved from reasoning trace oriented explanations,
primarily useful for developers and knowledge engineers, to more
user oriented interactive explanations justifying why a system be-
havior is correct, to casual explanations generated in a decoupled
way from the line of reasoning. The realization of the explanation
facilities in expert systems were motivated by enabling transparency
in problem solving, imparting an understanding of why and how a
given conclusion was reached, and hence enabling trust on the rea-
soning capabilities of expert systems. These developments motivated
adaptation and development of explanation facilities in other fields
such as machine learning [10, 27], case-based reasoning [8, 26], rec-
ommender systems [29], and Semantic Web.

In this paper, we provide a brief review of the existing approaches
to explanation in the Semantic Web. Our selection criterion for the
reviewed works was Semantic Web applications and publications
which have contribution in explanation. We have used the keyword
search feature in Google Scholar3 and also its Cited by feature for the
relevant publications for discovering more publications. In addition,

1 INRIA Sophia Antipolis –Wimmics, France, email: hasan.rakebul@inria.fr
2 INRIA Sophia Antipolis – Wimmics, France, email: fabien.gandon@inria.fr
3 http://scholar.google.com/

we have examined all the previous publications of the Explanation-
aware Computing workshop series. We have also examined the pre-
vious publications of the International Semantic Web Conference se-
ries. We selected a given work if it is in the domain of the Semantic
Web and it has contribution in the field of explanation. Our objec-
tive was to extract and analyze the important aspects of explanation-
aware Semantic Web systems from these reviewed research, and fi-
nally to provide our perspective on these aspects. A detailed version
of this paper can be found in the research report in [11].

The paper is organized as follows. In Section 2, we present the re-
quirements and the design principles of explanation-aware Semantic
Web applications. In Section 3, we provide an overview of differ-
ent approaches to represent the metadata which enable support for
reasoning and provenance information. In Section 4, we provide an
overview of different approaches for generation and presentation of
explanations. In Section 5, we focus our discussion on the important
aspects of explanation approaches in the Semantic Web. In Section 6,
we conclude the paper.

2 DESIGNING EXPLANATION-AWARE
SEMANTIC WEB APPLICATIONS

McGuinnesset al. [20] discuss the requirements for Semantic Web
applications form an explanation perspective. The paradigm shift in-
troduced by the Semantic Web applications, from answering queries
by retrieving explicitly stored information to using inferential capa-
bilities, generates new requirements to ensure their effective use:“ap-
plications must provide explanation capabilities showing how results
were obtained”. McGuinnesset al. characterize collaboration, auton-
omy, and the use of ontologies as the important features of Semantic
Web applications from an explanation perspective. Given these fea-
tures, different types of explanations, machine and human consump-
tion of explanations, and trust are the important criteria of Semantic
Web applications.

In [21], McGuinnesset al. present requirements for distributed
and portable justifications, and subsequently present justifications as
user-friendly explanations. An explanation infrastructure should sup-
port knowledge provenance to allow users to understand the source
information used in reasoning processes and hence enable user trust
on background reasoners. Support for reasoning information should
be also provided to enable users to understand what steps have
been performed by reasoners. An explanation infrastructure should
support generating human understandable explanation. Explanations
should be presented with different degrees of detail taking into ac-
count the users’ expertise and problem context.

Forcher et al. present the explanation-aware system design
(EASD) principles in [9]. The EASD principles concern two key
aspects, namely the development and the runtime of a system. The
integration of explanation capabilities in a system during its devel-

16

opment should not be too complicated and should not effect system
performance and efficiency. Concerning the runtime aspect, the sys-
tem must be aware of the explanation scenario and must be able pro-
vide explanation accordingly during its runtime. Forcheret al. com-
plement the EASD principles with an abstract architecture of a multi-
layered explanation model considering the main participants in any
explanation scenario.

3 METADTA FOR EXPLANATION

Different approaches use different kinds of metadata for generat-
ing explanations in the context of Semantic Web. McGuinnesset
al. [19] describe explanation as “Semantic Web metadata about how
results were obtained”. Provenance metadata concerning information
sources such as how, when, and from whom any given piece of data
is obtained is an important aspect of explanation metadata. Explana-
tions with detailed provenance information provide additional con-
text and enable users to verify a given source of information. Meta-
data representing information manipulation steps and their depen-
dencies are commonly known as justifications. Justifications facili-
tate rich explanation of how a conclusion was drawn. Trust related
metadata is another useful aspect which enables providing explana-
tion with integrated trust information.

In [25], McGuinnesset al. present an explanation interlingua
called Proof Markup Language (PML)4 to represent explanation
metadata. PML consists of three OWL ontologies. The PML prove-
nance ontology (PML-P) provides primitives for representing real
world things (e.g. information, documents, people) and their proper-
ties (e.g. name, creation date-time, description, owners and authors).
The PML justification ontology (PML-J) provides primitives for en-
coding justifications for derivations of conclusions. A justification
can be a logical reasoning step, or any kind of computation process,
or a factual assertion or assumption. The PML trust ontology (PML-
T) provides primitives for representing trust assertions concerning
sources and belief assertions concerning information.

The authors in [24] introduce a restricted subset of PML constructs
and tools for encoding very basic justifications and performing tasks
such as retrieval and browsing of provenance information. The au-
thors present strategies for lightweight use of PML and for simplify-
ing encoding using PML. PML-Lite5 is another variant of PML. It is
envisioned to construct a simple subset of three PML modules. PML-
Lite takes an event based modeling approach. It provides primitives
to represent provenance of data flows and data manipulations.

The AIR (AccountabilityIn RDF) [16] rule language uses the AIR
Justification Ontology (AIRJ) to represent justifications produced by
the AIR reasoner. AIRJ extends the PML-Lite event-based approach.
The reasoning steps of AIR reasoner are interpreted as events. AIRJ
provides primitives to represent the different events and the opera-
tions performed by the AIR reasoner.

4 GENERATION AND PRESENTATION OF
EXPLANATION

As discussed in explanation requirements, what types of explana-
tions are generated and how they are presented to users are important
criteria for success of explanation-aware systems.

OntoNova [2] is an ontology-based question answering system in
chemistry domain. OntoNova provides explanations in natural lan-
guage with its answers. It generates answer justifications in a meta-

4 http://tw.rpi.edu/portal/ProofMarkup Language
5 http://tw.rpi.edu/web/project/TAMI/PML-Lite

inferencing step.The OntoNova inference engine produces log files
which represent proof trees for answers. These files are given as an
input to a second meta-inference step. This second meta-inference
step explains the proof trees in natural language with the description
of how answers were derived. OntoNova allows specifying meta-
inference rules for the original rules for question answering. The
two step method for providing explanation has advantages such as:
(i) provision of additional information with explanations when proof
trees do not contain enough information, (ii) filter explanation paths
in case of redundancies for same results, (iii) provision of explana-
tion with different degrees of detail, (iv) provision of personalized
explanation for different contexts.

Inference Web [19, 20, 21] is an explanation infrastructure which
addresses explanation requirements of web services discovery, pol-
icy engines, first order logic theorem provers, task execution, and text
analytics. Information manipulation traces of these various kinds of
systems are encoded as PML proofs. Inference Web provides a set
of software tools and services for building, presenting, maintaining,
and manipulating PML proofs. The IWBase component of Inference
Web provides an interconnected network of distribute repositories of
explanation related meta information. IWBase provides a registry-
based solution for publishing and accessing information. Content
publishers can register metadata and other supporting information
such as inference rules, and inference engines. IWBase provides ser-
vices to populate PML proofs. IWBase exposes the populated meta-
data as PML documents and provides browsing interfaces to ac-
cess them. These PML documents can be also accessed by resolving
their URI references. The IWSearch component of Inference Web
searches for PML documents on the Web and maintains an inventory
of these documents. Users can then search for PML documents us-
ing different search interfaces offered by IWSearch. Inference Web
provides a browser called IWBrowser which can display PML proofs
and explanations in number of different formats and styles. The rich
presentations include a directed acyclic graph (DAG) view known
as global view, a focused view enabling step-by-step navigation be-
tween related explanations, a filtered view to show selected parts of
an explanation, an abstraction view which shows abstract views of
explanations with different degrees of detail, and finally a discourse
view which allows follow-up questions. The IWAbstractor compo-
nent of Inference Web allows users to write abstraction patterns for
PML proofs. It matches these patterns against PML proofs to provide
an abstract view. Inference Web includes a general trust infrastruc-
ture called IWTrust which provides explanations with trust related
information and allows filtering out unreliable information. IWTrust
includes representation of trust aspects and trust computation ser-
vices. In addition, it provides a browser with trust view to render
the trust annotation. In the trust view, different fragments of a page
are rendered in different colors depending on the trustworthiness of
them. This allows users to have an understanding of the trustworthi-
ness of rendered information just by looking at a rendered page.

TheWIQA - Web Information Quality Assessment Framework [6]
provides functionalities for quality-based information filtering. The
WIQA framework allows to employ different policies for informa-
tion filtering. These policies combine content-based, context-based,
and rating-based quality assessment metrics. An information con-
sumer’s understanding of the employed quality assessment metrics is
a major factor that influence whether the information consumer trust
or distrust any quality assessment result. The WIQA framework pro-
vides detailed explanation of information filtering process for sup-
porting information consumers in their trust decisions. It is able to
provide explanation of why a given piece of information satisfies a

17

given WIQA-PL policy. It provides explanations in natural language
for human consumption andexplanations in RDF for further pro-
cessing by software applications. The explanation generation process
contains two steps. First, WIQA generates the parts of explanations
of why constraints expressed as graph patterns are satisfied. These
different parts of explanations are generated using a template mech-
anism. In the second step, these explanation parts are supplemented
with additional explanations of why constraints expressed as exten-
sion functions are satisfied. In the RDF-based explanations, WIQA
describes the explanation trees (parts and subparts of an explanation)
using the Explanation (EXPL) Vocabulary6.

The authors in [3, 4] present a nonmonotonic rule system based on
defeasible logic which is able to answer queries and provide proof ex-
planations. Defeasible logic enables reasoning with incomplete and
inconsistent information. The traces of the underlying logic engine
are transformed to defeasible logic proofs. The authors introduce
an extension to RuleML7, a unifying family of Web rule languages,
to enable formal representation of explanations of defeasible logic
reasoning. Software agents can consume and verify these proofs de-
scribed using the RuleML extension. In addition, the authors present
graphical user interfaces to visualize the proofs and interact with
them. Finally, the authors present an agent interface to enable multi-
agent systems to interact with their system.

Horridgeet al. present two fine-grained subclasses of justifications
called laconic justifications and precise justifications [15]. Laconic
justifications consists of axioms that contain no superfluous part. Pre-
cise justifications are derived from laconic justifications. Each ax-
ioms of a precise justification represents a minimal part of the justifi-
cation. The authors also present an optimized algorithm to compute
laconic justifications showing the feasibility of computing laconic
justifications and precise justifications in practice. The authors pro-
vide a Prot́eǵe ontology editor8 plugin as a tool to compute these
types of justifications9. This tool shows justification-based explana-
tions of entailments. A user can select an entailment from a list of
provided entailments and the tool shows the justification-based ex-
planation for the selected entailment.

Kotowski and Bry [18] argue that explanation complements the
incremental development of knowledge bases in frequently chang-
ing wiki environments. The authors present a semantic wiki called
KiWi 10 which takes a rule-based inconsistency tolerant reasoning ap-
proach that has the capability of explaining how a given piece of in-
formation was derived. The reasoning approach also allows knowl-
edge base updates in an efficient way by using reason maintenance.
The authors argue that providing explanation is important for sup-
porting users’ trust and facilitates determining main causes of incon-
sistencies. KiWi stores the justifications of all the derivations and
uses them for providing explanations and also for reason mainte-
nance. KiWi presents explanations as natural language explanations
and as tree-based explanations highlighting the derivation paths.

Forcheret al. [9] describe the realization of the EASD approach in
a semantic search engine called KOIOS. The KOIOS semantic search
engine allows keyword-based search on RDF data. The KOIOS
search engine first computes a set of relevant SPARQL queries from
a set of given keywords. Users then select the appropriate queries
to query a triple store containing RDF data. The search results are
provided with explanations about how they are computed. The ex-

6 http://www4.wiwiss.fu-berlin.de/bizer/triqlp/
7 http://ruleml.org
8 http://protege.stanford.edu/
9 http://owl.cs.manchester.ac.uk/explanation/
10 http://www.kiwi-project.eu/

planations justify how keywords are mapped to concepts and how
concepts are connected. In addition, the explanations interpret the
performed queries in an understandable way. The authors introduce
a set of ontologies to formally describe the content of explanations
provided by KOIOS. The KOIOS Process Language (KPL) is used
to describe the behavior of the problem solving process. The Math-
ematical Graph Language (MGL) is used to realize the graph based
view of the process model. Finally, another ontology called VGL is
used for visualizing graph based information. In addition, KOIOS
includes a set of rules to transform a certain model described in
RDF. The trace model is described in RDF and transformed step-by-
step to a presentation model using a set of rules to provide different
views of explanations. KOIOS provides graphical explanations for
keyword-based search with graphical representation of correspond-
ing SPARQL queries and the results of the query. Users can also get a
textual explanation of any concept from the graphical representation
by clicking on any concept. KOIOS also provides justification-based
graphical explanation of search keyword to concept type mapping.

The AIR rule language [16] supports generation of machine con-
sumable explanations. The AIR reasoner annotates all of its per-
formed actions and the dependencies between these actions. These
annotations are recursively converted to AIR justifications. To gen-
erate natural language explanation, rule authors can specify a natural
language description in the definition of a rule itself which can con-
tain variables. These variable values are replaced with the current
value during the reasoning process. AIR also provide a feature to
declaratively modify justifications. This allows the degrees of detail
in AIR justifications to be selectively controlled. The authors of AIR
suggest registering AIR with the Inference Web infrastructure and
use their toolkit to provide explanations for human consumption.

5 DISCUSSION AND PERSPECTIVE

The research we have reviewed exposes several dimensions of expla-
nation in the context of the Semantic Web:

Infrastructure: With the increasing growth of sharing Semantic
Web data as part of the Linked Data [5] initiatives, it is important
that data publishers can publish their data with explanation related
metadata with ease. Explanation infrastructures should be able to ac-
commodate common data publishing principles. Semantic Web ex-
planation infrastructures should also address heterogeneous and dis-
tributed nature of the Web. Inference Web intent to address these is-
sues. For example, explanation metadata can be described in PML
documents and resolved using the URIs of the documents. How-
ever, Inference Web provides a centralized solution for publishing
and consuming explanation metadata. Explanation metadata should
be registered in the Inference Web repository to use their facili-
ties. Moreover, the published metadata using Inference Web facili-
ties have compatibility issues with the Linked Data principles. For
instance, not all the resources in PML documents are identifiable
by URIs as there are blank nodes in PML documents. Our ongoing
work [12] on applying the Linked Data principles intent to address
these issues. With regard to diversity of different representation, ex-
planation metadata should be published promoting interoperability.
The W3C PROV-DM data model [23] can be used as an interchange
data model across different systems in this regard. Different systems
can define their explanation metadata model as application-specific
and domain-specific extensions of PROV-DM. Applications across
the Web can then make sense of explanation metadata in a unified
manner. Consumers of these explanation metadata can use explana-
tion presentation and visualization tools according to their needs.

18

Target: Human users and software agents both are target of expla-
nation in Semantic Web applications. In the existing approaches, hu-
man users are provided with natural language explanations or graph-
ical explanations promoting easy comprehension. Unlike the expert
systems which were used by knowledgeable users and domain ex-
perts, the users of Semantic Web applications can have different
background, skill level, and knowledge level because of the open
nature of the Web. Level of user expertise should be taken into ac-
count while providing explanations. The presentations of explana-
tions can change according to user expertise or user scenario context.
User profiling approaches might be applied to provide explanations
addressing these issues. With regard to software agents, explanations
should be described using open standards such as OWL ontologies to
make it possible for software agents to make sense of explanations.
As pointed out previously, explanations also should be published us-
ing common data publishing principles such as Linked Data to enable
external software agents to easily consume them.

What is explained: The reviewed research discusses explanation
of information manipulation steps, operations, and proof trees of de-
rived results. Additional provenance information such as how, when,
and who provenance is provided in Inference Web explanations for
more context and enable better understanding. Semantic Web appli-
cations use distributed interconnected data in their reasoning pro-
cesses. Explaining the network of data used in the reasoning pro-
cesses might be useful for users. This would enable users to under-
stand the flow of information used in the reasoning process and have
a better understanding of the data integration process performed by
an application. Explanation with the details of complex computation
processes might always not be as useful for non-expert users as they
are for expert users. Exposing problem solving methods in certain
scenarios might result in security threat. The existing research does
not discuss how explanations, which expose problem solving meth-
ods, influence security and confidentiality of Semantic Web systems.

Representation: The reviewed vocabularies to represent explana-
tion metadata for machine consumption allow to describe proof trees
for answers, processes used to compute answers, different types of
provenance information, models for how explanations should be pre-
sented to human users, and trust related information. Other important
aspects of explanation vocabularies are granularity and existence of
blank nodes in the data described using them. Table 1 presents a com-
parison of reviewed vocabularies taking these aspect into account.
Proof trees encode logical deduction of conclusions. PML, PML-
Lite, and AIRJ provide primitives to encode proof trees as justifi-
cations of answers. KOIOS and EXPL vocabularies do not provide
primitives for encoding proof trees as they concern mainly describing
computation process and structure of presentation information. Pro-
cess description concerns describing the information manipulation
steps or the algorithms that compute answers. All the reviewed vo-
cabularies except EXPL allow describing processes used to compute
answers. Provenance information provide additional context to ex-
planations. PML allows describing how, when, and who provenance.
PML-Lite allows one additional provenance, location provenance.
AIRJ inherits PML-Lite provenance features. KOIOS and EXPL do
not provide any primitive to describe provenance. With respect to
granularity, RDF statements can be made at several level of gran-
ularity such as triple or graph. PML, PML-Lite, and AIRJ do not
strictly define their granularity. Thepml:Information class instances
of PML can refer to a triple, a graph URI, or even to a textual rep-
resentation of a logical formula. PML-Lite and AIRJ follow a sim-
ilar approach. For instance,pmll:outputdata property can point to
a graph represented by a set of triples. In [17], the authors intro-

PML PML-
Lite

AIRJ KOIOS EXPL

Proof tree Yes Yes Yes No No
Process
description

Yes Yes Yes Yes No

Provenance How,
when,
who

How,
when,
who,
where

How,
when,
who,
where

N/A No

Granularity Not
strictly
defined

Not
strictly
defined

Coarse
grained
/graph

N/A Fine
grained
/triple

Presentation
model

No No No Yes Yes

Trust in-
formation

Yes No No No No

Blank
node

Yes No Yes N/A No

Table 1. Comparison of explanation vocabularies

duce new AIRJ properties such asairj:matchedgraph to specifically
make statements about graphs. The authors of KOIOS vocabularies
do not provide details about granularity [9]. EXPL uses RDF reifica-
tion primitives to provide a triple level fine grained granularity. Pre-
sentation model allows describing how and what should presented to
the human users as explanations. KOIOS provide VGL vocabulary
to describe visualization of explanations. EXPL allows describing
the structure and contents of different parts of explanations that are
presented to human users. PML, PML-Lite, and AIRJ do not pro-
vide any primitive to describe presentation of explanations. Declara-
tively specifying presentation models enables different types of user
interface technologies to render explanation contents. Despite one
of the main motivation for providing explanations being trust, only
PML allows describing trust related information. Explanation facil-
ities should allow to describe, capture and processing over captured
trust. As a Linked Data common practice, blank nodes are avoided
while publishing data [14]. Blank nodes add additional complexities
in data integration in a global dataspaces. It is not possible to make
statements about blank nodes as they do not have identifiers. PML
and AIRJ use RDF container concepts such asNodeSetList. RDF
containers use blank nodes to connect a sequence of items [1]. This
approach makes it difficult to publish the data described using PML
and AIRJ as Linked Data. In our ongoing work in [12], we present the
Ratio4TA11 vocabulary to represent justifications supporting graph
level granularity without using RDF containers. Graph level granu-
larity gives a flexible control as a graph can contain a single triple or
many triples. We define Ratio4TA as an extension of W3C PROV-
DM to enable better interoperability.

Presentation: Explanations are presented to human users as natu-
ral language or as graphical explanation in the reviewed approaches.
Different kinds of graphical representation have been used to present
proof trees, queries, or the steps performed by information manipula-
tion algorithms. As discussed previously, users with different levels
of expertise should be considered for Semantic Web applications.
How to present complex information manipulation processes to the
end users in an understandable way and how much details is useful in
the context of Semantic Web need to be researched more. The EASD
approach discusses providing context dependent explanations. Exist-
ing approaches such as [7] on context-aware data consumption can

11 http://ns.inria.fr/ratio4ta/

19

be also applied to address providing different types of explanations
depending on differenttypes of users. Presentation models can be
declaratively defined and associated with different context related in-
formation. Different user interface rendering methodologies can then
be applied on the defined presentation models to provide the final ex-
planation user interfaces.

Interaction: Explanations should be provided with navigation
support to enable end users to discover more related information.
Other interaction models such as follow up or feedback mechanisms
might also be useful in certain contexts. Inference Web provides ex-
planation with navigation and follow up support. How users can in-
teract trust information based on the provided explanations would be
another interesting area to explore.

Trust: The reviewed research lacks studies about understanding
how explanations influence user trust in the context of Semantic Web.
In contrast to the expert systems, Semantic Web applications have
new dimensions such as openness and distributed. Furthermore, Se-
mantic Web applications have much broader and diverse user base
than expert systems. How these aspects of Semantic Web influence
trust needs to be studied more. In the existing work, only Inference
Web provides an infrastructure for trust which includes a vocabulary
to describe trust related information. However, how users trust can be
captured and processed for further trust assertions is not discussed.
Another interesting area to explore would be how explanation ap-
proaches can be applied to explain trust itself. For instance, expla-
nation can be provided about who have trusted a given resource or
about trust rating calculations.

6 CONCLUSION

In this paper, we have presented an overview of the design principles
of explanation-aware Semantic Web systems, representation and us-
age of explanation related metadata, and finally how explanations
are generated and presented to end users. We have also presented a
discussion on the important aspects of ongoing research relating to
explanation in the context of Semantic Web.

ACKNOWLEDGEMENTS

The work presented in this paper is supported by the CONTINT pro-
gramme of French National Agency for Research (ANR) under the
Kolflow project (ANR-2010-CORD-021-02).

REFERENCES

[1] P. Hayes and B. McBride, eds., ‘RDF semantics’,W3C recommenda-
tion, (2004).

[2] J. Angele, E. Moench, H. Oppermann, S. Staab, and D. Wenke,
‘Ontology-based query and answering in chemistry: Ontonova project
halo’, in The Semantic Web - ISWC 2003, eds., D. Fensel, K. Sycara,
and J. Mylopoulos, volume 2870 ofLecture Notes in Computer Science,
913–928, Springer Berlin / Heidelberg, (2003).

[3] G. Antoniou, A. Bikakis, N. Dimaresis, M. Genetzakis, G. Georgalis,
G. Governatori, E. Karouzaki, N. Kazepis, D. Kosmadakis, M. Kritso-
takis, G. Lilis, A. Papadogiannakis, P. Pediaditis, C. Terzakis, R. Theo-
dosaki, and D. Zeginis, ‘Proof explanation for the semantic web us-
ing defeasible logic’, inKnowledge Science, Engineering and Manage-
ment, eds., Z. Zhang and J. Siekmann, volume 4798 ofLecture Notes
in Computer Science, 186–197, Springer Berlin / Heidelberg, (2007).

[4] N. Bassiliades, G. Antoniou, and G. Governatori, ‘Proof explanation
in the DR-DEVICE system’, inProc. of 1st Int’l Conference on Web
Reasoning and Rule Systems, pp. 249–258. Springer, (2007).

[5] T. Berners-Lee. Linked data. W3C Design Issueshttp://www.w3.
org/DesignIssues/LinkedData.html, 2006.

[6] C. Bizer, Quality-Driven Information Filtering in the Context of Web-
Based Information Systems, Ph.D. dissertation, Freie Universität Berlin,
Universiẗatsbibliothek, 2007.

[7] L. Costabello, ‘DC proposal: PRISSMA, towards mobile adaptive pre-
sentation of the web of data’, inThe Semantic Web ISWC 2011, eds.,
L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. Noy,
and E. Blomqvist, volume 7032 ofLecture Notes in Computer Science,
269–276, Springer Berlin / Heidelberg, (2011).

[8] D. Doyle, A. Tsymbal, and P. Cunningham, ‘A review of explanation
and explanation in case-based reasoning’, Technical Report TCD-CS-
2003-41, Trinity College Dublin, (2003).

[9] B. Forcher, M. Sintek, T. Roth-Berghofer, and A. Dengel, ‘Explanation-
aware system design of the semantic search engine koios’, inProc. of
the the 5th Int’l. Workshop on Explanation-aware Computing, (2010).

[10] A. Glass,Explanation of Adaptive Systems, Ph.D. dissertation, Stanford
University, 2011.

[11] R. Hasan and F. Gandon, ‘Explanation in the Semantic Web: a survey
of the state of the art’, Research Report RR-7974, INRIA, (2012).

[12] R. Hasan and F. Gandon, ‘Linking justifications in the collaborative
semantic web applications’, inProc. of the 21st Int’l Conference Com-
panion on World Wide Web, WWW ’12 Companion, pp. 1083–1090.
ACM, (2012).

[13] S.R. Haynes,Explanation in Information Systems: A Design Rationale
Approach, Ph.D. dissertation, The London School of Economics, 2001.

[14] T. Heath and C. Bizer,Linked Data: Evolving the Web into a Global
Data Space, Morgan & Claypool, 1st edn., 2011.

[15] M. Horridge, B. Parsia, and U. Sattler, ‘Laconic and precise justifica-
tions in OWL’, in Proc. of the 7th Int’l Conference on the Semantic
Web, ISWC ’08, pp. 323–338. Springer-Verlag, (2008).

[16] L. Kagal, I. Jacobi, and A. Khandelwal, ‘Gasping for AIR – why we
need linked rules and justifications on the semantic web’, Technical
Report MIT-CSAIL-TR-2011-023, MIT, (2011).

[17] A. Khandelwal, L. Ding, I. Jacobi, L. Kagal, and D.L. McGuin-
ness. PML based AIR justification.http://tw.rpi.edu/proj/
tami/PML_Based_AIR_Justification, 2011.

[18] J. Kotowski and F. Bry, ‘A perfect match for reasoning, explanation
and reason maintenance: OWL 2 RL and semantic wikis’, inProc. of
5th Semantic Wiki Workshop, (2010).

[19] D.L. McGuinness, Li Ding, A. Glass, C. Chang, H. Zeng, and V. Fur-
tado, ‘Explanation interfaces for the semantic web: Issues and mod-
els’, in Proc. of the 3rd Int’l Semantic Web User Interaction Workshop,
(2006).

[20] D.L. McGuinness, V. Furtado, P. Pinheiro da Silva, L. Ding, A. Glass,
and C. Chang, ‘Explaining semantic web applications.’, inSemantic
Web Engineering in the Knowledge Society, (2008).

[21] D.L. McGuinness and P Pinheiro da Silva, ‘Explaining answers from
the semantic web: the inference web approach’,Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 1(4), 397 – 413,
(2004).

[22] J.D. Moore and W.R. Swartout, ‘Explanation in expert systemss: A sur-
vey’, Research Report ISI/RR-88-228, University of Southern Califor-
nia, (1988).

[23] L. Moreau and P. Missier, ‘PROV-DM: The PROV data model’,World
Wide Web Consortium, Fourth Public Working Draft, (2012).

[24] P. Pinheiro da Silva, D.L. McGuinness, N. Del Rio, and L. Ding, ‘In-
ference web in action: Lightweight use of the proof markup language’,
in Proc. of the 7th Int’l Semantic Web Conference, ISWC ’08, pp. 847–
860, (2008).

[25] P. Pinheiro da Silva, D.L. McGuinness, and R. Fikes, ‘A proof markup
language for semantic web services’,Information Systems, 31(4-5),
381–395, (2006).

[26] T. Roth-Berghofer, ‘Explanations and case-based reasoning: Founda-
tional issues’, inAdvances in Case-Based Reasoning, eds., P. Funk and
P.A.G. Calero, pp. 389–403. Springer-Verlag, (2004).

[27] S. Stumpf, V. Rajaram, L. Li, M. Burnett, T. Dietterich, E. Sullivan,
R. Drummond, and J. Herlocker, ‘Toward harnessing user feedback for
machine learning’, inProc. of the 12th international conference on In-
telligent user interfaces, IUI ’07, pp. 82–91. ACM, (2007).

[28] W. Swartout, C. Paris, and J. Moore, ‘Explanations in knowledge sys-
tems: design for explainable expert systems’,IEEE Expert, 6(3), 58
–64, (1991).

[29] N. Tintarev and J. Masthoff, ‘A survey of explanations in recommender
systems’,ICDE07 Workshop on Recommender Systems and Intelligent
User Interfaces, (2007).

20

Enhancing the explanation capabilities of the CBR-WIMS
framework for the intelligent monitoring of Business

workflows

Stelios Kapetanakis
1
 and Miltos Petridis

2

Abstract.1 This paper presents recent enhancements to the CBR-
WIMS framework towards the enhancement of its explanation
capabilities. The paper presents the CBR-WIMS approach to the
monitoring of business workflows using Case-based Reasoning
(CBR). This approach re-uses knowledge from previous known
business workflow executions by identifying similarity between
event traces, taken from workflow executions. The case
representation and similarity measures are presented along with the
Case-based process for retrieval of similar traces. The explanation
features of the CBR-WIMS framework are illustrated through two
application case studies. A new CBR-WIMS enhancement
providing additional explanation is shown. The enhancement
involves the use of clustering algorithms and tagging of clusters.
This supports contextual knowledge that helps to provide partial
explanation to retrieved similar cases, as well as an insight into
possible action recommendations. Finally, the provenance of cases
and its use within CBR-WIMS to establish the context of particular
retrieved cases is explained. The evaluation of the explanation
capabilities of CBR-WIMS is presented through two real
application case studies. The results are discussed and further work
planned to enhance further the explanation capabilities of CBR-
WIMS is presented.

1 INTRODUCTION

Modern world operations nowadays are being organised in terms of

business workflows. This allows the efficient management of their

resources towards the fulfilment of given objectives. Business

workflows are progressively and increasingly defined,

orchestrated, organised and monitored electronically via software

systems. This promotes their effective management and monitoring

as well as illustrating a challenge to the relevant stakeholders. The

given challenge is whether their monitoring can be effective

enough to allow authorised auditors to apply remedial actions to

problematic situations as well as ensure their smooth operation in

any other occasion.

Several standards in business process representation have been

developed over the latest years, covering effectively the business

processes’ definition, orchestration and choreography. For example

the Business Process Modelling Notation (BPMN) developed by

the Business Process Management Initiative (BPMI) and Object

Management Group (OMG), provides a standard for the graphical

representation of workflow-based business processes [1]. A

1 School of Computing and Mathematical Sciences, University of

Greenwich, Maritime Greenwich Campus, Old Royal Naval College,
Park Row, Greenwich, London SE10 9LS, UK,

 email: s.kapetanakis@gre.ac.uk
2 School of Computing, Engineering and Mathematics, University of

Brighton, Moulsecoomb Campus, Lewes road, Brighton BN2 4GJ, UK,
 email: m.petridis@brighton.ac.uk

number of relevant standards has also been developed and accepted

by enterprise technologies based on Service Oriented Architecture

(SOA). WS-BPEL, proposed by OASIS, is an execution language

describing the “behaviour of business processes in a standards-

based environment” [2]. The XML Process Definition Language

(XPDL) provided by the Workflow Management Coalition

(WfMC) [3] offers a standardised format for business process

definitions exchange among vendors.

The usage of standardised graphical representations, for the

definition of a business process, allows its stakeholders to realise

its context given in terms of a UML or a BPMN diagram. Such

diagrams make the business workflows more readable to humans

as they have been designed to do so.

Existing representation standards allow the readability and

comprehension of a business process from its relevant experts.

Business workflows usually produce large numbers of data in

terms of logs; storing temporal information in the form of event

sequences. Most workflow logs nowadays are relatively well

structured and their text can be easily understood by humans [4].

However, since the data production is significantly high the mental

capabilities of a human are not enough to deal efficiently with

them. Additionally a specialised workflow structure may deprive

an expert from monitoring the current workflow state effectively.

This could be due to the given complexity of specific process parts

as represented in the workflow log. In addition to the above

problems the nature of temporal information can make difficult the

role of a human expert. Event sequences with complicated or

overlapped temporal relationships are difficult to be monitored.

Furthermore for their effective monitoring a combination of more

than one log may be needed in accordance with possible

association to events that may not be captured [12].

The contextual knowledge regarding a workflow execution can

also be either incomplete or uncertain [12]. This can be due to a

number of factors with the most prominent one the manual

interference of a manager in order to confront any unanticipated

situation faced within the business process execution. This can be a

common case in business processes that deal extensively with

human roles. Changes are not necessarily related with a specific

part of a process, they might involve different processes within an

organisation or even across collaborative organisations something

that increases the complexity overall. Given the above challenges

the monitoring of business processes can be rather difficult for

humans. Therefore a need for intelligent monitoring is being

formulated via software systems. Software systems while

monitoring workflows they should be able to provide insights of

the actual process to human auditors. Explanation should also be

provided in order to allow people involved in business workflows

to identify, understand and act on any issues that can be identified

21

within the workflow execution. However, due to the complexity

and uncertainty involved in such problems users will accept and

take advice of a software system only when adequate explanation

is provided. This explanation should give an insight into the

reasoning and the context behind any problem identified as well as

behind any proposed action. Remedial actions on the identified

retrieved cases should also be provided but that also requires the

provision of contextual explanation so that workflow managers can

decide on the action proposed.

This paper presents work that enhances the explanation abilities

of a business monitoring workflow system with the application of

Cased-Based Reasoning (CBR) [13]. When applying CBR in

monitoring workflows there is no attempt to build an explicit

model of the knowledge associated with the monitoring of

workflows. However, CBR is based on the fundamental premise

that similar problems have similar solutions. In an investigated

case the closest similar neighbours are being retrieved from the

case base. These neighbours are being identified by applying

similarity measures based usually in their similarity numerical

measures. However, temporal event sequences state temporal

complexity and as a result their similarity is based on structural

patterns which afterwards they have to be explained. An intelligent

system that applies similarity measures should show and explain to

the user why the system has retrieved specific cases as the most

similar, as well as how these cases may be used as solutions to the

investigated case. In systems that deal with temporal and

organisational complexity, providing efficient and reliable

explanation can be a challenge.

This paper presents an enhanced approach to provide effective

explanation while attempting CBR monitoring of business

workflows. The approach is based on previous work that is briefly

summarised here. The enhanced approach is being evaluated on

two business process workflow case studies. Section 2 presents the

application of CBR on workflow monitoring cases. Section 3

relates to workflow similarity measures, the event cases

representation and the similarity calculation among workflow

instances. Section 4 discusses on the explanation provision of a

framework developed for the intelligent monitoring of workflows.

Section 5 presents the evaluation results of the proposed approach

as applied on two real workflow case studies.

2 CASE-BASED REASONING FOR
BUSINESS WORKFLOW MONITORING

Human managers when monitoring a business process seem to

resort to past available experience in order to be able to understand

and act on the current state of the workflow. Case-based Reasoning

(CBR) has been proposed as a natural approach to the humans’

approach; by recalling, reusing and adapting workflows and the

knowledge associated with their structure.

Minor et al [5] proposed a CBR approach to the reuse and

adaptation of agile workflows based on a graph representation of

workflows and structural similarity measures. Dijkman et al [6]

have investigated algorithms for defining similarities between

business processes focused on tasks and control flow relationships

between tasks. Van der Aalst et al [7] compare process models

based on observed behaviour in the context of Petri nets. The

definition of similarity measures for structured representations of

cases in CBR has been proposed [8] and applied to many real life

applications requiring reuse of domain knowledge associated cases

that require complex structural representation [9],[10].

2.1 The CBR-WIMS approach

An approach for the intelligent monitoring of business workflows

using CBR has been proposed and has been shown to be able to

monitor effectively real business workflows when compared to

human domain experts [11]. This approach based on the CBR-

WIMS software framework has shown to be able to perform well

on uncertain aspects of business workflows when applied to a real

workflow monitoring problem. The approach applies the standard

CBR methodology relying on the definition of similarity measures

between cases; informed from knowledge discovery of norms and

known problems from past operation. Cases are being represented

as graphs, made up of recorded workflow events and their temporal

relationships. Similarity measures are based on the use of the

Maximum Common Sub-graph (MCS) between graphs

representing known past or current evolving workflow cases. As in

many workflow monitoring applications, the exact time stamp of

events and actions on a system is recorded, the problem of

calculating the similarity measures is simplified as the graphs are

“flattened” to traces of events of known time stamps and intervals

(Fig. 1).

The Maximum Common Sub-graph (MCS) similarity between

two such graphs can be defined as:

(1)

where count(G) represents the number of edges in graph G and

σ(C,C’) is the similarity measure, 0≤ σ(C,C’) ≤ 1, between two

individual edges (intervals or events) C and C’.

The CBR-WIMS architecture and framework is developed to

provide seamless integration between the CBR system and a

Business process workflow management system. This architecture

deals with the definition and orchestration of business processes

and provides services for the monitoring and control of workflows.

This can enable the intelligent management of business processes

within an organisation.

CBR-WIMS has been tested on a real application of workflow

monitoring and has shown to perform well when compared to

human managers of the workflow process [11]. It has also shown

that it can assist managers by providing them early warnings. As

CBR does not use an explicit model of the reasoning mechanism, it

can be difficult to gain acceptance; especially when dealing with

complex, uncertain operations involving humans that can be

affected by events that are not necessarily recorded by the

workflow monitoring system. For example, events such as a human

error and/or misunderstanding between actors of the workflow can

usually cause problems in the workflow execution but may not be

explicitly recorded by the system. It is therefore important that any

intelligent monitoring system can provide some explanation and

context to its users.

In work previously presented at EXACT-2010 [12], it was

shown that CBR-WIMS can provide some useful context and

explanation by visualising the components of similarity between

event trace cases among the target and its most similar retrieved

cases.

)().(

)),((

),(

,

2

GcountGcount

CC

GGS
MCSG
in

CC
matches

22

Fig. 1. Visualising the similarity between workflows

However, this visualisation similarity is just structural and contains

no information from the context of particular cases that could also

be available in the system. The extension of the MCS in CBR-

WIMS, to allow for multiple similar sub-graph regions between

cases, has also required some substantial re-working of the CBR-

WIMS similarity visualisation capabilities.

This paper presents new work on the explanation capabilities of

CBR-WIMS concentrating mainly to:

- Extending the visualisation capabilities of similarity

measures on multiple common sub-regions with the Maximum

Common Sub-graph.

- Providing context to the retrieved similar cases by the use

of clustering and expert user annotation of clusters with contextual

knowledge in the form of annotations, “stories” and “motifs”.

- Adding provenance of retrieved cases to enhance the

explanation capabilities of the CBR-WIMS system.

- Testing and evaluating the enhanced explanation

capabilities of the system on two case studies. The first case study

is the exam monitoring system case study used in previous work

with CBR-WIMS [11, 12, 14]. The second case study relates to a

Box Tracing System (BTS) that adds to the temporal complexity of

the problem by providing the complexity of tracing physical items

within the application of workflows. This type of a problem has

extra implications as even more errors can occur outside the scope

of the workflow monitoring system adding to the overall

uncertainty present in the system.

3 ENHANCED EXPLANATION IN CBR-
WIMS

In order to evaluate the system performance and extended

explanation capabilities of CBR-WIMS, data from two real

application case studies were used. Both case studies contain data

from a substantial number of years of workflow execution. The

research team had also access to system experts and practitioners

that allowed a detailed examination of both the accuracy and

effectiveness of the intelligent prediction aspects of the CBR

system as well as the explanation capabilities of the new system.

 This first case study was the University of Greenwich, School of

Computing and Mathematical Science exam moderation system

(EMS) which has been already used in a number of experiments

[11, 12, 14]. The second application case study is an on-line

archive management system named Box Tracking System (BTS)

[16] which deals with the transfer and archiving of boxes between

the BTS warehouse and its customer premises.

CBR deals with cases that have taken place in the past and work

as an experience repository for the presence. These cases may or

may not fit in into a rule-based model. Since in CBR there is no

underlying model, it is very important that human managers are

able to understand the relevance of similar cases, when attempting

to provide explanation; therefore explaining the similarity

measures and their derivation is an important part of the

explanation challenge in this context. As cases are represented as

graphs in CBR-WIMS, the similarity measures on cases’ temporal

information can be shown in terms of graph similarity. In

particular, the Maximum Common Sub-graph can be visualised

easily and highlight the parts of two graphs where there is a match.

These usually contain specific motifs (patterns) that their presence

can signify a specific type of a problem. This can by itself be a

source of further explanation, especially for more experienced

practitioners. As a result of the above, the challenge of providing

explanation is reduced to a large extent to the task of showing the

relevance / similarity from a case to another one(structural

similarity).

In order to do that the structural similarity between cases has to

be shown as part of the event sequence and not just in terms of

cumulative numbers and their differences. The fact that in many

cases similarity is associated with recurring types of problems,

extra information could pertain to some classification of those.

Problems that occur in a investigated workflow process can be

explained through the identification of clustering of cases related to

particular types of recurring problems. As a result a system that

provides explanation should be able to possibly show the similarity

in a graphical way and allow workflow experts to investigate and

“drill down” further in the similarity. In addition, the membership

of close neighbours within particular clusters could provide added

contextual explanation. For example if most of the neighbours

retrieved by the kNN algorithm are members of a particular cluster,

any knowledge about the types of problems associated with the

specific cluster can be used to provide additional explanation. This

can enhance the explanation provided regarding the case and any

course of action that may have been retrieved from the

neighbouring cases.

In order to provide this enhanced explanation, we investigated

the semantics that are associated with specific clusters of cases.

This was achieved by observing experts on particular case specific

patterns, “motifs”, that can actually indicate the presence of a

specific problem in the execution case. The idea of “motifs” to

indicate the presence of specific patterns in data mining has been

proposed by Wu et al [15]. Typical examples of the above in the

exam moderation system workflows are frequent

misunderstandings between roles. People occupying multiple roles

can often act on the system using the wrong role for a specific

action. Further analysis showed that specific motifs (sequences of

events) could indicate these problems. Expert managers could give

names to such motifs describing in generic terms why something

happened in such way. This was usually in terms of short stories

such as “Staff member A logged on as Drafter to upload their own

paper, realised this and then uploaded new version as a course

23

coordinator”. We observed that the experts could identify such

motifs and then they could use this to explain and communicate the

problem to a third party. As the similarity measures between cases

are clearly defined in the CBR-WIMS methodology, clustering

algorithms can be used to generate clusters covering key types of

problems that occur in a particular workflow. An Agglomerative

Hierarchical Clustering algorithm was applied to both case studies

[14]. The number of clusters was varied to allow for the cluster

sizes that best describe known problems.

The clusters were shown to workflow specific expert

practitioners. The experts could usually offer narrative hints for

each cluster. The approach taken was to identify individual clusters

and investigate whether the expert can describe what has happened.

What we found is that in some of the cluster tags, provided by the

experts, recurring motifs were obvious. However, some others

cases were clustered together but not in an obvious way. Therefore,

the system can provide partial additional explanation to assist in

many of the problem cases, but the coverage is not universal. If a

new case comes from a particulate cluster then we can provide

extra context for the user to enhance the explanation regarding a

certain neighbouring case retrieved.

A final aspect followed in the current approach is provenance.

As workflows involve different people and departments within an

organisation, different patterns of operation may emerge.

Additionally, as workflows evolve, they may change over years. In

the Exams moderation case study we found that due to changes in

the workflow orchestration system, particular problems that used to

occur, they cannot occur anymore. This calls for maintenance of

the case base and the addition of provenance of cases; adding an

extra dimension to the retrieved set of similar cases. This is now

included in CBR-WIMS allowing the user to drill down to the

provenance of specific retrieved cases. An example in the exam

moderation system is that two cases from a recent year can provide

better insight when compared to a really old case from a previous

version of the orchestration system.

By adding this extra layer of provenance, the experts can have a

better insight of the retrieved cases, adding more to their (re)-

usability. The user, given this additional layer of explanation, can

finally decide what is relevant and what is not. In order to evaluate

the above the Exam Moderation cases study was further

investigated and the second case study from a totally different

domain (BTS) was obtained. The analysis from both cases showed

that enhancing explanation by tagging clusters of cases with

specific expert annotations showed invariably the existence of

particular motifs present in most clusters. These motifs once

identified and communicated to the workflow management system

users enhanced the expert’s confidence towards a system’s

recommendation. The following section will present in more detail

to the experiments conducted.

4 WORKFLOW MONITORING
EXPERIMENTS AND EVALUATION

In order to evaluate the approach proposed at this paper, two real

workflow systems were selected and CBR-WIMS was called to

provide explanation while monitoring them. Previous work [12]

has shown how CBR-WIMS can provide explanation by

visualising the components of similarity between event traces

among the target and retrieved cases. The provided visualisation

showed that it could provide useful insights to an expert but was

limited to the structural representation of the cases. As a result the

information provided to a human expert could not show contextual

similarity insights for the given cases.

A factor that was also affecting the monitoring was that the

similarity measure had to be modified following changes applied to

the business process. These modifications were equivalently

affecting the applied MCS algorithm.

In order to overcome the above given limitations, CBR-WIMS

visualisation suite has been enhanced with clustering capabilities,

in order to be able to aggregate together the cases with similar

characteristics. An agglomerative hierarchical clustering (AHC)

algorithm was selected [14] in order to be able to identify common

behavioural patterns followed by the cases. Each case in AHC was

represented as a node and the algorithm clustered them based on

their similarity distance to other nodes. Experts were called to

analyse the resulting clusters and provide typical “stories” in terms

of typical sequences of events and motifs that characterised the

essence of any problems associate with the particular workflow

execution. Analysis of results from using the above enhancement

in the experiments conducted have shown that the users can

understand better the system recommendations, based on system

presented findings with or without visualisation. Users were

interviewed about their confidence in the retrieved advice provided

by the system. Four groups of users were investigated:

1. Users using no explanation

2. Users using structural visualisation of similarity

3. Users using annotations of clusters

4. Users looking at provenance information of retrieved

similar cases

The initial experiments [12, 14] were conducted with the Exam

Moderation workflows system. Further experiments were

conducted with the Box Tracking system. The aim of the

experiments was to investigate whether a human expert could

realise in a better way what is the connection between cases as well

as looking into the provenance of the retrieved cases to enhance the

explanation provision.

For the BTS experiments instances of 180 box journeys were

provided to the system as a case base. Each journey consisted of

several events indicating the box’s status, indicating a case for

CBR-WIMS. The MCS was applied to all of the available cases,

estimating the relevance among cases based on their similarity

distance. The AHC was afterwards applied to them, constructing a

cluster tree based on their similarity.

After applying case clustering the results were shown to the

experts asking them to monitor 30 target cases based on their

neighbour’s information as extracted from the clusters. Figure 2

shows an example of the visualised information presented to

experts.

Fig 2. Case visualisation for BTS system

The experts after being shown the clustering results were more

confident to comment on a given case regarding its status. The

produced clusters were annotated based on the content of their

“stories” and the behavioural patterns found. Finally, the

provenance of the neighbour cases was considered and presented to

the experts additionally to investigate whether this enhances their

24

level of confidence. By knowing the provenance the levels of

confidence were increased, helping in understanding better what

happened in the investigated case based on the neighbours’ past.

An interesting finding after looking into the provenance of the

cases was that it works in a different way across systems. When

looking into the provenance of the Exams Moderation System

(EMS) the cases were affected from the yearly period that they

were conducted, showing that cases from the same period are more

likely to be of use than those from different years. Also summer

resit exam cases were showing similar patterns with other past

summer resits so the provenance of a retrieved case was important

to the effectiveness of the CBR process. Finally, in this

investigation, the provenance of a case study in terms of the

academic department involved was shown to be important. As the

EMS allowed to be used by departments in slightly different ways,

the Mathematics department had chosen to draft exams in meetings

of tutors rather than individually. This created specific temporal

workflow execution patterns that precluded a set of problems from

occurring, but introduced the possibility of other scenarios. In this

context, the provenance of a case from that specific academic

department was shown to be important to understand emerging

patterns, but it was of practically no discriminatory use between the

other academic departments that all followed a similar work

pattern. However, in the case of BTS case the issue of provenance

was more related to the company showing different behavioural

patterns to company’s “loyal” customers compared to other “new”

ones.

Provenance has shown to be invariably important but relatively

different aspects were shown to be important across systems. As

provenance of retrieved cases is an extra feature available to CBR-

WIMS users “drilling down” into retrieved cases, it is left naturally

to the users to reason about the provenance information presented

to them. Interestingly enough, the experiments conducted, showed

that the gain in predictive effectiveness of the CBR system from

providing the additional provenance information was modest, but

when it came to filtering false positives it had an effect of nearly

50% reduction of false positives. This shows that provenance can

be very useful at filtering out retrieved cases that although

structurally similar to the investigated problem workflow

execution, may have a different context altogether.

5 CONCLUSIONS

This paper presents an approach towards the enhanced explanation

provision of monitored workflows. The investigated business

workflows contain incomplete temporal data as derived from the

case study systems’ operational logs. Their representation has been

conducted via graphs, based on their temporal relationships. This

paper has shown how the CBR-WIMS framework can incorporate

any investigated business workflow systems. Two case study

systems have been used and CBR-WIMS had applied similarity

measures between their instances using the MCS. Explanation

provision has been conducted using real data from past workflow

executions. The evaluation presented at this paper has shown that

the adopted approach can be applied to more than one enterprise

systems, enhancing the monitoring capabilities of human experts.

An expert by using the hierarchical clustering can follow a “drill-

down” approach aiming to extract useful system insights. As

shown from the conducted experiments this can be viable and

efficient, getting an idea of possible patterns of either problematic

or healthy system operations. Further work on the above will

concentrate on the cases’ provenance as well as how this could

enhance the monitoring capabilities. An investigation to another

workflow system would also be sought in order to inspect the given

opportunities for explanation patterns’ reuse along systems.

REFERENCES

[1] Business Process Management Initiative (BPMI): BPMN 2.0: OMG

Specification, January, 2011, http://www.omg.org/spec/BPMN/2.0/, accessed

May 2012.P. Atkin. Performance maximisation. INMOS Technical Note 17.

[2] IBM: Business process standards, Part 1: An introduction, 2007,

http://www.ibm.com/developerworks/websphere/library/techarticles/

0710_fasbinder/0710_fasbinder.html, accessed May 2012.

[3] Workflow Management Coalition (WfMC): XPDL 2.1 Complete

Specification (Updated Oct 10, 2008),

http://www.wfmc.org/xpdl.html, accessed April 2009.

[4] Michaelis, J. R., Ding, L., McGuinness, D. L. (2009). Towards the Explanation

of Workflows. In: Proceedings of the IJCAI 2009 Workshop on Explanation

Aware Computing (ExaCt).Pasadena,CA, US.

[5] Minor, M., Tartakovski, A. and Bergmann, R.: Representation and

Structure-Based Similarity Assessment for Agile Workflows, in

Weber, R., O. and Richter, M., M.(Eds) CBR Research and

Development, Proceedings of the 7th international conference on

Case-Based Reasoning, ICCBR 2007, Belfast, NI, UK, August 2007,

LNAI 4626, pp 224-238, Springer-Verlag, (2007).

[6] Dijkman, R.M., Dumas, M., Garcia-Banuelos, L. Graph matching

algorithms for business process model similarity search. In U. Dayal, J.

Eder (Eds.), Proc. of the 7th Int. conference on business process

management. (LNCS, Vol. 5701, pp. 48-63). Berlin: Springer. (2009).

[7] van der Aalst, W., Alves de Medeiros, A. K., Weijters, A : Process

Equivalence: Comparing two Process Models Based on Observed

Behavior, In Proc. Of BPM 2006, vol 4102 of LNCS, pp 129-144,

Springer, (2006).

[8] Bunke, H., Messmer, B.T.: Similarity Measures for Structured Representations.

In: Wess, S., Richter, M., Althoff, K.-D. (eds) Topics is Case-Based Reasoning.

LNCS, vol. 837, pp 106-118, Springer, Heidelberg (1994).

[9] Mileman, T., Knight, B., Petridis, M., Cowell, D., Ewer, J. (2002): Case-Based

Retrieval of 3-D shapes for the design of metal castings in Journal of Intelligent

Manufacturing, Kluwer. 13(1): 39-45; Feb 2002.

[10] Wolf, M., Petridis, M.: Measuring Similarity of Software Designs

using Graph Matching for CBR, In workshop proceedings of AISEW

2008 at ECAI 2008, Patras, Greece (2008).

[11] Kapetanakis, S., Petridis, M., Knight, B., Ma, J.,Bacon, L. : A Case

Based Reasoning Approach for the Monitoring of Business

Workflows, 18th International Conference on Case-Based Reasoning,

ICCBR 2010, Alessandria, Italy, LNAI (2010).

[12] Kapetanakis, S., Petridis, Ma, J., Bacon, L. (2010). Providing Explanations for

the Intelligent Monitoring of Business Workflows Using Case-Based

Reasoning. In Roth-Berghofer, T., Tintarev, N., Leake, D. B., Bahls, D. (eds.):

Proceedings of the Fifth International workshop on Explanation-aware

Computing ExaCt (ECAI 2010). Lisbon, Portugal.

[13] Kolodner, J. L. (1983). Reconstructive memory: A computer model.

Cognitive Science. 7 (4), pp. 281-328.

[14] Kapetanakis, S., Petridis, M., Ma, J., Knight, B., Bacon, L. (2011). Enhancing

Similarity Measures and Context Provision for the Intelligent Monitoring of

Business Processes in CBR-WIMS. In: 19th International Conference on Case

Based Reasoning, 12-15th September 2011, Greenwich, London.

[15] Wu, G., Harrigan, M., Cunningham, P. (2011). A Characterization of

Wikipedia Content Based on Motifs in the Edit Graph. UCD-CSI-

2011-02. School of Computer Science & Informatics, University

College Dublin. Dublin, Ireland.

[16] Kapetanakis, S. (2012). Intelligent Monitoring of Business Processes

using Case-based Reasoning. PhD Thesis. University of Greenwich.

UK.

25

Using canned explanations within a mobile context engine
Christian Sauer and Anna Kocurova and Dean Kramer and Thomas Roth-Berghofer1

Abstract. Mobile applications have to adhere to many constraints.
ContextEngine has been developed for the Android platform to easier
deal with such limitations and situation-specific information across
applications to, thus, create context-aware, mobile systems. With the
increased adaptability and dynamics of context-aware applications
comes an increase complexity, which in turn makes it harder to un-
derstand the behaviour of such applications. In this paper we describe
how we enhanced the ContextEngine platform with explanation ca-
pabilities. Explaining can be seen as complex reasoning task on its
own. Here, we focus on “canned explanations”. Canned explanations
are information artefacts, pre-formulated by the software engineer,
that serve as explanatory artefacts stored in the system and delivered
to the user on demand.

1 Introduction
Mobile applications have to adhere to many constraints such as the
amount of available memory, screen size, battery, and bandwidth.
ContextEngine has been developed for the Android platform to eas-
ier deal with limitations and situation-specific information across dif-
ferent applications and to, thus, create context-aware, mobile sys-
tems [5]. Context-aware applications are “intelligent applications
that can monitor the user’s context and, in case of changes in this
context, consequently adapt their behaviour in order to satisfy the
user’s current needs or anticipate the user’s intentions” [10].

ContextEngine uses complex rules to establish the current context
of the system. These rules are acting upon implicitly collected con-
text data without user interaction. The main reason for the results and
behaviour of the system is thus hidden. The user might want to un-
derstand the results the system delivers and the behaviour it does or
does not exhibit although it was expected to do so [4]. If the systems
results and behaviour are not explained sufficiently to the user this
lack of explanations can lead to the user mistrusting the system, use
it in wrong ways or refusing to use it at all [4, 2, 9].

In this paper we examine the possibilities to provide explanations
to meet the described need for explanations of the system’s results
and behaviours. In the next section we introduce the ContextEngine
framework and some basics on explanation. In section 3 we sketch
a use case scenario to motivate and illustrate our approach. We then
relate our work to others in the field and describe our extension of the
ContextEngine framework with explanation capabilities in section 4.
The paper closes with a summary and outlook.

2 Providing context for mobile applications
ContextEngine is a framework that facilitates context definition, ac-
quisition, and dissemination to multiple applications on a mobile de-
1 Centre for Model-based Software Engineering and Explanation-aware

Computing, School of Computing and Technology, University of West Lon-
don, United Kingdom, email: {firstname.lastname}@uwl.ac.uk

vice [5]. This can then be used to form context-aware applications.
Within ContextEngine, components manage specific contexts.

Contexts is “information that can be used to characterise the situa-
tion of an entity. An entity is a person, place, or object that is consid-
ered relevant to the interaction between a user and an application,
including the user and applications themselves” [7]. A component
in ContextEngine provides one specific information about one as-
pect of a situation, for example the battery power left in a device.
Thus these components serve to obtain raw context data from vari-
ous sources, translate that data into more meaningful context infor-
mation, and lastly broadcast its new state to any listener. Low level
context components can be loosely aggregated to form composite
components. These higher level components are defined at runtime
and use rules as a way of aggregating contexts. The ContextEngine
was implemented for the Google Android platform.

Figure 1. Usage Scenarios

ContextEngine has been designed for two main scenarios. The first
scenario, as depicted in Fig. 1(a), shows the engine deployed once
as a service on a single device for use with multiple applications.
When additional contexts are needed, then the engine can be used as
a single application library, as depicted in Fig. 1(b).

26

2.1 Possibilities for Explanations within the
ContextEngine

As soon as a user questions a system’s result or behaviour, expla-
nations are warranted. Looking at explanation goals and kinds (see,
e.g., [15]) helped us guide the extension of ContextEngine. Five ma-
jor goals can be achieved by providing proper explanations, aiming
at:

• Transparency: How was a result achieved?
• Justification: Why was a result valid?
• Relevance: Why was a question by the system to its user of rele-

vance to the systems strategy to solve a given problem?
• Conceptualisation: What is the meaning of a term/concept?
• Learning: Enhance either the user’s or system’s knowledge in a

given domain.

To achieve these goals there are five kinds of explanations avail-
able to choose from [15]:

• Why explanations provide causes or justifications for facts, the oc-
currence or non-occurrence of events.

• Conceptual explanations give answers to questions of the form
‘What is . . . ?’ and ‘What is the meaning of . . . ?’ thus establishing
links between previously unknown concepts and already known
concepts within the knowledge of either the system or the user.

• How explanations explain processes leading to facts, states or
events.

• Cognitive (also called action) explanations explain and/or predict
the behaviour of a system.

• Purpose Explanations: These explain the purpose of an object or
action.

Providing explanations can be seen as a complex reasoning task on
its own. In this paper we focus on canned explanations [14]. Canned
explanations are pre-formulated information snippets that serve as
explanatory artefacts. They can be easily stored in a system and de-
livered to the user on demand. Canned explanations can be as simple
as text strings or, in the form of URLs, point to explanatory content.
The paper does not attemp to introduce an automatic generation of
canned explanation but rather provide software engineers with the
abillity to manually integrate canned explanations into their appli-
cations. The paper further examines the possibilities of composing
more complex explanations based upon the basic building blocks
provided by canned explanations. The composition of complex ex-
planations is the logical step up following the composition of com-
plex contexts already implemented in the ContextEngine.

Before we look at the extension of ContextEngine by adding the
capability to store and provide basic canned explanations, we de-
scribe a use case scenario of ContextEngine.

3 Use Case Scenario
Large building construction processes involve the collaboration of
a number of workers. The increasing complexity of the projects
requires sophisticated solutions for collaboration and communica-
tion management between multiple participants on construction sites.
Construction project managers, construction or design engineers and
project architects already use mobile devices to interact with each
other. By using handheld devices, collaborators can make decisions
and allocate tasks right away, although they need to have tools
adapted to their needs. Workflow management is a technology that

can assist to manage their collaborative work process and support
cooperation. Moreover, if workflows are context driven, the coopera-
tive effort can be more dynamic, efficient and adapted for their needs.
For example, knowing the current work context of fellow collabora-

Figure 2. Context Aggregation for Collaborator’s Availability

tors can assist in task allocation. The context information can depend
on a number of other contexts as illustrated in Figure 2. A worker’s
availability depends on factors such as presence on site, location of
site and current work status. If the worker is present on the construc-
tion site at a particular location and the status is set to AVAILABLE,
the context information of the worker’s Availability is set to YES.

Listing 1. Context Hierarchy Definition for Availability
L i s t i n g 1 :
c s = I C o n t e x t s D e f i n i t i o n . S tub . a s I n t e r f a c e (s e r v i c e) ;
t r y {

cs . r e g i s t e r P r e f e r e n c e C o m p o n e n t (”On S i t e ” , ”STRING”) ;
c s . a d d C o n t e x t V a l u e s (”On S i t e ” ,

new S t r i n g []{ ”YES” , ”NO” }) ;
. . .
c s . r e g i s t e r C o m p o n e n t (” L o c a t i o n ”) ;
c s . a d d S p e c i f i c C o n t e x t V a l u e (” L o c a t i o n ” , ”BRENT” , 5 1 . 5 8 ,

−0.29) ;
c s . a d d S p e c i f i c C o n t e x t V a l u e (” L o c a t i o n ” , ”EALING” , 5 1 . 5 ,

−0.30) ;
. . .
c s . r e g i s t e r P r e f e r e n c e C o m p o n e n t (” S t a t u s ” , ”STRING”) ;
c s . a d d C o n t e x t V a l u e s (” S t a t u s ” , new S t r i n g []{ ”BUSY” , ”

AVAILABLE” , ”NOT SET” }) ;
. . .
c s . newComposite (” A v a i l a b i l i t y ”) ;
c s . addPre fToCompos i t e (”On S i t e ” , ” A v a i l a b i l i t y ”) ;
c s . addToComposi te (” L o c a t i o n ” , ” A v a i l a b i l i t y ”) ;
c s . addPre fToCompos i t e (” S t a t u s ” , ” A v a i l a b i l i t y ”) ;
. . .
c s . addRule (” A v a i l a b i l i t y ” ,

new S t r i n g []{ ”YES” , ”BRENT” , ”BUSY” } , ”NO”) ;
c s . addRule (” A v a i l a b i l i t y ” ,

new S t r i n g []{ ”YES” , ”BRENT” , ”AVAILABLE” } , ”YES”) ;
c s . addRule (” A v a i l a b i l i t y ” ,

new S t r i n g []{ ”NO” , ”EALING” , ”NOT SET” } , ”NO”) ;
. . .
c s . s t a r t C o m p o s i t e (” A v a i l a b i l i t y ”) ;
} c a t c h (RemoteExcep t ion r e) { r e . p r i n t S t a c k T r a c e () ;}

s e t u p C o n t e x t M o n i t o r () ;

The context hierarchy definition is illustrated in Listing 1. The
context information can be acquired and aggregated by Contex-
tEngine, which broadcasts the context information to the workflow
management system running on the same device. The workflow man-
agement system does not need to know all context values because
only the aggregated, final context information influences workflow
execution. Although workflow execution is driven only by the aggre-
gated context value of worker’s availability (YES or NO) the work-
flow management system would like to obtain a more detailed ex-
planation about the received context information. The explanation
might be used by different users for various purposes. For example,

27

a project manager might need to know why a construction engineer
is not available, whether he is not present on site or just currently
busy.

4 Integrating Explanations into the ContextEngine

A number of frameworks and techniques for handling context in-
formation in applications have been developed. The Context Toolkit
as one of the earlier works introduced the concept of context
widgets and explained how the widgets could be used to build
context-enabled applications [6]. A Java-based, lightweight context-
awareness framework called JCAF provided a compact Java API
and a service-oriented infrastructure for the development of a wide
range of context-aware applications [1]. The graphical Context Mod-
elling Language to specify the context information has been intro-
duced in [8]. The support for other significant characteristics of per-
vasive computing environments such as distribution, mobility and
heterogeneity of context sources was added in the MUSIC context
model [13]. Large scale scenarios have been addressed by devel-
oping shared global context models for context-aware applications
such as the Nexus approach [11]. While the frameworks addressed
various concepts of context management such as differentiation of
lower-level raw context data from higher-level derived context in-
formation, context aggregation and context querying, there was no
elaboration of adding explanations to describe the context informa-
tion to the software engineer and/or end-user. This last fact we find
intriguing as there is a wide variety on well-established research for
the necessity of and possibility for the generation of explanations
within context-aware systems.

As mentioned in section 2 there is a close relationship between
context-awareness and the need for as well as the possibilities to gen-
erate explanations [9]. The need for explanations is mainly given by
the black box characteristics and implicitness of the context detec-
tion and its influence on the behaviour of a system [4]. Next to this
increased necessity for explanations, context aware systems also of-
fer more possibilities to generate explanations. These possibilities
are provided by the gathering and use of context knowledge, describ-
ing the context a system is in. This context knowledge can be reused
to create explanations based upon it [12]. Also, explanations can be
used to gather context knowledge and thus establish a context for the
system based on knowledge gathered through, for example, questions
posed during a user dialogue. Next to the Context knowledge being
used for explanation generation itself there is also the possibility to
generate explanations from the formalisation approach used by the
system to store its context knowledge [3].

An important aspect within explanation-awareness is to differne-
ciate between possible user groups and their specific goals that mo-
tivate their use and/or demand of explanations. In our work three
kinds of users benefit from explanations: software engineers develop-
ing mobile applications, knowledge engineers modelling the domain
knowledge for the application, and end-users. Software Engineers,
either using another Software Engineers code or justifying their own
design decisions, would benefit from why explanations with the goal
to explain the purpose and use of design decisions, how explanations
with the goal to use rule traces to explain how the system established
its context, conceptualisations to explain the components involved in
establishing of a complex context modelled as a composite compo-
nent, and cognitive explanations to explain the behaviour of the sys-
tem. Knowledge Engineers would benefit from conceptualisations to
explain the concepts and relations of the domain the system works
in and cognitive explanations to explain the interrelation of different

Figure 3. Main classes of ContextEngine

Figure 4. Explanation classes

system behaviours and contexts, for example justifications for the se-
lection of rule sets. The end-user would benefit from conceptualisa-
tions to explain new system components within the system’s domain,
why explanations with the goal to explain the quality or expectancies
of a result the system provided with the aim to provide feedback to
the system.

Before we go into detail on how we integrated the kinds of ex-
planation mapped to the users of the application we examine the im-
plementation of ContextEngine before the integration of explanation
capabilities. ContextEngine provides context knowledge using three
classes: Component, CompositeComponent, and Rule (Fig. 3). Com-
ponent is a self-contained class and manages a particular context.
The attributes of the Component class are its name, current context
value, date of context change and a set of values that it can be set
to. Context information is characterised by the KEY-VALUE model
complemented by date which refers to the time of the last context
change. The valid context values of a component are defined by val-
uesSet. The basic functionalities of component include obtaining raw
context data from context sources, deriving high-level context infor-
mation and sending notifications about context changes to all inter-
ested parties. CompositeComponent manages aggregated, high-level
context information. The class inherits all constructs and behaviour
from the Component class. In addition, it has the ability to obtain
notifications about context changes from its children and derive an
aggregated context value by using rules. CompositeComponents can
be constructed and assembled at runtime. Instances of the Rule class
provide rules, based on a simple context values matching method,
and are used to derive aggregated context values. The uniform rule
format allows composition of different types of contexts. Rules can
be defined at runtime.

To this structure we added a fourth class: Explanation. This class is
an abstract class providing the functionalities to store and provide ex-
planatory artefacts (Fig. 4). The Explanation class can store a string
as a canned text explanation, an ‘explanation snippet’, or a URL that

28

can be used to point to any resource that can serve as an explana-
tory artefact, for example a picture or diagram available online. To
accommodate for the various kinds of explanations, the Explanation
class is associated with the Kind class. Its functionality is inherited to
five subclasses extending the Kind class. These five extension classes
are implementing the five kinds of explanations: Conceptualisation,
Cognitive-, Purpose-, Why- and How-explanations described in sec-
tion 2.1. By extending the Explanation class with ‘Kind (of expla-
nation)’ classes we are able to provide specific additional data and
functionalities for each kind of explanation.

Figure 5. SimpleExplanation directly associated with Component

We distinguish two types of explanation classes: SimpleExplana-
tion and ComplexExplanation. A simple explanation is directly asso-
ciated with each context component as shown in Fig. 5. Simple expla-
nations contain basic information concerning the particular context.

Figure 6. Explanation associated with rule

We also generate explanations by associating the Rule class with
the Explanation class and thus force every rule to have a correspond-
ing explanation (Fig. 6). The way this association is implemented is
to provide simple explanations for every component involved within
a rule. By doing so, we can provide simple canned explanations for
every component involved in a complex context component. The
association of rules with explanations also provides us with an ap-
proach to provide composed explanations. This is done by explaining
the value sets of the rule and its subsequent overall result state, rep-
resenting a complex context which is encoded in a composite com-
ponent, being present or absent. Thus we are able to provide expla-
nations about composite components and thus complex contexts.

4.1 Walkthrough of explanation generation
As described in section 3 we assume a use case scenario placed on a
construction site and dealing with the task of establishing the avail-
ability context of a co-workers. Next to establishing, composing and
communicating this context we are now also able to explain a se-
ries of facts involved in establishing said context. With the additional
classes described above we are able to provide the following simple
explanations as canned explanations:

• Conceptualisations for the three components: ‘On Site’, ‘Loca-
tion’, ‘Status’ and the ComplexComponent ‘Availability’. For ex-
ample, the sentence ‘On Site means the Person is not further away
than 500 Meters from the construction site.’ explains the meaning
of the term ’On Site’. Such an explanation serves the explanation
goal of learning by providing information about concepts previ-
ously unknown to the user.

• Justifications for the use of exactly the three Components ‘On
Site’, ‘Location’ and ‘Status’ to model the ComplexComponent
’Availability’. For example this could explain that these three cri-
teria are minimal to describe the presence and availability of a
co-worker. Such an explanation serves the explanation goal of jus-
tifying the composition of a context.

• Cognitive explanations as to why the ComplexComponent ‘Avail-
ability’ has a certain value (Yes or No) in the form of explaining
the rule trace involved in establishing the final value for ‘Availabil-
ity’. For example such a rule trace can generate the explanation:
The co-worker is not available due to the one ore more of the Com-
ponent(s) X (X = Either ‘On Site’, ‘Location’ and ‘Status’) having
a negative value. Such an explanation would serve the explanation
goal of transparency.

The canned explanations are designed by the knowledge engineer
or the software engineer. So the explanations are integrated during
the implementation of the application. The Application, using Con-
textEngine, can then use the stored strings or URLs to produce ad-
equate explanations within its GUI when such an explanation is de-
manded by the end user. For the composition and use of complex
explanations please see the following section of this paper.

4.2 Composing complex explanations
A complex context is composed of a set of simple components that
are linked by one or more rules. The state of a complex context is
thus represented by the result value(s) of the rule(s), based on the
particular values of the rule-composing components. ContextEngine
can provide complex canned explanations for complex contexts in
the following two ways:

• Firstly, the explanations are pre-defined and supplied to the Con-
textEngine when context aggregation and it’s corresponding rules
are defined.

• Secondly, the explanations can be generated at run-time.

Each particular rule and thus each complex context can be asso-
ciated with canned explanations. Consider the following rule and
it’s sample value-set describing the complex context ‘Availability’:
R1({YES,BRENT,BUSY}, NO). The value set for the rule says that
the particular worker is on site (component ‘On Site’ has the value
YES), he is in Brent (component ‘Location’ has the value Brent),
but the value for the atomic component ‘Status’ is currently BUSY,
therefore the aggregated value of the rule and thus the complex con-
text ‘Availability’ is NO. We can use this rule approach to associate
the overall rule and thus a complex context with the following kinds
of explanations:

• Conceptualisations: Explain the meaning of the complex context
(rule): ‘Availability means that the worker is present at a location
and is not busy’.

• Cognitive explanation: Explain the behaviour of the complex con-
text (rule): ‘Availability will be NO if either he is not at the location
or busy or both.’

• Purpose explanation: Explain the purpose of the complex con-
text (rule): ‘The aggregated context ‘Availability’ represents co-
worker’s availability and is used to drive workflow execution.’

An implementation of such canned why explanations for different
value sets of the involved components is given by the code snippet in
Listing 2 that defines three different why explanations for the value
of the rule that describes the complex context ‘Availability’.

29

Listing 2. Explanations added to the context definition
cs = I C o n t e x t s D e f i n i t i o n . S tub . a s I n t e r f a c e (s e r v i c e) ;
t r y {

cs . addRule (” A v a i l a b i l i t y ” , ”A−Rule1 ” ,
new S t r i n g []{ ”YES” , ”BRENT” , ”BUSY” } , ”NO” ,
” The worker i s n o t a v a i l a b l e b e c a u s e t h e worker

i s p r e s e n t on s i t e i n B r e n t b u t i s busy . ” , ”
why”) ;

c s . addRule (” A v a i l a b i l i t y ” , ”A−Rule2 ” ,
new S t r i n g []{ ”YES” , ”BRENT” , ”AVAILABLE” } , ”YES” , ”

The worker i s a v a i l a b l e b e c a u s e t h e worker
i s p r e s e n t on s i t e i n B r e n t and c u r r e n t l y
n o t busy . ” , ”why”) ;

c s . addRule (” A v a i l a b i l i t y ” , ”A−Rule3 ” ,
new S t r i n g []{ ”NO” , ”EALING” , ”NOT SET” } , ”NO” , ” The

worker i s n o t a v a i l a b l e b e c a u s e t h e worker
i s n o t p r e s e n t on any s i t e . ” , ”why”) ;

c s . s t a r t C o m p o s i t e (” A v a i l a b i l i t y ”) ;
} c a t c h (RemoteExcep t ion r e) { r e . p r i n t S t a c k T r a c e () ;}

s e t u p C o n t e x t M o n i t o r () ;

Cognitive Explanations (based on the last child’s context change
that caused the change of the aggregated context value): ‘The worker
is available: ’ + NO + ’Because his/her ’ + STATUS + ’ has been set
to ’ + BUSY.

Next to the approach of providing canned explanations for a com-
plex context at whole during the design of the rules describing a
complex context, the second approach ContextEngine offers is given
by the possibility to compose complex explanations at runtime. This
composition is based on value changes of the components that com-
pose the complex context. Such a value change can lead to a change
of the state of the overall complex context. To explain to the user, why
the complex context has changed ContextEngine provides cognitive
explanations based on the last child’s context change that caused the
change of the aggregated context value. An example for the gener-
ation of such a why explanation is given by the following snippet
from the ‘Availability’ context: ‘The worker is available: ’ + NO +
’Because his/her ’ + STATUS + ’ has been set to ’ + BUSY.

We also aim to compose a complex explanation by chaining the
available explanatory artefacts from the components with predefined,
linking, string-snippets, e.g. ‘because of’, ‘is due to’ and possibly
link them in a simple logical approach relying on simple operations
like AND, OR and NOT.

5 Summary and Outlook
In this paper we extended ContextEngine with explanation capabili-
ties. We examined the approach used within ContextEngine to break
up complex contexts into simpler components by describing them
and then composing complex contexts using rules. The rules describe
value-sets assigned to a number of defined features composing a sin-
gle complex context. We also motivated the need for explanations
within mobile applications. We did so by examining the goals and
kinds of explanations that can be generated within an application.
We demonstrated how we reused the approach of ContextEngine
to assemble complex contexts from simple components to provide
canned, as well as some composed explanations. An example real
world use case application illustrated the enhanced ContextEngine.
We focused on the provision of simple canned explanations as a be-
ginning but also started to outline how we further plan to compose
more complex explanations by reusing the approach of the composi-
tion of complex contexts employed by the ContextEngine.

For the future we are planning to diversify our view of the user
even further. Whereas we are now only differentiating into Software/-
Knowledge engineer and end user, we plan for the future to further
diversify into experienced and novice users.

We further think about a possible extension of the composition
of complex contexts within ContextEngine. Rules composing con-
texts and associated explanations comprise certain knowledge about

a given situation. Should no rule sufficiently describe a context, i.e.,
the knowledge about a given situation is uncertain, a case-based ap-
proach might be successful in determining the context together with
the most fitting explanation. This idea of canned explanations being
cases aims at providing a more robust and versatile approach to the
composition of complex contexts that can be seen as an extension
method referred to, if, and only if, the rule-based approach of estab-
lishing a complex context should fail in the first place.

Acknowledgement
This work was supported by the UK Research Assessment Exercise
(RAE) funded project Explanation-aware myCBR Development.

REFERENCES
[1] J. Bardram, ‘The java context awareness framework (JCAF) - service

infrastructure and programming framework for context-aware applica-
tions’, in Proceedings of the Third international conference on Perva-
sive Computing, pp. 98–115, (2005).

[2] M. Bonnie, ‘Trust in automation: Part i. theoretical issues in the study
of trust and human intervention in automated systems’, Ergonomics,
37(11), 1905–1922, (1994).

[3] P. Brézillon, ‘Context dynamic and explanation in contextual graphs’,
Modeling and Using Context, 94–106, (2003).

[4] A.K. Dey B.Y. Lim and D. Avrahami, ‘Why and why not explanations
improve the intelligibility of context-aware intelligent systems’, in Pro-
ceedings of the 27th international conference on Human factors in com-
puting systems, pp. 2119–2128. ACM, (2009).

[5] S. Oussena T. Clark D. Kramer, A. Kocurova and P. Komisarczuk, ‘An
extensible, self contained, layered approach to context acquisition’, in
Proceedings of the Third International Workshop on Middleware for
Pervasive Mobile and Embedded Computing, M-MPAC ’11, pp. 6:1–
6:7, New York, NY, USA, (2011). ACM.

[6] A.K. Dey D. Salber and G.D. Abowd, ‘The context toolkit: aiding the
development of context-enabled applications’, in Proceedings of the
SIGCHI conference on Human factors in computing systems: the CHI
is the limit, pp. 434–441. ACM, (1999).

[7] P. Brown N. Davies M. Smith G. Abowd, A. Dey and P. Steggles, ‘To-
wards a better understanding of context and context-awareness’, in Pro-
ceedings of the 1st international symposium on Handheld and Ubiqui-
tous Computing, pp. 304–307. Springer, (1999).

[8] K. Henricksen and J. Indulska, ‘Developing context-aware pervasive
computing applications: Models and approach’, Pervasive and Mobile
Computing, 2(1), 37–64, (2006).

[9] A. Kofod-Petersen and J. Cassens, ‘Explanations and context in ambi-
ent intelligent systems’, Modeling and Using Context, 303–316, (2007).

[10] L.F. Pires L.M. Daniele, E. Silva and M. Sinderen, ‘A SOA-based
platform-specific framework for context-aware mobile applications’, in
Enterprise Interoperability, eds., Wil Aalst, John Mylopoulos, Michael
Rosemann, Michael J. Shaw, Clemens Szyperski, Raúl Poler, Marten
Sinderen, and Raquel Sanchis, volume 38 of Lecture Notes in Business
Information Processing, 25–37, Springer Berlin Heidelberg, (2009).

[11] N. Honle U.P. Kappeler D. Nicklas M. Grossmann, M. Bauer and
T. Schwarz, ‘Efficiently managing context information for large-scale
scenarios’, in Proceedings of the Third IEEE International Conference
on Pervasive Computing and Communications, pp. 331–340, (2005).

[12] P. Öztürk and A. Aamodt, ‘A context model for knowledge-intensive
case-based reasoning’, International Journal of Human Computer Stud-
ies, 48, 331–356, (1998).

[13] M. Khan K. Geihs J. Lorenzo M. Valla C. Fra N. Paspallis R. Reichle,
M. Wagner and G. Papadopoulos, ‘A comprehensive context model-
ing framework for pervasive computing systems’, in Proceedings of the
Eighth Conference on Distributed applications and interoperable sys-
tems, pp. 281–295, (2008).

[14] R.P. Abelson R.C. Schank et al., Scripts, plans, goals and understand-
ing: An inquiry into human knowledge structures, volume 2, Lawrence
Erlbaum Associates Hillsdale, NJ, 1977.

[15] T. Roth-Berghofer and J. Cassens, ‘Mapping goals and kinds of expla-
nations to the knowledge containers of case-based reasoning systems’,
Case-Based Reasoning Research and Development, 451–464, (2005).

30

Author Index

Bader, Sebastian 1
Bex, Floris 6
Budzynska, Katarzyna 6

Dengel, Andreas 11

Forcher, Björn 11

Gandon, Fabien 16
Gillmann, Michael 11

Hasan, Rakebul 16

Kapetanakis, Stelios 21
Kocurova, Anna 26
Kramer, Dean 26

Petersen, Nils 11
Petridis, Miltos 21

Roth-Berghofer, Thomas 26

Sauer, Christian Severin 26

Tuncer, Zeynep 11

Walton, Douglas 6

	INTRODUCTION
	PRELIMINARIES AND RELATED WORK
	EXPLAINING A RULE-BASED CONTROL SYSTEM
	Goal- and Rule-based Control
	Explanation Types in Smart Environments
	Explanation Graphs
	Discourse Representation Structures and Natural Language Generation
	Answering Why Questions
	Answering Why-not and other Questions
	Evaluation

	CONCLUSIONS AND FUTURE WORK

