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Abstract

We explore the relationship between Brouwer’s intuitionistic mathe-
matics and Euclidean geometry. Brouwer wrote a paper in 1949 called The
contradictority of elementary geometry. In that paper, he showed that a
certain classical consequence of the parallel postulate implies Markov’s
principle, which he found intuitionistically unacceptable. But Euclid’s
geometry, having served as a beacon of clear and correct reasoning for
two millennia, is not so easily discarded.

Brouwer started from a “theorem” that is not in Euclid, and requires
Markov’s principle for its proof. That means that Brouwer’s paper did not
address the question whether Euclid’s Elements really requires Markov’s
principle. In this paper we show that there is a coherent theory of “non-
Markovian Euclidean geometry.” We show in some detail that our theory
is an adequate formal rendering of (at least) Euclid’s Book I, and suf-
fices to define geometric arithmetic, thus refining the author’s previous
investigations (which include Markov’s principle as an axiom).

Philosophically, Brouwer’s proof that his version of the parallel pos-
tulate implies Markov’s principle could be read just as well as geometric
evidence for the truth of Markov’s principle, if one thinks the geometri-
cal “intersection theorem” with which Brouwer started is geometrically
evident.
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1 Introduction

Brouwer, in founding the philosophy of mathematics known as “intuition-
ism”, rejected many of the mathematical results that were obtained in the
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nineteenth century or before. The rejected body of mathematics has be-
come known as “classical mathematics”. The word “classical” also brings
to mind the world of ancient Greece, where Euclid and his predecessors
laid the foundations of modern mathematical reasoning in the third cen-
tury BCE. Euclidean geometry was for two millennia the sine qua non of
careful reasoning; every educated person in Europe studied it; the Amer-
ican Declaration of Independence was modeled on Euclidean reasoning.
Brouwer did not directly challenge Euclid by name in any publication,
but in 1949 he published a paper [7] with the title, Contradictority of
Elementary Geometry.

Brouwer was never much of a diplomat. If his personality had been
more diplomatic, he might have pointed out that, on a certain reading,
certain theorems of elementary geometry related to the parallel postulate
may seem (intuitionistically) contradictory; but that every classical theo-
rem permits various refinements, once constructive distinctions are taken
into account, and Euclid’s parallel postulate and its consequences are not
exceptions.

What would Euclid have written, if he had come after Brouwer, instead
of before? Of course, he would not have thrown up his hands, thinking
geometry is contradictory, and gone into investment banking instead. We
will show in this paper that, if one is careful about the formulation of
the axioms, Euclidean geometry is perfectly consistent with Brouwer’s
intuitionism.

What Brouwer calls a “contradiction” has two parts: (i) Brouwer re-
jects a certain property of the ordering of points on a line known as
Markov’s principle, and (ii) Brouwer shows that a certain “intersection
theorem” (a classical consequence of Euclid’s parallel postulate) implies
Markov’s principle, even though it appears not to imply the law of the ex-
cluded middle. This result would be better summarized by the statement

Intuitionistic “elementary geometry” must distinguish between
different propositions classically equivalent to Euclid’s parallel
postulate.

In previous work [4, 3], such distinctions were made, and a coherent
theory of constructive geometry developed. But that theory would not
have met with Brouwer’s approval, because Markov’s principle is assumed
as an axiom. The reason for that was simple pragmatism: it enables one
to argue by contradiction and cases, as long as one is trying to prove
betweenness and congruence assertions about specific points, rather than
assertions that more points exist with certain properties.1

Thus, the door is open (and has been open for 68 years) for a de-
velopment of Euclidean geometry that explicitly avoids not only the law
of the excluded middle, but also Markov’s principle. We call this theory
“non-Markovian Euclidean geometry”, or for short just “non-Markovian
geometry.” Perhaps it should be called “intuitionistic geometry”, if one
feels that the rejection of Markov’s principle is fundamental to intuition-
ism.

1For logicians: allowing Markov’s principle enabled the double negation interpretation to
work, allowing the “importation” of a certain class of geometrical results, whose classical
proofs are long and complicated.
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The key concepts of non-Markovian geometry are the concepts of “dis-
tinct points” and “positive angles.” The concept that a and b are distinct
is written a#b, and is stronger than simple inequality a 6= b. Intuitively,
a#b means that we have a positive lower bound on how far apart a and b
are, although in axiomatic geometry there is of course no notion of “dis-
tance.” The concept that angle abc is “positive”, written 0 < abc, means
intuitively that we have a lower bound on how different the directions of
the rays bc and ba are.

Both these concepts will be defined in terms of betweenness and con-
gruence, rather than be introduced as primitive. In particular the correct
definition of “positive angle” is not obvious a priori. In order to ensure
that the axioms do not imply Markov’s principle immediately, Pasch’s ax-
iom must be restricted to assume that certain angles are positive. Then
the definition of “positive angle” must be broad enough to permit the ap-
plications of Pasch that are needed to “bootstrap” geometry. But finally,
we should be able to prove that a positive angle is simply the apex angle
of an isosceles triangle (whose three points are distinct). Then Euclid
Book I can be proved, when angles are assumed to be positive (and have
positive supplements) and triangles, by definition of “triangle”, have dis-
tinct vertices. In the last section we give a metamathematical theorem to
the effect that this claim can be extended to (at least) Books II and III
as well.2

There have been some papers on related subjects in the seven decades
since Brouwer’s rejection of “elementary geometry”, and the obligation
arises to explain in what relation the present work stands to those papers.
Almost all of those papers were about projective geometry, or affine geom-
etry, or Desarguesian geometry, rather than Euclidean geometry, and also
were based on (or included) apartness, which is rejected in this work. Here
is a brief, possibly incomplete, list of such papers. The first was Heyting’s
1925 thesis (published two years later as [12] and again 34 years later as
[13].) Heyting’s student van Dalen continued work on intuitionistic pro-
jective spaces in [30, 31, 32]; see also [34] and [20, 21, 23, 22]. Aside from
the previous work of the present author [3, 5], the only previous paper on
constructive Euclidean geometry was by Lombard and Vesley [19], who
followed Heyting in taking apartness as primitive.

2 Versions of the parallel postulate

The “parallel postulate” of Euclid has been reformulated many times in
the history of geometry, as efforts to prove it led instead to many different
equivalent propositions. But not all these versions are equivalent using
intuitionistic logic. Euclid’s version requires two lines to meet, if two
specified angles “make less than two right angles.” A different version due
to the Englishman Playfair (1729), was popularized by Hilbert; it asserts
the impossibility of two different lines parallel to a given line through the
same point. In so doing it makes no existential assertion, unlike Euclid’s
version, which asserts the existence of an intersection point.

2This claim cannot be taken too literally, as of course Euclid does contain gaps and errors.
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In this section, we will review several versions of the parallel postulate,
and then discuss Brouwer’s 1949 proof. All these versions of the parallel
postulate, including Euclid’s own, are consistent with intuitionistic logic.
Brouwer’s paper shows that his version of the parallel postulate implies
a certain ordering principle, known as Markov’s principle, which Brouwer
believed to be contrary to the nature of the intuitionistic continuum, for
reasons far removed from Euclidean geometry.

2.1 Euclid’s parallel axiom

Euclid’s postulate 5 is

If a straight line falling on two straight lines make the interior
angles on the same side less than two right angles, the two
straight lines, if produced indefinitely, meet on that side on
which are the angles less than the two right angles.

We consider the formal expression of Euclid’s parallel axiom. Let L
and M be two straight lines, and let pq be the “straight line falling on”
L and M , with p on M and q on L. We think that what Euclid meant
by “makes the interior angles on the same side less than two right angles”
was that, if K is another line through p, making the interior angles with
pq equal to two right angles, then M would lie in the interior of one of
those interior angles (see Fig. 1).

Euclid did not define “angle”, and did not define “lies in the interior of
an angle”, but these issues of precision have little to do with intuitionism.
Assuming for the moment that we understand the notions of “angle” and
“alternate interior angle”, then we can state Euclid’s parallel axiom, using
three more points to “witness” that one ray of line M emanating from p
lies in the interior of one of the interior angles made byK. Fig. 1 illustrates
the postulate. The point asserted to exist is shown by a small open circle
(a convention we will follow throughout).

b
p

b

a

b

q

b
r

L

K

M

Figure 1: Euclid 5: M and L must meet on the right side, pro-
vided B(q, a, r) and pq makes alternate interior angles equal with
K and L.

In this formulation, the point is asserted to exist “on the right side”;
more precisely, “on the same side of pq as a.” Euclid did not define “on
the same side of”, although his postulate uses that phrase. That notion
was, apparently, first defined by M. Pasch in 1882 (on page 27 of [25]).
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2.2 Playfair’s axiom

“Playfair’s axiom” is the version of the parallel axiom adopted by Hilbert
in [15]. That version, unlike all the other versions, makes no existence
assertion at all, but only asserts that there cannot exist two different lines
parallel to a given line through a given point.

b
p

L

K

M

Figure 2: Playfair: if K and L are parallel, M and L are not
parallel.

The conclusion of Playfair’s axiom is that M and L are not parallel. By
definition, parallel lines are lines that do not meet, so the conclusion is that
M and L cannot fail to meet. That is, not not there exists an intersection
point. Since ¬¬∃ is equivalent to ¬∀¬, no existential quantifier is needed
to express Playfair’s axiom.

2.3 Brouwer’s intersection theorem

Brouwer considers a version of the parallel postulate similar to Euclid’s,
but without the “witness” a in the hypothesis testifying to the side on
which the angles are less than a right angle. It is similar to a variant of
Playfair’s axiom in which “M and L cannot fail to meet” is replaced by
“M and L meet.” Rather than calling it a “postulate”, Brouwer refers to
the “intersection theorem of Euclidean plane geometry”, which he states
as “a common point can be found for any two lines a and ℓ in the Euclidean
plane which can neither coincide nor be parallel.” See Fig. 3.
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q
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M

Figure 3: Brouwer’s intersection theorem: M and L must meet,
provided pq makes alternate interior angles equal with K and L.

This version of the parallel postulate was rediscovered (or re-invented?)
in [2, 4], where it was called the “strong parallel postulate.” There it was
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introduced in an axiomatic setting that included the stability of between-
ness, or Markov’s principle. As we shall discuss below, this version of the
parallel postulate, in the absence of Markov’s principle, needs a stronger
hypothesis to make constructive sense: he should have required that M
and K make a positive angle, i.e., are “positively non-collinear”. Without
that hypothesis, it is hardly surprising that Brouwer’s intersection the-
orem implies Markov’s principle, for the hypothesis that M and K are
unequal lines is a negative one, but the conclusion that M meets L is a
positive one.

2.4 Euclid 5 formulated in Tarski’s language

Euclid’s version of the parallel postulate mentions angles, and the concept
of “corresponding interior angles” made by a transversal. Here we give a
formulation of Euclid’s parallel postulate, expressed without mentioning
angles. Tarski’s well-known axiomatization of geometry only talks about
points; angles are discussed indirectly, as triples of points; hence it is of
interest to formulate Euclid 5 in that language. See Fig. 4. In order
to eliminate the hypothesis about alternate interior angles, we replace it
by the hypothesis that the shaded triangles in the figure are congruent.
Congruence of triangles just means that the corresponding sides are con-
gruent. This formulation of the axiom then mentions only points and the
relations of betweenness and congruence, yet it is conceptually faithful to
Euclid’s formulation. There are dozens of propositions that are classically
equivalent to Euclid 5, and Tarski chose a different one of those to serve
as his parallel axiom; but we wish to follow Euclid closely.
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q
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b
r
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t

L

K

M

Figure 4: Euclid 5. Transversal pq of lines M and L makes corre-
sponding interior angles less than two right angles, as witnessed
by a. The shaded triangles are assumed congruent. Then M

meets L as indicated by the open circle.

3 Constructive Euclidean geometry

3.1 Is Euclid constructive?

In constructive mathematics, if one proves something exists, one has to
show how to construct it. In Euclid’s geometry, the means of construction
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are not arbitrary computer programs, but ruler and compass. Therefore it
is natural to look for quantifier-free axioms, with function symbols for the
basic ruler-and-compass constructions. The terms of such a theory cor-
respond to ruler-and-compass constructions. These constructions should
depend continuously on parameters, since we want to allow an interpre-
tation of geometry in which the points are given by successive approxi-
mations. We can see the continuity of ruler-and-compass constructions
dramatically in computer animations, in which one can select some of the
original points and drag them, and the entire construction “follows along.”
We expect that if one constructively proves that points forming a certain
configuration exist, then the construction can be done “uniformly”, i.e.,
by a single construction depending continuously on parameters.

To illustrate what we mean by a uniform construction, we consider an
important example. There are two well-known classical constructions for
constructing a perpendicular to line L through point p: one of them is
called “dropping a perpendicular”, and works when p is not on L. The
other is called “erecting a perpendicular”, and works when p is on L.
Classically we may argue by cases and conclude that for every p and L,
there exists a perpendicular to L through p. But constructively, we are
not allowed to argue by cases. If we want to prove that for every p and L,
there exists a perpendicular to L through p, then we must give a single,
“uniform” ruler-and-compass construction that works for any p, whether
or not p is on L.

The other type of argument (besides argument by cases) that is fa-
mously not allowed in constructive mathematics is proof by contradiction.
There are some common points of confusion about this restriction. The
main thing one is not allowed to do is to prove an existential statement by
contradiction. For example, we are not allowed to prove that there exists
a perpendicular to L through x by assuming there is none, and reaching
a contradiction. From the constructive point of view, that proof of course
proves something, but that something is weaker than existence. We write
it ¬¬∃, and constructively, one cannot delete the two negation signs.

However, when proof by contradiction is used only to prove that two
points are equal, or two segments are congruent, or that one point is be-
tween two others, the situation seems qualitatively different. There is no
“existential information” missing from such a proof. Nothing is being as-
serted to exist, let alone being asserted to exist without being constructed.
The question then arises, whether such proofs are constructively accept-
able. That is, whether one is or one is not allowed to prove equalities,
congruences, and inequality or order relations between points by contra-
diction. Consider for the moment two points x and y on a line. If we
derive a contradiction from the assumption x 6= y, then x = y. Formally
this becomes the implication

¬x 6= y → x = y.

In the style of Euclid: Things that are not unequal are equal. It has its
intuitive grounding in the idea that x = y does not make any existential
statement. This principle is named “the stability of equality.” (Generally
any relation is “stable” if it is implied by its double negation.)
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The principle that x < y can be proved by contradiction can be ex-
pressed by

¬¬ x < y → x < y.

or equivalently
¬ y ≤ x→ x < y.

Since order on a line is not a primitive relation in geometry, we consider
instead the corresponding axiom for the betweenness relation, namely

¬¬B(a, b, c) → B(a, b, c).

This is known as “the stability of betweenness.” It is also known as
“Markov’s principle”, since it was adopted by Markov as a basic principle
of Russian constructive mathematics.

Here is a geometric way of thinking about Markov’s principle, rather
than as a principle about ordering the continuum. Markov’s principle
reduces to the assertion that, given two points s and t, we can find two
circles with centers s and t that separate the two points. The obvious
candidate for the radius is half the distance between s and t, so the ques-
tion boils down to Markov’s principle for numbers: if that radius is not
not positive, must it be positive? The stability of betweenness thus has
the same philosophical status as Markov’s principle: it is self-justifying,
not provable from other constructive axioms, and leads to no trouble in
constructive mathematics, while simplifying many proofs.

Brouwer was not a person to accept a principle because it was useful,
convenient, and apparently harmless, in the sense that it does not interfere
with the constructibility of solutions proved to exist with its aid. Before
Brouwer would accept a principle, he wanted it to be true, and he saw no
reason why Markov’s principle has to be true.

3.2 The form of Euclid’s theorems and proofs

It is helpful to remember that Euclid did not work in first-order logic. His
theorems, and their proofs, have a fairly simple structure: Given some
points, lines, and circles bearing certain relations, then there exist some
further points bearing certain relations to each other and the original
points. This logical simplicity implies that (although this may not be
obvious at first consideration) if we allow the stability axioms for equality
and betweenness, then essentially the only differences between classical
and constructive geometry are the two requirements:

• You may not prove existence statements by contradiction; you must
provide a construction.

• The construction you provide must be uniform; that is, it must be
proved to work without an argument by cases.

Sometimes, when doing constructive mathematics, one may use a men-
tal picture in which one imagines a point p as having a not-quite-yet-
determined location. For example, think of a point p which is very close
to line L. We may turn up our microscope and we still can’t see whether
p is or is not on L. We think “we do not know whether p is on L or not.”
Our construction of a perpendicular must be visualized to work on such
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points p. Of course, this is just a mental picture and is not used in actual
proofs. It can be thought of as a way of conceptualizing “we do not have
an algorithm for determining whether p is on L or not.”

We illustrate these principles with a second example. Consider the
problem of finding the reflection of point p in line L. Once we know how
to construct a perpendicular to L through p, it is still not trivial to find
the reflection of p in L. Of course, if p is on L, then it is its own reflection,
and if p is not on L, then we can just drop a perpendicular to L, meeting
L at the foot f , and extend the segment pf an equal length on the other
side of f to get the reflection. But what about the case when we do not
know whether p is or is not on L? Of course, that sentence technically
makes no sense; but it illustrates the point that we are not allowed to
argue by cases. The solution to this problem may not be immediately
obvious; see [4].

The description given above of the form of Euclid’s theorems is sup-
ported by Avigad et. al. in [1]:

Euclidean proofs do little more than introduce objects satisfy-
ing lists of atomic (or negation atomic) assertions, and then
draw further atomic (or negation atomic) conclusions from
these, in a simple linear fashion. There are two minor depar-
tures from this pattern. Sometimes a Euclidean proof involves
a case split; for example, if ab and cd are unequal segments,
then one is longer than the other, and one can argue that a
desired conclusion follows in either case. The other exception
is that Euclid sometimes uses a reductio; for example, if the
supposition that ab and cd are unequal yields a contradiction
then one can conclude that ab and cd are equal.

These arguments are constructively acceptable, if we have the stability
of congruence and betweenness. In [4], several examples such arguments
in Euclid are examined, including I.6 and I.24. If the conclusion is a
congruence or equality statement, even an argument based on “of two
unequal segments, one is longer than the other” does not require Markov’s
principle, but only the stability of congruence.

3.3 Euclidean geometry with Markov’s principle

In [4], I advocated adopting the stability of equality, congruence, and be-
tweenness as axioms of constructive geometry. In particular, I argued that
Euclid Books I-IV can be formalized using intuitionistic logic plus those
two stability principles, using Euclid’s version of the parallel postulate in-
stead of Hilbert’s, and otherwise making no changes in Hilbert’s axioms.
In [3], a version of constructive Euclidean geometry is given that is based
on Tarski’s language and axioms, slightly modified. In addition to using
Euclid 5 instead of Tarski’s parallel axiom, we found it necessary to use
strict betweenness. Hilbert used strict betweenness, but Tarski used non-
strict betweenness. To avoid confusion, in this paper we use B(a, b, c) for
strict betweenness and T(a, b, c) for non-strict betweenness (T being the
first initial of “Tarski”). For details of the axioms see [3]; the essential
idea is that after replacing T by B, we have to “put back” some axioms
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that Tarski originally used, but later found clever derivations of from the
remaining axioms, using in an essential way the “degenerate cases” of
those axioms where non-strict betweenness holds.

In these two long papers, I showed that Euclid 5 together with the
stability of congruence and betweenness allows the formalization, not only
of Euclid Books I–IV, but also of the construction of coordinates, so that
one can construct within geometry the field operations defined on a fixed
line L (taken as the x-axis).

The consistency of Euclidean geometry with stability axioms, at least
relative to classical Euclidean geometry, is obvious, since all the axioms
are classically valid. It may be more instructive to note that Euclidean
geometry also has a model in the recursive reals, i.e. those real numbers
given by recursive Cauchy sequences with a specified rate of convergence.
This model can be formalized in arithmetic, and the resulting interpre-
tation is, using standard recursive realizability, consistent with Markov’s
principle and Church’s thesis for arithmetic. Thus, also in the sense of
recursive mathematics, there is nothing inconsistent about the stability of
equality and betweenness.

Julien Narboux pointed out that the stability of equality can be derived
from the stability of congruence. The proof is given, in the context of
Tarski’s theories, in Lemma 7.1 of [4]. The converse is also easy to prove.
So there are really only two stability axioms to consider: stability of
congruence and stability of betweenness.

3.4 Angles and angle ordering

As is well-known, betweenness is never explicitly mentioned in Euclid.
There are three ways that betweenness occurs implicitly in the statements
of Euclid’s propositions: collinearity, ordering of segments, and ordering
of angles. Euclid takes these concepts as undefined, and assumes (in
the common notions) the basic properties of ordering. Hilbert also took
angles and congruence of angles as primitive notions, but unlike Euclid,
he defined angle ordering. Tarski defined all three notions. The basic
properties of angle ordering then become theorems. These developments
are spelled out in [26], Chapter 11, with attention to constructivity in [3],
§8.11. We here review that treatment to see whether and where Markov’s
principle was used.

The concept “x lies on Ray(b, a)” is needed to define angles. In
[3] §8.11, we defined “x lies on Ray(b, a)” by ¬(¬T(b, x, a)∧¬T(b, a, x)).
Here T is non-strict betweenness. That definition will not do if we do not
have Markov’s principle. Instead, we should use the definition

∃e (B(e, b, x) ∧B(e, b, a) ∧ eb = ea).

That is, x is on the opposite side of b from the reflection e of a in b. In
particular, the reflection e must exist for x to be on the ray. Of course, if
we assume Markov’s principle, then the two definitions are equivalent.

Then “abc and ABC are the same angle” means that the same points
lie on Ray(b, a) as on Ray(B,A) and the same points lie on Ray(b, c) as on
Ray(B,C). Then two angles abc and ABC are congruent if by changing
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a, c, A, and C to other points on those same rays, we can make ab = AB
and bc = BC and ac = AC.

We say “f lies in the interior of angle abc if there is a “crossbar” uv,
with u on Ray(b, a) and v on Ray(b, c), with u, b, and v distinct, and
for some point e we have B(u, e, v) and B(b, e, f). Then if f lies in the
interior of abc, it also lies in the interior of any a′bc′ that is the “same
angle” as abc.

4 Brouwer’s 1949 paper

4.1 What Brouwer actually proved

What did Brouwer mean by asserting the inconsistency of Euclidean geom-
etry? In this section we answer that question. Brouwer worked extensively
with “the continuum”, which we denote here by R. We refer to members
of the continuum as “real numbers”, rather than using Brouwer’s termi-
nologies for numbers given by certain kinds of sequences. Geometry has
a model in which the points are pairs of real numbers (x, y). We refer to
this model as “the model R2.”

Real numbers are given by sequences of rationals, and order in R is
defined in terms of order in the rationals and the concept of sequence, so
it implicitly depends on the natural numbers. Order in geometry, on the
other hand, is defined in terms of betweenness on a line, which in turn is
given by some axioms about betweenness. In Brouwer’s 1949 paper, he is
concerned only with the model R2 of geometry, and not with axiomatic
geometry.

Here is what Brouwer proved in [7]:

Theorem 1 (Brouwer) In the model R2, the statement “the strong par-
allel postulate implies Markov’s principle” holds.

Proof. Let L be the x-axis and P be the point (0, 1). Assume ¬¬ ǫ > 0.
Let a = (1, 1 − ǫ). According to the strong parallel principle, the line
through P and a meets L. The point of intersection is (x, 0), where by
similar triangles x is to 1 as 1 is to ǫ. (The existence of x is guaranteed
by the strong parallel postulate, not by division by ǫ, which would not
be legal under the weak assumption ǫ 6= 0.) Now Brouwer appeals to the
fact that R satisfies the Archimedean axiom: there is a positive integer
N , which Brouwer chooses in the form 2nℓ , greater than |x|. Now we
have x < N , and both sides of the inequality have multiplicative inverses.
Brouwer says (line 12 of his paper, where his ρℓ is our −ǫ)

ρℓ < −2−nℓ

or in our notation,

ǫ >
1

N
.

Brouwer offers no further justification, but we think some is necessary.
Now ǫ = 1/x, so to justify Brouwer’s conclusion we would need to infer
1/x > 1/N from x < N and the existence of 1/x and 1/N . We know
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N > 0, but we only know ¬¬ x > 0; hence we do not know xN > 0 and
the last step of the following argument cannot be carried out

1

x
− 1

N
=
N − x

xN
> 0

since the last step would require xN > 0, which we do not have. Instead,
we get only

¬¬ ǫ >
1

N
.

We can, however, justify Brouwer’s argument using apartness. The prin-
ciple of apartness, which holds in R

2, says that if α < β, then

z < β ∨ α < z.

It follows that if α > 0 and ¬¬ β > 0, then α+β > 0, since by apartness,
α + β > 0 ∨ α + β < α, and the second case, α + β < α, implies β < 0,
which contradicts ¬¬ β > 0. Applying this principle with β = 1/x− 1/N
and α = 1/2N , we have

1

x
− 1

N
+

1

2N
=

1

x
− 1

2N
> 0

and hence ǫ > 1/2N > 0 as desired. That completes the proof.

Brouwer used the Archimedean axiom to get a positive upper bound
on x. That is not necessary, and neither is the use of apartness. We now
show how to remove these two principles from Brouwer’s proof. First, we
observe that from the hypothesis ¬¬ ǫ > 0 and the equation x = 1/ǫ, we
have ¬¬ x > 0. From ¬¬ x > 0 we have ¬¬ x = |x|. By the stability of
equality, we have x = |x|.

Now, instead of using Archimedes’s axiom to get a positive upper
bound on x, we could just as well use |x|+ 1. Then we have

0 <
1

2(|x|+ 1)
<

1

|x| =
1

x
= ǫ

and hence ǫ > 0. The use of Archimedes’s axiom is a red herring (for this
proof—not necessarily in general for intuitionism). That Brouwer used
it anyway shows how far from Brouwer’s mind was any consideration of
whether his argument was first-order or not.

4.2 Implications of Brouwer’s theorem for

axiomatic geometry

Brouwer’s theorem is formulated as a theorem about the Euclidean plane
R

2. But for half a century already at the time of Brouwer’s publication,
ever since Hilbert’s 1899 book [15], geometry had moved on from dis-
cussing the one true plane to axiomatic formulations. In Brouwer’s paper,
he did not consider the question whether Markov’s principle is contradic-
tory in some axiomatic system for Euclidean geometry. That may have
been because of his aversion to axiomatics in general, or it may have been
the lack of any development at all of constructive Euclidean geometry at
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that time, or it may have been for some other reason entirely. But now,
the question seems natural.3 Can we use Brouwer’s proof to show that
the axioms of Euclidean geometry (as formulated for example in [3], but
without Markov’s principle) allow one to deduce Markov’s principle from
Brouwer’s version of the parallel axiom?

We showed above that Brouwer’s use of the Archimedean axiom and
his (implicit) use of apartness are easily eliminated. The one remaining
issue is his use of coordinate geometry. What Brouwer’s proof shows is
that, if some theory of Euclidean geometry suffices to define coordinates
and arithmetic, then in that theory, Brouwer’s version of the parallel pos-
tulate implies Markov’s principle. That is, after all, not too surprising,
given that the hypothesis of Brouwer’s “intersection theorem” is the neg-
ative statement that the two lines M and K are not identical, but the
conclusion is a positive existence statement. Markov’s principle is “built-
in.”

Later in this paper, we will give a formal theory EG for Euclidean
geometry without Markov’s principle. The theory EG plus Markov’s prin-
ciple has been extensively studied in [3, 4]. The fact that an attractive
theory of geometry can be formulated without using Markov’s principle
as an axiom, and without any obvious way to prove Markov’s principle,
leads to the following questions and conclusions:

(1) Does EG (which does not have MP) plus Euclid 5 suffice to define
coordinates and geometric arithmetic? For short we say “EG can define
arithmetic” to describe this property. We claim in this paper that EG can
define arithmetic.

(2) Then Brouwer’s proof shows that EG plus Brouwer’s intersection
theorem proves MP.

(3) We know [4] that EG + MP proves Brouwer’s intersection theorem,
which is there called the “strong parallel postulate”, or SPP for short.
Hence SPP is actually equivalent to MP in EG.

HA is “Heyting’s arithmetic”, the standard formal theory of arithmetic
with intuitionistic logic. In the context of HA, “Markov’s principle” is the
name usually given to

¬¬∃xP → ∃xP (P primitive recursive).

It is well-known (see e.g. [29]) that this principle is not provable in
HA. Consider the interpretation of EG in HA determined by representing
points as pairs of (indices of) recursive real numbers. To verify that the
interpretations of the axioms of EG are provable in HA, we do not need
Markov’s principle, since the stability of betweenness is not an axiom of
EG. We also do not need Markov’s principle to verify any of the other
axioms of EG, including Euclid 5, since the coordinates of the point as-
serted to exist by Euclid 5 involve only positive denominators. To show

3The referee pointed out that Brouwer was the thesis advisor, two years after the publica-
tion of the article on the contradictority of elementary geometry, of Johanna Adriana Geldof’s
thesis [9]. This thesis has nothing specifically intuitionistic in it, except one sentence near the
beginning saying that it assumes any two elements are either equal or not equal, and also
nothing specifically Euclidean, but it does show that Brouwer’s aversion to axiomatics was
not absolute.
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that EG does not prove the geometric Markov’s principle (stability of be-
tweenness) it therefore suffices to prove that the recursive interpretation of
the geometric Markov’s principle is equivalent to the arithmetic Markov’s
principle. But that is an easy exercise. Hence

(4) EG does not prove Markov’s principle.

Since Brouwer’s “intersection theorem” is equivalent to Markov’s prin-
ciple, EG does not prove that “theorem.” In particular Brouwer’s “inter-
section theorem” is not verifiable in the recursive interpretation (unless
we assume the arithmetic Markov principle).

Brouwer never mentioned (in the paper under consideration, or any-
where else as far as I know) Euclid, or Euclid’s axioms; nor did he men-
tion Hilbert, or Hilbert’s axioms, or any axiomatic system whatever. He
worked simply with the plane R

2 using coordinate geometry. He showed
that if R2 satisfies the “intersection theorem”, then R satisfies Markov’s
principle. The title of his paper, however, claims that “elementary ge-
ometry is contradictory.” To reach that conclusion from his result, one
would need to believe that the intersection theorem is part of elemen-
tary geometry, and that Markov’s principle is contradictory. Of course
the intersection theorem is a part of classical elementary geometry, but
its proof requires Markov’s principle, so it is not a part of intuitionistic
elementary geometry, unless one assumes Markov’s principle or an axiom
that implies Markov’s principle. In particular, the intersection theorem
in question does not follow from Euclid’s formulation of the parallel pos-
tulate.

4.3 Why did Brouwer reject Markov’s principle?

Brouwer had claimed in that same year (1949) in [8] that Markov’s prin-
ciple is contradictory. His proof used real numbers that are limits of
sequences generated by the “creative subject”, who is allowed to examine
at each stage of mathematical construction, all proofs developed at earlier
stages. Brouwer regarded this as an improvement over a paper published
the previous year [6], in which he showed that Markov’s principle was
“unlikely to be provable.” In view of these results, Brouwer viewed his
version of the parallel axiom as “contradictory.”

Here is a sketch of Brouwer’s refutation of MP, in more modern terms.
He used Kripke’s schema (KS), according to which any proposition φ is
equivalent to a proposition of the form α > 0, for some real number α.
Taking φ to be A ∨¬A, and noting that ¬¬ (A∨¬A) is intuitionistically
valid, we have ¬¬ α > 0, so by Markov’s principle α > 0; that is, A∨¬A.
Hence KS implies the law of the excluded middle. But the fan theorem
(uniform continuity of functions on 2N ) refutes the law of the excluded
middle. Hence KS plus the fan theorem refutes MP. Brouwer believed, at
the time of writing the papers we are discussing, that his theory of the
creative subject justified KS, and hence, that MP had been refuted.

Krike’s schema has found few (if any) adherents in the 70 years since
Brouwer advocated it. On the other hand, Markov’s principle is consistent
with most commonly-studied intuitionistic theories; in particular with the
theories of intuitionistic analysis including Brouwer’s fan theorem and bar
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theorem as axioms. See [28] and [18] for proofs of this consistency using
variations of recursive realizability.

4.4 Two sides

In Brouwer’s paper [7], he also considered an ordering principle that we
call “two-sides”:

x 6= 0 → x < 0 ∨ x > 0.

The name is chosen because the principle can be thought of as saying that
there are “two sides” of the y-axis: every point not on the y-axis lies on
the left half of the plane or on the right half.

We digress to show that two-sides can be expressed in the language of
geometry. Fix two points 0 and 1, and define −1 to be the endpoint of
the extension of the line segment from 1 to 0 by itself. Then x < 0 can
be defined as B(x, 0, 1). Two-sides can be expressed as

x 6= 0 → B(x, 0, 1) ∨B(−1, 0, x).

Brouwer rejected not only Markov’s principle, but also two-sides. Two-
sides is not a theorem of EG, even with the help of Markov’s principle,
as shown in [3]. Proof sketch: the axioms of EG can be expressed, after
introducing some function symbols, without using ∃ or ∨. Then cut-
elimination can be used to show that no disjunctive theorems can be
proved (unless one of the disjuncts can be proved.) Two-sides does imply
Markov’s principle, since if we assume ¬¬ x > 0, then x 6= 0, so by two-
sides, x > 0∨x < 0; but x < 0 contradicts ¬¬ x > 0, so that case is ruled
out, and we conclude x > 0. Thus two-sides is stronger than Markov’s
principle.

5 Axioms of non-Markovian geometry

Brouwer’s objection to Markov’s principle led us to consider whether
Markov’s principle is really necessary for Euclidean geometry. In this
paper, we introduce a theory EG of Euclidean geometry, with the stabil-
ity of congruence (and hence the stability of equality) but without the
stability of betweenness (which is also called Markov’s principle). EG has
Euclid 5 for its parallel postulate, so it corresponds closely to Euclid. The
axioms of EG are listed for reference in §5.11, but we shall introduce them
gradually, with explanations.

It probably does not matter whether we take a Hilbert-type formula-
tion or a Tarski-type formulation as in [3], but for the sake of precision we
must pick a specific list of axioms, and it is far simpler to work with the
simple language and short list of axioms of Tarski’s theory. As a start-
ing point, we consider the constructive version of Tarski’s axioms given
in [3], with Markov’s principle deleted from the list of axioms. We also
need to modify two other axioms (segment extension and Pasch) to ensure
that they do not immediately imply Markov’s principle. We postpone the
details of those modifications of the axioms to the next two sections.
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EG has line–circle continuity: a line through a point (strictly) inside a
circle meets the circle in two distinct points. We also include circle–circle
continuity as an axiom.4

What we seek, then, is an axiomatization of EG such that each axiom
is equivalent (using MP) to an axiom of intuitionistic Tarski geometry (as
defined in [3]), such that EG does not imply Markov’s principle, and yet
suffices for the development of Euclidean geometry. More specifically, we
want EG to satisfy these criteria:

• EG suffices to prove the correctness of the uniform constructions
given in [3], namely, uniform perpendicular and reflection in a point.
This permits the assignment of coordinates (x, y) to each point, given
two fixed perpendicular lines to serve as the x-axis and y-axis.

• EG suffices to prove that every pair (x, y) occurs as the coordinates
of some (unique) point.

• EG suffices to define the (uniform) addition and multiplication of
(signed) points on the x-axis, and the construction of square roots
of non-negative points.

• EG suffices to formalize the arguments of Euclid Book I, and prob-
ably Books II–IV as well.

The papers [3] and [4] established these facts for a theory including
Markov’s principle, so the task here is to find a modified version of this
theory that does not imply Markov’s principle but still satisfies the criteria
listed above.

In particular, we give EG the parallel axiom Euclid 5 (just as in [4, 3]
rather than the “strong parallel axiom” used by Brouwer. It follows that,
in some sense, Brouwer was criticizing a “straw man”, in that the parallel
postulate that he found unsatisfactory is not actually Euclid’s parallel
postulate, and Euclid 5 does not suffer from the flaw (if it is a flaw)
that Brouwer pointed out. The strong parallel postulate and Euclid 5 are
equivalent in Euclidean geometry with Markov’s principle (as shown in
[4]), but they are not equivalent if Markov’s principle is dropped, since
(at least with the aid of the apartness axioms) the strong parallel postulate
implies Markov’s principle, while Euclid 5 does not.

There is no philosophical advantage (for the present purposes) in trying
to choose a minimal set of axioms for EG, and indeed there are reasons
(discussed below) to be generous in taking more axioms than probably
are necessary. We assume two versions of Pasch, and both line–circle and
circle–circle continuity. We modify Pasch’s axioms to avoid degeneracies
that imply discontinuous dependence (as we did in [3]) and also to avoid
near-degeneracies that imply Markov’s principle. The remarkable con-
clusion is that we can then derive Euclid Book I (and probably II-IV),
coordinates, and arithmetic, without Markov’s principle, though we do
need to add hypotheses that angles are positive and vertices are distinct.

4For our present purposes, there is little to be gained by trying to eliminate circle–circle
continuity as an axiom, or in general, by trying to minimize the number of axioms, since
our aim is simply to demonstrate the viability of intuitionistic geometry without Markov’s
principle.
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5.1 Markov’s principle and betweenness

Tarski’s geometry, and its variant EG, include a minimal set of axioms
about betweenness. Remember that we use strict betweenness B rather
than non-strict betweenness T as in Tarski. If we have Markov’s principle,
then B and T are interdefinable. But without Markov’s principle, there
is no apparent way to define B from T, so it is good that we took B as
fundamental.

Tarski’s final theory [27] had only one betweenness axiom, known as
(A6) or “the identity axiom for betweenness”:

T(a, b, a) → a = b.

In terms of strict betweenness, that becomes ¬B(a, x, a), or otherwise
expressed, B(a, b, c) → a 6= c. We also refer to this axiom as (A6). The
original version of Tarski’s theory had more betweenness axioms (see [27],
p. 188). These were all shown eventually to be superfluous in classical
Tarski geometry, through the work of Eva Kallin, Scott Taylor, Tarski
himself, and especially Tarski’s student H. N. Gupta [11]. These proofs
appear in [26]. Here we give the axiom numbers from [27], names by which
they are known, and also the theorem numbers of their proofs in [26]:

T(a, b, c) → T(c, b, a) (A14), symmetry, Satz 3.2
T(a, b, d) ∧T(b, c, d) → T(a, b, c) (A15), inner transitivity, Satz 3.5a
T(a, b, c) ∧T(b, c, d) ∧ b 6= c→

T(a, b, d) (A16), outer transitivity, Satz 3.7b
T(a, b, d) ∧T(a, c, d) →

T(a, b, c) ∨T(a, c, b) (A17), inner connectivity, Satz 5.3
T(a, b, c) ∧T(a, b, d) ∧ a 6= b→

T(a, c, d) ∨T(a, d, c) (A18), outer connectivity, Satz 5.1

Our theory of constructive geometry in [3]) has three betweenness
axioms (numbered as in [27], with an “i” added for “intuitionistic”):

¬B(a, b, a) (A6-i)
B(a, b, c) → B(c, b, a) (A14-i), symmetry of betweenness
B(a, b, d) ∧B(b, c, d) → B(a, b, c) (A15-i), inner transitivity

In [3], we appealed to Gödel’s double-negation interpretation to “im-
port” the long, complicated proofs of the classically superfluous axioms
A17 and A18. (Of course the conclusion has to be double negated to
eliminate the disjunction.) Since T is defined negatively, that still works
even without Markov’s principle, for the versions of these axioms using T.
Versions of A17 and A18 in which the disjunction is not double-negated
of course are not constructively valid, and if we do double-negate the
disjunction, then the double negation interpretation still works with T
replaced by B.

The following “connectivity principle” is equivalent to A17, and it is
what is actually needed for several very basic lemmas, such as “two lines
intersect in at most one point.”

If B and C are both between A and D, and neither is between A and
the other, then they are equal.
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By applying the double negation interpretation as described above to
the complicated proof of A17 in [26]. Therefore, theoretically, there is no
need to add this formula as an axiom. However, few readers are going to
check the proof in [26] and verify the double negation interpretation, so
we might as well just ask them to accept the connectivity principle as an
axiom. We therefore include it as an axiom of EG.

The question remains, did we really add enough betweenness axioms?
The answer is, yes we did, because we can successfully define coordinates
and arithmetic, and with that geometrically defined arithmetic, the points
on a line form a Euclidean field. The axioms for Euclidean fields (without
assuming Markov’s principle) are discussed in §7.2.

5.2 Distinct points and segment extension

Tarski’s segment extension axiom provides for an extension of segment ab
by segment cd; the result is a point, sometimes written ext(a, b, c, d), about
which the axiom asserts, if p = ext(a, b, c, d), that bp = cd and B(a, b, p).
Tarski’s theory has no condition on a and b, but in constructive geometry
(with Markov’s principle), as discussed in [3], we have to require a 6= b;
that is, only non-null segments can be extended.

We will show next that the (unmodified) extension axiom implies
Markov’s principle. In preparation we review two facts, the uniqueness of
extension and the stability of equality. The extension of segment ab by
segment pq is unique: if there are two points c such that B(a, b, c) and
bc = pq then those two points are equal, as can be proved using other ax-
ioms of geometry. The principle of “stability of equality” was introduced
in § 3.1: ¬¬x = y → x = y.

Now we prove that the extension axiom implies Markov’s principle.
Suppose ¬¬ B(a, b, c); then a 6= b, so p = ext(a, b, b, c) is defined; but
bc = bp and B(a, b, p) by the extension axiom. Using the uniqueness of
extension (doubly negated), from ¬¬ B(a, b, c) we can prove ¬¬ p = c.
Then, by the stability of equality, p = c. Then from B(a, b, p) we have
B(a, b, c), the conclusion of Markov’s principle.

Therefore, if one wishes to do geometry without Markov’s principle,
one must modify the extension axiom. We do so by restricting the ap-
plicability of segment extension to positive segments. That concept is
defined as follows: We say segment ab is positive, or equivalently, that a
and b are distinct, if

∃eB(e, a, b) ∨ ∃eB(a, b, e) ∨ ∃eB(a, e, b).

We write this as a#b. Since the word “length” carries the idea of mea-
surement by numbers, we avoid the phrase “has positive length”, but it
may be helpful to mention it once.

Once a#b is defined, the segment extension axiom has additional sub-
tleties. We said above that we want the axiom to say that positive seg-
ments can be extended. But we also want the notion “positive segment”
to be closed under congruence; that is,

ab = cd ∧ a#b→ c#d.
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We wish this principle to be a theorem. We therefore need to have our
segment extension axiom say, “any segment congruent to a positive seg-
ment can be extended,” rather than just “any positive segment can be
extended.”

A second subtlety arises from the distinction between T and B. In
constructive geometry with Markov’s principle we could just say

a 6= b→ T(a, b, ext(a, b, c, d))

and then it can be proved that

a 6= b ∧ c 6= d→ B(a, b, ext(a, b, c, d)).

But in non-Markovian geometry, we need to change 6= to # and take both
axioms. The following show what we mean, but they still deal only with
the second subtlety and not the first.

a#b→ ∃e (T(a, b, e) ∧ be = cd).

a#b ∧ c#d → ∃e (B(a, b, e) ∧ be = cd).

Of course, in the presence of Markov’s principle, these are equivalent to
the form (A4-i) used in [3].

Combining the two solutions, we now give the final form of the exten-
sion axiom of EG:

A#B ∧ ab = AB → ∃e (T(a, b, e) ∧ be = cd).

A#B ∧ ab = AB ∧ C 6= D ∧ cd = CD → ∃e (B(a, b, e) ∧ be = cd).

Lemma 1 If a#b and ab = cd then c#d.

Proof. Suppose a#b and ab = cd. There are three cases. Case 1, for some
e we have B(a, b, e). Then b#e, so we can extend cd by be to a point
f with B(c, d, f). Hence c#d. Case 2, for some e we have B(e, a, b), is
treated similarly. Case 3, for some e we have B(a, e, b). Then first extend
ab by ab to e; so B(a, b, e), reducing to case 1. That completes the proof.

The symbol a#b is traditionally used for apartness, a concept intro-
duced by Heyting. We use the word “distinct” instead of “apart”, because
we do not include the traditional apartness axiom a#b→ a#c∨b#c. The
reasons why not are discussed in [4]. We use “unequal” for the negative
relation a 6= b, and “distinct” or its synonym “different” for a#b.

Remark. One might think that one could adopt one of the three be-
tweenness conditions as the definition of a#b and prove the other two to
be equivalent. That can be done using some lemmas about betweenness,
for example, to prove the third property, we would need outer transitivity.
But the proof of outer transitivity begins by extending a segment whose
endpoints cannot be seen to be distinct except by the third property itself;
so that approach is circular and does not work. Therefore, we adopt the
definition given instead of a shorter one.

It is often said that “two points determine a line.” In intuitionistic
geometry, the correct statement is “two distinct points determine a line.”
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A line can be thought of as all the possible extensions of a segment. Intu-
itively, if we do not know that two points are distinct, the direction of the
segment connecting them is not clear and a line is not (yet) determined.

The following fundamental principle of order on a line would have to
be taken as an axiom, if it were not provable. However, in non-Markovian
geometry, we note that the hypothesis requires b and c to be distinct, not
just unequal.

Lemma 2 (Outer transitivity)

B(a, b, c) ∧B(b, c, d) ∧ b#c→ B(a, b, d).

and also
B(a, b, c) ∧B(b, c, d) ∧ b#c→ B(a, c, d).

Proof. The first form follows from the second, using the symmetry of
betweenness. We prove the second form. Suppose the hypothesis. Since
B(a, b, c), we have a#c. Hence segment ac can be extended by cd to point
e. Then by the 5-segment axiom, applied with d at the top in Fig. 5, and
acd and ace along the bases of the two figures, we conclude ed = dd. But
ed = dd implies e = d, and by definition of e and the extension axiom A1-i,
we have B(a, c, e), since c#d by hypothesis. Hence B(a, c, d) as desired.
That completes the proof of the lemma.

5.3 The five-segment axiom and SAS

Tarski replaced Hilbert’s fourth and fifth congruence axioms (angle trans-
port and SAS) with an elegant axiom, known as the five-segment ax-
iom. This axiom is best explained not through its formal statement, but
through Fig. 5. The 5-segment axiom says that in Fig. 5, the length of
the dashed segment cd is determined by the lengths of the other four seg-
ments in the left-hand triangle. Formally, if the four solid segments in the
first triangle are pairwise congruent to the corresponding segments in the
second triangle, then the dashed segments are also congruent.

d

a b c

D

A B C

Figure 5: The 5-segment axiom. If a#b and the corresponding
solid segments are congruent, then cd = CD.

The 5-segment axiom is a thinly-disguised variant of the SAS criterion
for triangle congruence. To see this, refer to the figure. The triangles
we are to prove congruent are dbc and DBC. We are given that bc is
congruent to BC and db is congruent to DB. The congruence of angles
dbc and DBC is expressed in the 5-segment axiom by the congruence of
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triangles abd and ABD, whose sides are pairwise equal. The conclusion,
that cd is congruent to CD, gives the congruence of triangles dbc and
DBC. In Chapter 11 of [26], one can find a formal proof of the SAS
criterion from the 5-segment axiom. It is easily adapted to prove the SAS
criterion in non-Markovian geometry (which in non-Markovian geometry
requires that the angle in question be positive).

The formal statement of the axiom uses non-strict betweenness and
does not specify that d is not collinear with ab, though it does require
a 6= b. Allowing d to be collinear with ab permits the use of this axiom to
derive properties of betweenness, and it is not only constructively valid,
but very useful.

The question arises whether we ought to strengthen the hypothesis
a 6= b to a#b, or even perhaps require B(a, b, c) (which would imply a#b,
but also b#c). The latter would weaken the axiom.5 The former seems
philosophically prudent, since without it, perhaps the direction of the line
ab is uncertain. We therefore require a#b in this axiom.6

This axiom enables one to replace reasoning about angles with reason-
ing about congruence of segments.7 We would like to emphasize that the
5-segment axiom is often just as easy to use as SAS. Here is an illustrative
example:

Lemma 3 Vertical angles are congruent.

Proof. Let angles abc and dbe be vertical angles; soB(a, b, e) andB(c, b, d).
We may suppose without loss of generality that bd = bc = ab = be. We
must show ac = de. Consider the two configurations abec and dbce. The
hypotheses of the 5-segment axiom are fulfilled, because ab = db, be = bc,
ec = ce, and bc = be. Then by the 5-segment axiom, ac = de as desired.
That completes the proof. The reader is urged to compare this proof to
Euclid’s proof.

5.4 Lines, rays, triangles, and right angles

The segment extension axiom allows us to create a new point on the
line containing a and b only when a and b are distinct points. Without
Markov’s principle, we have to distinguish between pairs of unequal points,
and pairs of distinct points. In some sense only distinct points determine
a segment, because only then does the segment extension axiom apply.
Although Tarski’s language speaks only about points, the import of the
axiom is that we are allowed to construct the line containing a and b only

5The theorem “all null segments are equal” would not be provable; but adding it back as
a new axiom would fix that. However, there seems no point in doing that.

6The unmodified 5-segment axiom holds in our Kripke model where Markov’s principle
fails, so we are not mathematically compelled to modify it.

7The history of this axiom is as follows. The key idea (replacing reasoning about angles by
reasoning about congruence of segments) was introduced (in 1904) by J. Mollerup [24]. His
system has an axiom closely related to the 5-segment axiom, and easily proved equivalent.
Tarski’s version, however, is slightly simpler in formulation. Mollerup (without comment)
gives a reference to Veronese [33]. Veronese does have a theorem (on page 241) with the same
diagram as the 5-segment axiom, and closely related, but he does not suggest an axiom related
to this diagram.
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when a#b. Instead of “two unequal points determine a line”, we have
“two distinct points determine a line”.

The relation of collinearity is defined by

L(a, b, c) ↔ ¬¬ (B(c, a, b) ∨ c = a ∨B(a, c, b) ∨ c = b ∨B(a, b, c)).

Pushing one negation sign inwards, L(a, b, c) can be expressed in a neg-
ative form. Similarly, the notion that x is on the ray from b through c
can be expressed by L(b, c, x) ∧ ¬B(x, b, c). We write this as Ray(b, c, x).
The ray itself is not treated as a mathematical object; only the relation
between three points is formalized. Nevertheless we speak of x lying on
Ray(b, c), which is the same as saying Ray(b, c, x).

Lemma 4 Let a and b be distinct points. Let c and d be any points. Then
we can lay segment cd off on Ray(a, b), in the sense that there exists a
point x with Ray(a, b, x) and ax = cd. Moreover, point x is unique.

Proof. Since a#b, segment ba can be extended to point e with ae = ab
and B(e, a, b). (We say e is the reflection of b in a.) Then segment ea
can be extended by cd to point x. Then ax = cd and T(e, a, x), by the
segment extension axiom. But that is the meaning of Ray(a, b, x), so the
first claim of the lemma is proved. It remains to prove the uniqueness of x.
Suppose y is another point on Ray(a, b) with ay = cd. By the definition
of Ray(a, b, x), that means for some point e (the reflection of b in a) we
have T(e, a, x)∧T(e, a, y)∧ ax = ay. Now apply the 5-segment axiom to
the following two configurations in the form of Fig. 5: the first has eax on
the base and y on the top, the second has eay on the base and also has y
on the top. The hypotheses are fulfilled because ax = ay. The conclusion
is yx = yy. By Axiom A3, x = y. That completes the proof.

Definition 1 Angle abc is a right angle if a, b, and c are distinct points,
and if d = ext(a, b, a, b) (so d is the reflection of a in b), then triangles
abc and dbc are congruent triangles.8

It can be proved that this notion respects the congruence relation on
angles. Euclid’s Postulate 4, that all right angles are congruent, is a
theorem in Tarski’s geometry.9 It can be proved (and without Markov’s
principle). We do not have space in this paper to give the proof, but we
will outline it. The details can be found in [26], Part I, Chapter 10.

Reflection in a point is an isometry. That is, if B is the midpoint
of AC and also of PQ, then AP = CQ. The relation “ABC is a right
angle” is preserved under reflection in a point. Reflection in a line is
an isometry. And the key result (Satz 10.12 in [26]): Given right angles
ABC and ABF with BC congruent to BF , then AC is congruent to AF .
(Remember there is no dimension axiom, so picture the two angles in
different planes.) Here is a sketch of the proof:

8We note that in [26], the predicate R(a, b, c) allows the case b = c, but our definition of
“right angle” requires three distinct points.

9It is a much simpler theorem in Hilbert’s geometry, because Hilbert takes as an axiom
that an angle can be copied on a given side of a given line, and the copy is unique. These
facts require non-trivial proofs from the axioms of EG or Tarski.
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Let M be the midpoint of CF (which exists without needing circles
since triangle BCF is isosceles). Let D be the reflection of F in B,
so ABD is congruent to ABF . Here is the key: triangle ABD is the
reflection of ABC in the line BM . Since reflection in a line is a isometry,
those triangles are congruent, proving Satz 10.12. Now given two right
angles, using Euclid’s Prop. 23 we can copy one of them into the position
of the second angle in Satz 10.12, and applying Satz 10.12, the angles are
congruent.

Lemma 5 If abc is a right angle, then cba is a right angle.

Proof. The two angles obtained by reflecting abc first in ba and then in bc
are vertical angles, hence congruent. In fact the proof of Lemma 3 works
directly, without needing to first prove that an angle congruent to a right
angle is a right angle.

5.5 Positive angles

Corresponding to the notion of “distinct points”, there is, intuitively, a
notion of “positive angle”, which we write abc > 0 (it is not necessary to
write ∠abc > 0). We also write this as 0 < abc; both our abbreviations
for a statement involving betweenness (given below). Saying abc > 0 is
stronger than simply requiring that a, b, and c are not collinear (with a
and c on the same side of b) in the same way that apartness is stronger than
inequality. It is our immediate aim to define this notion. We wish this
notion to be defined in such a way that, after we prove that coordinates
can be geometrically defined, the angle between p = (x, y) and q = (b, 0)
with vertex at (0, 0) is a positive angle if and only if y > 0.10 But this
cannot be the definition, as many theorems must be proved before we can
construct coordinates. For example, midpoints and perpendiculars are
needed.

We must define “positive angle” at the outset, because (as we shall see
in the next section) we need to restrict the hypotheses of Pasch’s axiom
by requiring an angle to be positive. Our first use of Pasch’s axiom will be
to repair Euclid’s constructions in Propositions I.10 to I.10, culminating
in the theorem that every segment ab with a#b has a midpoint. In that
proof, we need to apply Pasch’s axiom in situations where the vertex angle
is 30◦, 60◦, and 120◦. Therefore, the definition of “positive angle” must
immediately imply that those angles are positive. More generally, we need
to know that the angles of a right triangle are positive. (Remember that
“triangle” implies the vertices are distinct.)

The following conversations, following the pattern of “light bulb” jokes,
illustrate the basic concepts of non-Markovian geometry:

How many points does it take to determine a line? Three, two
to lay a straightedge on and one to check that the other two are
distinct.

10Here y > 0 refers to order on a line, defined axiomatically by betweenness, namely
B(−1, 0, y), where −1 and 0 are two specified points on a specified line.
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How many points does it take to determine a positive angle?
Six, three to determine the vertex and sides, one for each side
to check the other two are distinct, and the sixth to check that
the sides do not coincide.

Definition 2 (i) abc is an apex angle if there are distinct points u, v on
Ray(b, a) and Ray(b, c) respectively such that bu = bv and b#u.

(ii) abc is an angle of a right triangle if bac or bca is a right angle,
or more generally, if angle abc is congruent to an angle ABC such that
BAC or BCA is a right angle. “Right angle” is defined in Definition 1).

(iii) abc > 0 (“abc is a positive angle”) if abc is an apex angle, or a
right angle, or an angle of a right triangle.

We will later prove that every positive angle is an apex angle, but that
can be done only after developing some geometry, using the definition
above. In other words, if we were to take “apex angle” as the definition
of “positive angle”, we could not prove that an angle of a right triangle is
positive, because to do so we need some intermediate results that cannot
be justified until we know that an angle of a right triangle is positive.
Specifically, we will see below that a correct formulation of Pasch’s axiom
for non-Markovian geometry requires certain angles to be positive, and to
prove that angles of a right triangle are apex angles, we need such angles
to be positive.

The formula abc > 0, written out in primitive notation, is existential,
since not only is there an explicit ∃ and an explicit disjunction, but also
distinctness involves an existential quantifier. This is good, since we in-
tend it to express the existence of a positive lower bound on the angle
abc.

We also need to express abc < π, i.e., angle abc is positively different
from a “straight angle.” We just need to say that the supplement of abc
is a positive angle.

Definition 3 Angle abc has a positive supplement, or abc < π, is defined
by

abc < π ↔ ∃d (B(a, b, d) ∧ dbc > 0).

We emphasize that the notation abc > 0 does not imply the assignment
of a measure of any kind to angles. It is just a statement that a point
can be found to witness, using the betweenness relation, that the angle
is not zero. To express that angle abc is both positive and has a positive
supplement, we abbreviate the conjunction of the two statements 0 < abc
and abc < π as 0 < abc < π.

We can define certain specific angles as follows:

abc = 60◦ ↔ ab = bc ∧ ab = ac ∧#(a, b, c)

abc = 120◦ ↔ ∃d (B(a, b, d) ∧ ab = bd ∧ bc = bd ∧ cd = bc ∧#(a, b, c))

abc = 30◦ ↔ ∃d (B(a, d, b) ∧ ad = cd ∧ ad = db ∧#(a, b, c))

abc = 150◦ ↔ ∃d (B(a, b, d) ∧ cad = 30◦)
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We would like to prove that each of these four angles is a positive
angle. That is neither obvious nor easy. In fact, to do so it is necessary to
have a strong lower dimension axiom. That issue will be discussed below;
but the lower dimension axiom that we use guarantees the existence of
an equilateral triangle whose sides have midpoints, whose altitudes have
distinct endpoints, and whose medians meet in a central point. That
configuration directly implies that 60◦ is an apex angle (hence positive),
and 30◦ is an angle of a right triangle.

Lemma 6 If abc = 60◦ or abc = 120◦ or abc = 30◦ or abc = 150◦ then
abc > 0.

b
a

b
c

b
e

bf b g

b mb x

Figure 6: The 120◦ angle acg is positive, since B(a, x, g).

Proof. The cases of 30◦ and 60◦ follow directly from the lower dimension
axiom. We take up the case abc = 120◦. We will show that the “tiling”
shown in Fig. 6 can be constructed. Then acg = 120◦ and acg is an apex
angle because ac = cg and B(a, x, g).

Remark. It is not trivial to construct the three equilateral triangles
shown in the figure and show that B(a, c, e). This has to be done directly
from the axioms, and Pasch cannot be used since we as yet have no positive
angles. Euclid 5 will have to be used, as the construction does not work
in non-Euclidean geometry.

We start with the equilateral triangle fac and the midpoint x of side fc,
whose existence has to be assumed in the lower dimension axiom discussed
in § 5.10. Triangle fxa is congruent to triangle cxa, so angle axc is a right
angle. Then cxa is also a right angle, by Lemma 5. Hence gc = ac, by
definition of right angle. Then ac = ca = fa = gc. Now cxg is a right
angle, so gxc is also a right angle, so fg = gc. Let m be the midpoint of
gc.

Consider the two lines ac and fg. The transversal fc makes alternate
interior angle equal, as witnessed by f , g, x, a, and c. Technically, our
formulation of Euclid 5 does not mention angles at all; only the congru-
ence of triangles fgx and cax is needed. The condition B(g,m, c) fulfills
the hypotheses of Euclid 5 (which would traditionally be expressed as
“the corresponding interior angles mfc and ecf make less than two right
angles”). Hence fm meets the line through ac in a point e. That is,
B(a, c, e) ∧B(f,m, e).

Because m is the midpoint of gc, angles fmg and fmc are right angles.
Therefore cme and gme are also right angles. Since cmf is a right angle,
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ce = fc = gc. Since emc is a right angle, ge = ce and triangle gce is
equilateral. Then angle acg is, by definition, a 120◦ angle. But a#q
because B(a, x, q). That completes the case of a 120◦ angle. fmc is a
right angle, and mf = me, also fc = ce.

Now consider a 150◦ angle. Fig. 7 illustrates the construction.

b

b
b

a

b
c

b e

b

d

b f

Figure 7: abc = 150◦ because cbd = 30◦, and a#c because
B(a, c, e).

The illustrated network of equilateral triangles can be proved to exist
using the 5-segment axiom and Euclid 5, starting from point b, as in the
120◦ proof above. Then abc is a positive angle, since B(a, c, e) shows
that a#c. But abc is a 150◦ angle, since the witnesses called for in the
definition of 150◦ angle are provided by d and e. points. That completes
the proof of the lemma.

Remark. Fig. 7 illustrates the statement that it takes six points to
determine a (positive) angle in non-Markovian geometry. Point b is the
vertex; point d witnesses that ab determines a ray; point f witnesses that
bc determines a ray; point e witnesses that those two rays are distinct.

Definition 4 A triangle is an ordered triple of distinct points abc such
that all three angles abc, bca, and cab are positive angles with positive
supplements.

5.6 Non-Markovian inner Pasch

Tarski used (at various times) “outer Pasch” and “inner Pasch”, both for-
mulated using non-strict betweenness T and allowing various degenerate
cases that are not constructively valid. These axioms are illustrated in
Fig. 8. As axioms they have two important advantages over other forms
of Pasch: they are purely existential, and they do not depend on the di-
mension. That is, they hold in R

n for any n, in contrast to the version of
Pasch that says, if a line enters a triangle it must exit, which fails in R

3.
In [4], we formulated what seemed the most general constructively

valid version of inner Pasch, replacing T by B in the hypothesis T(a, p, c)
and in the two conclusions, and requiring points a, b, c in Fig. 8 to be
not collinear. If Markov’s principle is dropped, and inner Pasch is not
modified, Pasch’s axiom will imply Markov’s principle.
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Figure 8: Inner Pasch (left) and outer Pasch (right). Line pb

meets triangle acq in one side ac, and meets an extension of side
cq. Then it also meets the third side aq. The open circles show
the points asserted to exist.

Theorem 2 Inner Pasch without modifications implies Markov’s princi-
ple.

Remark. The theorem refers to the version of inner Pasch described above,
and used in [4].

Proof. Let p and v be any two distinct points, and assume unrestricted
inner Pasch. (In Fig. 8, v would lie on pb extended; think of v fixed,
while b can move along the line vp towards p). We will prove ¬¬B(p, b, v)
implies B(p, b, v). To that end, assume ¬¬B(p, b, v); we have to prove
B(p, b, v). Let a and c be points with B(a, p, c) such that ¬L(a, v, c) (for
example, a and c can be taken to lie on the perpendicular to pv at p.)
We have ¬L(a, b, c), since L(a, b, c) implies b = p (by the definition of L).
Hence we can apply unrestricted inner Pasch, obtaining the existence of
x with B(p, x, b). Now we have B(p, x, b) and B(p, b, v). By the inner
transitivity of betweenness, we have B(p, b, v). That completes the proof.

Remark. In that proof, we used the inner transitivity of betweenness
and the existence of points a and c not collinear with v, but these things
can be proved from unrestricted Pasch, since as we show below, they
can be proved even from restricted inner Pasch. Here we only intend to
demonstrate the need to restrict inner Pasch in some way.

Our formulation of inner Pasch (suitable for non-Markovian geometry)
uses strict betweenness B in all four places. So the hypotheses include
B(a, p, c) ∧B(b, q, c), and the conclusion is ∃x (B(a, x, q) ∧B(p, x, b)). In
a quantifier-free form, x is replaced by a Skolem term. We also need to
make sure the whole figure does not degenerate into a line, by requiring
the hypothesis 0 < acb < π.
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For comparison: Tarski used T instead of B, and did not care if the
figure degenerated. For constructive geometry, that is wrong, since it leads
to discontinuous dependence of x on the parameters. In [4], the hypothesis
T(b, q, c) was retained but B was used for the other hypothesis and the
two conclusions. That is, the degenerate cases q = c and q = b are still
allowed. This is constructively sensible as the lines aq and pb still are
transverse, so have a unique intersection point, constructible with a ruler.
To avoid discontinuity, we also required ¬L(a, b, c).

In non-Markovian geometry, the negatively-phrased non-collinearity is
not enough, as the lemma above shows. Instead we need 0 < acb < π.
The hypothesis 0 < acb < π is expressed in the way defined in § 5.5. That
is an existential statement, but it occurs only in the hypotheses of inner
Pasch, so inner Pasch is still equivalent to a quantifier-free axiom (when
a Skolem term is used for x).

There are, however, other possible hypotheses that we might also use in
connection with inner Pasch; that is, other possible sufficient conditions
than 0 < acb < π that should support the conclusion of inner Pasch
without implying Markov’s principle. One such hypothesis is 0 < qpa < π.
(Or equivalently, 0 < pqb < π.) This may seem strange (after all line pq
is not even drawn in the diagram for Pasch’s axiom), but it is the natural
condition that we need when we use inner Pasch to prove Euclid’s exterior
angle theorem. We were not able to prove the exterior angle theorem
unless we take the form of inner Pasch with this hypothesis as an axiom,
as well as the more natural 0 < acb < π. Of course, after developing the
theory of perpendiculars, we can prove these conditions equivalent, but
to get off the ground we need both versions of inner Pasch.

5.7 Non-Markovian outer Pasch

Please refer to Fig. 8. The hypotheses of unrestricted outer Pasch in [4]
are B(a, p, c) and T(b, c, q), as well as ¬L(a, b, c). The conclusion is that
there exists an x such that B(a, x, q) and B(b, p, x).

Outer Pasch, like inner Pasch, in its unrestricted form implies Markov’s
principle. The argument is similar to the one given for inner Pasch; in
the second part of Fig. 8, we allow a to move towards q, as for inner
Pasch we allowed b to move towards p. Therefore, outer Pasch needs to
have its hypotheses strengthened. As for inner Pasch, we replace T by B,
and replace the non-collinearity hypotheses by requiring an angle to be
between 0 and π. But which angle?

The hypothesis we choose to formulate non-Markovian outer Pasch is
this:

0 < baq < π ∨ 0 < abq < π.

This choice is a pragmatic one: it enables the uses of outer Pasch that we
need (in particular for the crossbar theorem). Eventually, we will prove
that if a, b, and c are three distinct points, and one of three angles formed
is positive, so are the other two. After that, the various possible versions
of non-Markovian outer Pasch will be equivalent.

Our theory EG includes both non-Markovian inner Pasch and non-
Markovian outer Pasch as axioms. Gupta proved ([11]; see also [26], Satz
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9.3), that inner Pasch implies outer Pasch; but this is a long development,
and although we did not find a use of Markov’s principle, we are not
willing to certify that none is necessary. As mentioned above, we are not
aiming in this paper to find a minimal set of axioms for EG, but instead a
sensible set of axioms that provides a smooth non-Markovian constructive
development of Euclid. Therefore we include both forms of Pasch.

5.8 Line–circle and circle–circle continuity

We say that point p is inside the circle with center a passing through c
provided p lies on a diameter of the circle.11 The line–circle continuity
axiom says that if p is inside the circle with center a passing through c,
then there exist two points x and y on the circle with B(x, p, y). This
axiom is true in R

n for any n, i.e., not just in plane geometry. Without
any dimension axiom, “circles” become spheres (in R3) or hyperspheres.

We also need a non-strict version of line–circle continuity in which B
is replaced by non-strict betweenness T. Classically, the two are easily
proved equivalent, but the case distinction whether p is strictly inside or
on the circle is not legitimate intuitionistically. Applied to Descartes’s
geometric construction of square roots, the non-strict version implies that
non-negative segments have square roots, and the strict version implies
that positive segments have positive square roots. We therefore need both
versions of line–circle continuity to establish the existence of coordinates
and define arithmetic.

The circle–circle continuity axiom says that if C and K are circles with
distinct centers, and C has a point non-strictly inside K, and a point non-
strictly outside circle K, then there is a point lying on both C andK. This
immediately implies the corresponding strict version, but not conversely,
so we take the non-strict version as our axiom.12

A stronger version of circle–circle continuity has the additional hy-
pothesis that p is any point not lying on the line L containing the centers
of C and K, and the additional conclusion that C and K have an inter-
section point on the opposite side of L from p; that is, there are points
e and x with e on both C and K and x on L and B(e, x, p). We do not
assume this stronger version of circle–circle continuity as an axiom.13

5.9 Segment-circle continuity

The segment-circle continuity principle says that if p is a point inside a
circle, and q is a point outside, then there is a point on the circle be-

11It will not do to say p is equal to the center or lies on a radius, since we may not know
which alternative holds.

12We avoided “degenerate cases” of Pasch’s axiom, in which a two-dimensional picture
degenerates to one dimension. Using T in the circle–circle axiom is not a degenerate case in
this sense; when the circles are tangent, the picture is still two-dimensional.

13This means that Euclid’s proof of I.4 (angle bisection) is not directly formalizable in EG,
and his proof of the existence of a midpoint is consequently also not directly formalizable.
Instead, we construct midpoints using Gupta’s theorem about the existence of a midpoint of
an isosceles triangle, combined with Euclid’s construction of an equilateral triangle on a given
segment. Once midpoints are in hand, perpendiculars can be constructed, and the stronger
version of circle–circle continuity can be proved.
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tween p and q. This principle has been suggested as an axiom by many
authors, including Tarski (see [27]). But a detailed study shows that it is
inadequate; an irremovable circularity arises in formalizing Euclid with-
out a dimension axiom. If we try to construct dropped perpendiculars
(Euclid I.12) using segment-circle continuity, to check the hypotheses we
need the triangle inequality (I.20). But I.19 is needed for I.20, and I.7 for
I.19. In Prop. I.7, the two triangles that are supposed to coincide may
lie in different planes; that possibility has to be removed by an additional
hypothesis. Even with its statement thus corrected, I.7 is more difficult
to prove than Euclid thought, since he took for granted the fact that an
angle cannot be less than itself, but that principle is actually the essential
content of I.7. Ever since Hilbert [15], angle inequality has been regarded
as a defined concept, and proving I.7 then requires dropped perpendic-
ulars (I.12). But this is circular. The conclusion is that segment-circle
continuity is not a suitable axiom to use in formalizing Euclid.14

5.10 Dimension axioms

When considering plane geometry, one needs a lower dimension axiom
providing for the existence of three non-collinear points. Non-collinearity
will not be enough in non-Markovian geometry; we need to ensure that
there exist three points forming a positive angle with a positive supple-
ment. In other words, we need three distinct points α, β, and γ such that
0 < αβγ < π.15

We take as an axiom that there are three points, given by constants
α1, α2, α3, that form an equilateral triangle. Then we add a further
axiom, introducing three more constants for the midpoints of the three
sides, and one final constant for the common intersection point of two
of the medians. Thus the three vertices are all distinct, and two of the
medians have distinct endpoints. See Fig. 9. The formal expression of
this axiom is given in the next section, where all the axioms are listed for
reference.

The upper dimension axiom for plane geometry says that if a and b are
distinct, and three points are each equidistant from a and b, then those
three points are collinear. If we do not use any upper dimension axiom, or
we replace 3 by some larger integer, then as we have already noted, inner
and outer Pasch still make sense, and circle–circle continuity becomes

14line–circle continuity does not suffer from this problem, as the triangle inequality is not
required to drop perpendiculars. Of course, as Gupta showed, one can construct dropped
perpendiculars without mentioning circles at all, so there is no formal result that one continuity
axiom is better for I.7 than another, as none at all is actually needed. We merely say that
Euclid’s proof can be repaired with line–circle, but not with segment-circle.

15If we do not specify this in an axiom, nothing allows to prove any betweenness state-
ment, as the first deduction of a betweenness statement cannot come from the betweenness
axioms (which have betweenness hypotheses), nor from Pasch (which has betweenness in the
hypothesis about a positive angle), nor from the extension axiom, which requires betweenness
in the hypothesis about distinct points, nor from circle–circle or line–circle continuity, where
the hypotheses about “inside” are expressed using betweenness. Nothing would prevent the
plane from collapsing, with all points not not equal to each other. Hence, it is reasonable to
call this a “lower dimension axiom”.
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Figure 9: The lower dimension axiom

sphere–sphere continuity. The notions “same side” and “opposite side” of
a line still make sense if properly defined. See [4] for the definitions.

5.11 List of axioms for reference

In this section, we give the complete list of axioms of EG. First, we specify
the language. It is first-order predicate calculus with equality. There
is a 3-ary relation symbol B and a 4-ary symbol E. E is the official
version of the 4-ary relation that we write informally as ab = cd; first-order
predicate calculus as found in textbooks does not permit that syntax, so
ab = cd must remain as an informal abbreviation for the more formal
syntax E(a, b, c, d).

A number of other informal abbreviations are used in stating the ax-
ioms. The actual axioms are the result of replacing these abbreviations
by the right-hand side of their definitions (recursively), so the axioms in-
volve only equality, B, and E. The following is a complete list of these
abbreviations. Since each right-hand side involves only definitions earlier
in the list, the recursive replacement mentioned does terminate. That is,
there is no circularity in this list of definitions.

a#b := ∃c (B(c, a, b) ∨B(a, c, b) ∨B(a, b, c))

ab = cd := E(a, b, c, d)

R(a, b, c) := ∃d (B(a, b, d) ∧ ab = bd ∧ ac = dc ∧ a#b ∧ c#b ∧ a#c)
Ray(a, b, x) := ∃d (B(d, a, b) ∧B(b, a, x))

apex(a, b, c) := ∃u, v (Ray(b, a, u) ∧ Ray(b, c, v) ∧ bu = bv ∧ u#v)
∠abc = ∠ABC := ∃U, V, u, v (Ray(b, a, u) ∧ Ray(b, c, v)

∧Ray(B,A,U) ∧Ray(B,C, V ) ∧ uv = UV )

0 < abc := apex(a, b, c) ∨ R(a, b, c) ∨
∃A,B,C (∠abc = ∠ABC ∧R(B,A,C) ∨R(A,C,B))

abc < π := ∃d (B(d, b, a) ∧ 0 < dbc)

0 < abc < π := 0 < abc ∧ abc < π

T(a, b, c) := ¬(a 6= b ∧ ¬B(a, b, c) ∧ b 6= c)
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Here are the betweenness axioms:

¬B(a, b, a) (A6-i)
B(a, b, c) → B(c, b, a) (A14-i), symmetry of betweenness
B(a, b, d) ∧B(b, c, d) → B(a, b, c) (A15-i), inner transitivity
B(a, b, d) ∧B(a, c, d)∧
¬B(a, b, c) ∧ ¬B(a, c, b) → b = c (A17-i), connectivity

Here are the axioms concerning congruence and betweenness:

A#B ∧ ab = AB → ∃e (T(a, b, e) ∧ be = cd) (A4-i1) extension
A#B ∧ ab = AB ∧ C#D ∧ cd = CD
→ ∃e (B(a, b, e) ∧ be = cd) (A4-i2) strict extension
a#b ∧ ab = AB ∧ bc = BC ∧ ad = AD
∧ bd = BD → cd = CD (A5-i) five-segment axiom
B(a, p, c) ∧B(b, q, c) ∧ (0 < acb < π ∨ 0 < qpa < π)
→ ∃x (B(p, x, b) ∧B(a, x, q)) (A7-i1) inner Pasch
B(a, p, c) ∧B(b, c, q) ∧ (0 < baq < π ∨ 0 < abq < π)
→ ∃x (B(b, p, x) ∧B(a, x, q)) (A7-i2) outer Pasch

Here are the lower dimension axioms:

αβ = βγ ∧ αβ = αγ ∧ α 6= β

B(α, c1, β) ∧ αc1 = c1β

B(α, c2, γ) ∧ αc2 = c2γ

B(β, c3, γ) ∧ βc3 = c3γ

B(β, c4, c2) ∧B(γ, c4, c1).

We have used constants ci and α, β, γ; as a result the lower dimension
axiom is quantifier-free and for convenience can be broken into several
formulas, written on different lines without being connected by ∧. This
is of no significance—we might as well have used existentially quantified
variables, in which case the dimension axiom would need to be one long
formula inside the scope of the existential quantifiers.

There is no upper dimension axiom.

The first line–circle continuity axiom says that if point a is inside the
circle with center c and radius pq (as witnessed by a lying on a diameter
uv), and b is a point distinct from a (so that ba determines a line), then
there are two points x and y on the circle, with a between them.

B(u, a, v) ∧ cu = pq ∧ cv = pq ∧ B(u, c, v)

→ ∃x, y (cx = pq ∧ cy = pq ∧B(x, a, y))

The second line–circle continuity axiom is similar, but with T instead
of B.

T(u, a, v) ∧ cu = pq ∧ cv = pq ∧ T(u, c, v)

→ ∃x, y (cx = pq ∧ cy = pq ∧T(x, a, y))

Here is the circle–circle continuity axiom, which says that if the circle
with center c and radius pq has a point a non-strictly inside the circle with
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center C and radius PQ, and a point b non-strictly outside that circle,
then the two circles meet.

ca = pq ∧T(u, a, v) ∧T(u,C, v) ∧ Cu = PQ ∧ Cv = PQ

cb = pq ∧B(C,w, b) ∧ Cw = PQ

→ ∃e (ce = pq ∧ Ce = PQ)

Here is Euclid 5. See Fig. 4 for an illustration.

pt = qt ∧B(p, t, q) ∧ st = rt ∧B(s, t, r) ∧ pr = qs

∧ B(q, a, r) → ∃e (B(p, a, e) ∧B(s, q, e))

Logical form of the axioms. The occurrences of disjunction in the hy-
potheses of Pasch’s axiom can easily be eliminated, using two formulas
for inner Pasch instead of one, and two for outer Pasch. If the defined
symbols are replaced by their definitions, that creates existential quanti-
fiers in the hypotheses (which can be eliminated by simple logic) and in
the conclusions (which can be eliminated by introducing function sym-
bols). Thus, there is an equivalent formulation in which the axioms are
disjunction-free and quantifier free. This observation is important for cer-
tain meta-theorems discussed below.

6 Development of non-Markovian geom-

etry

In this section, we check the development of constructive geometry in
[4] and [3], searching for uses of Markov principle, and try to eliminate
them when found. In [3], once having found an axiom system that sup-
ports the double-negation interpretation for geometry, (for which the use
of Markov’s principle is crucial), we were able to use it to “import” neg-
ative theorems from [26]. If Markov’s principle is rejected, we can no
longer do that. In order to reduce theorems to negative form, we had to
find and prove the correctness of numerous “uniform” constructions, to
eliminate arguments by cases; those proofs necessitated the direct formal
development of a certain amount of geometry. If we now want to elimi-
nate Markov’s principle, it at first appears that the entire development of
the two cited papers has to be checked, and in addition, the parts of [26]
that could, in the presence of Markov’s principle, be “imported” via the
double negation interpretation.

However, we found a way to avoid some of that work. Namely, as
mentioned above, we include as axioms of EG both inner and outer Pasch,
and both line–circle and circle–circle continuity. With Markov’s principle,
this is overkill, as either version of Pasch implies the other, and either
continuity axiom implies the other. Perhaps these implications can also be
proved without Markov’s principle, but verifying that would add nothing
to the philosophical points of this paper. Gupta proved (constructively
and without Markov’s principle), using inner Pasch, that the base of an
isosceles triangle has a midpoint. Having circle–circle continuity allows us
to prove Euclid I.1, so every segment is the base of an isosceles triangle
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and hence has a midpoint. From there we can proceed to perpendiculars
and thence to the main body of [4], eliminating the need to check [26]. In
particular, we need to check neither Gupta’s proof of outer Pasch nor his
construction of midpoints without using circles, both of which are long
and difficult. Why then, do we need outer Pasch? Aside from its innate
interest, outer Pasch is the key tool to prove the plane separation theorem,
Theorem 2.5 of [3].16

6.1 Midpoints

Euclid’s own midpoint construction (Prop. I.10) is to construct an isosce-
les triangle on pq and then bisect the vertex angle. But Euclid’s proof is
defective; a correct proof has to rely on Pasch’s axiom. Gupta showed in
1965 [11] how to construct midpoints without using circles. His proof is
complicated, but we are allowed to use circles, so Gupta’s construction is
irrelevant for this paper.

One of Gupta’s “simpler” theorems enables us to justify the second
part of this Euclidean midpoint construction, and we present the main
construction of that lemma next, for the reader’s enjoyment (it is short
and beautiful), and because we need to check (in the next lemma) that it
relies only on a version of Pasch that is acceptable when Markov’s principle
is rejected.

Theorem 3 (Gupta) Assuming Markov’s principle, the base of an isosce-
les triangle always has a midpoint.
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Figure 10: To construct the midpoint M of AB, given C with AC

equal to BC, constructing first F and then M by inner Pasch.

Proof. See page 56 of [11]. We repeat the proof here, because below we
will adapt it to work without Markov’s principle. First we just repeat it
as Gupta gave it. We are not claiming that this proof works in EG.

Let ABC be an isosceles triangle with AC equal to BC. It is desired
to find the midpoint M of AB. Let α and β be any two distinct points,

16Gupta’s proof of outer Pasch from inner Pasch does not use the parallel axiom. That
raises the possibility that it might be easy to prove outer Pasch if we allow the use of the
parallel axiom. But then, we have to ask which version of the parallel axiom. In [3], Theorem
9.2, we show that Euclid 5 implies Tarski’s parallel axiom, but we used outer Pasch in the
proof. It is not difficult to prove that Tarski’s parallel axiom plus inner Pasch implies outer
Pasch. But we do not have a short proof of outer Pasch from Euclid 5. We do have a short
proof of inner Pasch from outer Pasch and Euclid 5.
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and extend both CB and CA by αβ to produce points D and E as shown
in Fig. 10. As shown in the figure, two applications of inner Pasch produce
points F andM . The pointM is the desired midpoint. The proof thatM
is in fact the desired midpoint is not quite straightforward, but it appears
in [11], p. 56, so we do not repeat it here.

We now consider whether Gupta’s proof still works without Markov’s
principle. The point is that to use non-Markovian Pasch we would need
to prove that the angles in question are positive and less than π. In
general there seems to be no way to justify that, since we do not yet have
available midpoints and perpendiculars. However, we do have circle–circle
continuity, and hence Euclid I.1, so we only need to make Gupta’s proof
work for equilateral triangles, not for isosceles triangles in general. And, in
Gupta’s proof, we get to choose the points α and β, which Gupta needed
only to be any distinct points.

Here is Gupta’s theorem for equilateral triangles, proved without Markov’s
principle.

Theorem 4 [Gupta without Markov] Intuitionistic Tarski geometry (with-
out any continuity axioms and without Markov’s principle) proves that if
A and B are distinct points, and ABC is an equilateral triangle, then AB
has a midpoint.

Proof. We choose α = A, β = B. Then A is the midpoint of CE and
B is the midpoint of CD. Because ABC is an equilateral triangle, an-
gle ACB = 60◦ (in the sense precisely defined in §5.5). Therefore by
Lemma 6, ACB > 0. Let P be the reflection of B in C, so B(P,C,B) and
PC = CB. Then PCA = 120◦, so by Lemma 6, PCA > 0 and ACB < π.
That justifies the first application of inner Pasch, so point F in Gupta’s
proof exists.

To justify the second application of inner Pasch, we need to show
that 0 < CEB < π. That is, 0 < AEB < π. This is where we use
CA = AE, which gives us (using points A,B,C and E) the conclusion
AEB = 30◦. Hence, by Lemma 6, AEB > 0. Let Q be the reflection of A
in E, so B(A,E,Q) and EQ = AE. Then BEQ = 150◦, so by Lemma 6,
BEQ > 0, so AEB < π. Then the second application of inner Pasch is
justified, and the point M exists. The fact that M , once constructed, is
indeed the desired midpoint can be proved exactly as in Gupta’s thesis.
That completes the proof.

Theorem 5 Every positive segment has a midpoint.

Proof. Since circle–circle continuity enables us to construct an equilat-
eral triangle on any segment (via Euclid I.1), and EG has circle–circle
continuity, the corollary follows from Gupta’s theorem. We remark that
Euclid I.1, like inner Pasch, does not depend on a dimension axiom, since
in Rn, so-called circle–circle continuity is really sphere-sphere continuity,
so Euclid I.1 holds without using a dimension axiom.

Lemma 7 Let a, b, and c be three distinct points with 0 < abc < π, and
suppose B(b, e, c). Then a#e.

Proof. See Fig. 11. Let d be the midpoint of ab. Since angle 0 < abc < π,
we can apply inner Pasch to the configuration adbce. The result is a point
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Figure 11: Given a#b, a#c, B(b, e, c), and 0 < abc < π, construct
f showing a#e.

f with B(a, f, e). Hence, by the third clause in the definition of #, a#e.
That completes the proof.
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6.2 Uniform perpendicular

In [3], we gave two different constructions of the uniform perpendicular
(to a line L through a point p, without assuming that p is or is not on
line L). One construction assumes the parallel axiom, but not line–circle
continuity. The other assumes line–circle continuity, but not the parallel
axiom. (It is an open problem to do it without assuming either of the
two.) In this paper, we assume both those two hypotheses, so we can
disregard the comparatively difficult construction that avoids line–circle
continuity. The other construction is fairly straightforward: just draw a
“large enough” circle C about point p (large enough that C meets L in
two points a and b with a#b), and then bisect segment ab to find the foot
f of the perpendicular, and then erect the perpendicular to L at f , using
the construction of Euclid I.1 to construct an equilateral triangle over ab
and connect its vertex to f . The only tricky part of this construction is to
find the radius to use to draw C. Line L is given by two points, say u and
v, with u#v. So segment uv can be extended; extend it by pu (which may
be null or not, we do not care) and again by pv. The resulting segment is
at least uv longer than pu or pv, so it can serve as the radius of C.

6.3 Euclid does not need Markov

Does Markov’s principle, or the stability of congruence, actually play an
important role in Euclidean reasoning? We searched for a theorem in
Euclid Books I-IV in which Markov’s principle is needed. There is an a
priori constraint, which we consider first.

First, the double negation interpretation. For simplicity we consider
the version of EG based on Tarski’s language and axioms, with Skolem
symbols ext for the segment-extension axiom, ip for inner Pasch, and e5 for
Euclid 5. As discussed at the end of §5.11, the axioms are then quantifier-
free and can be put in the form A→ B, where A and B are conjunctions of
atomic formulas. Let φ− be the double-negation interpretation of φ. Since
double negation commutes with implication and conjunction, each axiom
φ satisfies φ− ↔ ¬¬ φ. Each theorem ψ of Euclid is also of the form just
described. Hence, if the conclusion of ψ mentions only congruence and
equality (and not betweenness), then we will have ψ− → ψ, in EG plus the
stability of congruence. Therefore, any theorem of Euclid that actually
requires Markov’s principle must mention betweenness in its (formalized)
conclusion.

We therefore examined the propositions of Euclid looking for theorems
whose conclusions involve collinearity, angle ordering, or segment ordering.
This investigation is slightly complicated, because Euclid contains well-
known errors, and because Euclid has never yet been formalized faithfully
(i.e., in a theory that permits correcting Euclid’s proofs, while assuming
not too much more than Euclid did).17 Nevertheless, those errors can be

17There have certainly been many correct formal theories of geometry capable of proving
versions of the propositions of Euclid. But that is not quite the same thing as formalizing
Euclid. For example, to get the two circles in Proposition I.1 to intersect, clearly Euclid is
implicitly assuming some kind of circle–circle continuity. But Euclid has no dimension axiom,
so circles are really “spheres”. Did Euclid intend to assume that two circles intersect on a
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corrected, so the search for a possible use of Markov’s principle is possible,
even in this rough terrain.

The first one is Euclid I.14, which says

If with any straight line, and at a point on it, two straight lines
not lying on the same side make the adjacent angles equal to
two right angles, the two straight lines will be in a straight line
with one another.

The collinearity statement in the conclusion is naturally expressed using
betweenness. For a diagram, refer to your copy of Euclid. Our point about
this example is that stability of betweenness is not actually needed. Let E
(in Euclid’s figure) lie on CB extended, with BE = BC. Let PB ⊥ BC;
then CBP and PBE are right angles, so CBA and ABE are equal to two
right angles. Hence angles CBA and ABE together equal angles CBA
and ABD. Hence angle ABE equals angle ABD. It follows that E and
D lie on the same line CBE on the same side of B. (That follows in
Tarski’s system from the definition of equality of angles.) We do not need
the argument using Markov’s principle that Euclid gives in I.14.

6.4 The exterior angle theorem and its conse-

quences

The next potential example is I.16, the exterior angle theorem. Euclid’s
proof constructs a crucial point F , but he left a gap in failing to prove
that F lies in the interior of a certain angle.

The proof is also instructive, for those not yet completely familiar with
Tarski’s treatment of angles, in that it shows how to “unwind” a theorem
about angles, to see what it “really states” when angles are eliminated in
favor of a points-only formulation.

Lemma 8 (Exterior angle theorem, Euclid I.16) Suppose B(B,C,D)
and A#B and 0 < BAC < π. Then ACD > BAC.

Remark. The hypotheses are weaker than “ABC is a triangle”, which
by definition requires all three angles to be positive and have positive
supplements.

Proof. Euclid’s diagram is extended by Fig. 12. We show how to complete
Euclid’s proof. To prove ACD > BAC, we must construct a point F in
the interior of ACD such that ACF = BAC. Euclid knew what angle
ordering means: he constructs F as shown in the figure. We can construct
E (and hence F ) without Markov’s principle, since by Lemma 7, B#E,
so segment BE can be extended as required. The lemma is applicable by
the hypothesis 0 < BAC < π.

given side of the line connecting their centers, or just that they intersect somewhere? If only
the latter, then his proof that an angle could be bisected is wrong. If the former, then he
would not need to bisect an angle first, but could bisect a segment directly by constructing
two equilateral triangles on opposite sides of the segment. Proposition 7 patently fails in
three-space, so perhaps Euclid did mean to have a dimension axiom. But eventually he works
on the Platonic solids, so he needs to not have a dimension axiom.
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Figure 12: Triangle ABC has exterior angle ACD. E is the
midpoint of AC and also of BF . H exists by inner Pasch.

Euclid neglects to prove that F lies in the interior of ACD. To fill this
gap in Euclid, we need point H in the figure to exist. We wish to obtain H
from inner Pasch, applied to the five-point configuration shaded in Fig. 12.
But to use inner Pasch in Markov-free geometry, we need an appropriate
angle to be positive. It would suffice to show that 0 < FBC < π, but
there seems to be no way to do that until the theory of positive angles
is developed, which cannot precede the exterior angle theorem. However,
our formulation of inner Pasch allows it to be applied if 0 < ECF < π.

Since E is the midpoint of both AC and BF , and vertical angles are
equal (Lemma 3), triangles AEB and CEF are congruent, and triangles
AEF and CEB are congruent, by the SAS congruence theorem (Euclid
I.2); that is, AF = CB. Then triangles ABC and CFA are also congruent;
hence angle BAC is equal to angle FCA. Since 0 < BAC < π, we have
0 < FCA < π. But angle FCA is equal to angle FCE, since B(C,E,A).
Angle FCE is equal to angle ECF . Therefore 0 < ECF < π, justifying
the desired application of inner Pasch. That completes the proof that F
is in the interior of angle ACD, which in turn completes the proof of the
exterior angle theorem.

Remark. It is an open question whether the exterior angle theorem is still
provable if inner Pasch is formulated with only the hypothesis 0 < acb < π
instead of the hypothesis 0 < acb < π ∨ 0 < pqb < π. We tried various
ways of applying outer Pasch without success.

The immediate corollary (Euclid I.17) is that any two angles of a
triangle, taken together, are less than two right angles. In particular,
no triangle contains two right angles.

Lemma 9 In a right triangle, the hypotenuse is greater than either leg.

Proof. First prove Euclid I.18 and I.19. Then apply them as indicated in
Exercise 22, p. 198 of [10]. Alternately, see Satz 11.46 of [26]; the proof
there uses nothing but elementary betweenness and congruence, and the
existence of perpendiculars.

6.5 Crossbar theorem

The “crossbar theorem” proved in this section is an easy consequence of
outer Pasch, but I do not know how to derive it from inner Pasch (without
Markov’s principle).
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Theorem 6 Let a, b, and c be distinct points with 0 < abc < π and
0 < buv < π. Suppose B(a, e, c). Let u and v be points with B(b, a, u) and
B(b, c, v). Then there exists a point w with B(u,w, v) and B(b, e, w).

b
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be
w

b
u

b
c

b

v
b

b

Figure 13: Crossbar theorem. Ray(b, e) meets the crossbar uv.
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Figure 14: Proof of the crossbar theorem. Apply outer Pasch
twice.

Proof. Because we are given 0 < abc < π, we can apply non-Markovian
outer Pasch to the configuration bcvae. The conclusion is the existence of
a point f with B(a, f, v) and B(b, e, f). Now we apply outer Pasch again,
this time to the configuration bauvf . Again, the required hypothesis is
fulfilled, since 0 < abv < π, and abv is the same angle as abc. The result is
a point w such that B(u,w, v) and B(b, f, w). Now we have B(b, f, w) and
B(b, e, f). By the inner transitivity of betweenness, we have B(b, e, w) as
desired. That completes the proof.

6.6 Further properties of angle ordering

Euclid took the congruence of all right angles as his Postulate 4. Hilbert
([15], p. 20) remarks that this was “unjustified”, and says that the proof
of it goes back to Proclus.

Lemma 10 All right angles are congruent. In other words, if abc and
ABC are right angles with ab = AB and bc = BC then ac = AC.

Proof. This is Satz 10.12 in [26]. However, the proof appeals only to the
definition of angle congruence and simple theorems, such as the fact that
reflections in points and in lines are isometries.

Lemma 11 (i) If a, b, and c are not collinear, the triangle inequality
holds: ac < ab+ bc.

(ii) Whether or not a, b, and c are collinear, we have ac ≤ ab+ bc.
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Proof. The proof we gave in [3], Lemma 8.14, used Markov’s principle.
But Euclid’s proof in I.20, relying on I.5 and I.19, is perfectly constructive
as it stands, not requiring Markov’s principle or any argument by cases.
Part (ii) has a negative conclusion, since ≤ can be expressed negatively;
hence its provability without Markov’s principle follows from the double
negation interpretation.

6.7 A lemma about two perpendiculars

The next lemma is used in [3] to prove that every Lambert quadrilateral
(plane quadrilateral with three right angles) is a rectangle, which is a
key step in establishing a coordinate system on a geometric basis. In [3],
Lemma 8.15, we used the exterior angle theorem and Markov’s principle to
prove the lemma. Here we give a proof without Markov’s principle, relying
on inner Pasch and Euclid 5. The proof in [3] does not use Euclid 5, i.e.,
it is a proof in neutral geometry, but it does use Markov’s principle.

Lemma 12 Let a, b, c, and d be distinct points (pairwise distinct) with
ab ⊥ ad and cd ⊥ ad. If bc meets the line containing ad, then the inter-
section point m is between a and d.

ba

bb

b d

b c

b
m

ba

bb

b d

b c

b
m

b p

bx

Figure 15: To show B(a,m, d), construct p, then construct x by
Euclid 5, then apply inner Pasch to the shaded configuration.

Proof. Please refer to Fig. 15. The first part of the figure illustrates the
theorem, and the second part shows the construction used for the proof.
The lines containing ab and cd are parallel, since both are perpendicular
to ad. Let p be any point between m and c, for example, the midpoint
of mc. We have B(b,m, p) and B(m, p, c). Hence B(b, p, c), by the outer
transitivity of betweenness (which has been discussed above).

Then Euclid 5 applies, and yields the existence of a point x such that
B(d, p, x) and B(b, a, x). Then bxd > 0, because it is an angle of the right
triangle axd, which has a#d by hypothesis and a#x because B(b, a, x).
Now we can apply inner Pasch to the configuration dpxab. That yields
a point j such that B(b, j, c) and B(a, j, d). Then j is the intersection
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of ad and bc. Since those segments are not collinear, their intersection is
unique, so j = m. Hence B(a,m, d) as desired. That completes the proof.

6.8 Parallelograms

We have not yet defined the word “parallel.” It may seem obvious that two
lines are parallel just when they do not intersect, but that is only true
in plane geometry; skew lines in space are not considered parallel, and
“parallel” can be defined in a way that does not depend on the presence
of a dimension axiom. Intuitively, two lines are parallel if they lie in the
same plane and do not meet. Precisely, we define ab to be parallel to cd
if a and b are on the same side of cd and there is no point x such that
L(a, b, x) and L(c, d, x). This definition assumes that a#b and c#d. Then
it can be proved, without an upper dimension axiom, that if ab is parallel
to cd then cd is parallel to ab. The proof requires the plane separation
theorem of Hilbert. A version of that theorem is proved in [4], and it can
also be derived in non-Markovian geometry using the crossbar theorem
(Theorem 6).

The traditional Euclidean results about parallel lines and parallelo-
grams offer no difficulties in non-Markovian intuitionistic geometry, pro-
vided we define a transversal of two lines L and K to be a line J that
makes angles with L and K, both of which are between 0 and π.

We omit the proofs of the following facts:

Lemma 13 If lines L and K are cut by a transversal meeting them at
distinct points (and “transversal” is defined as above), then

(i) if L and K are parallel, then alternate interior angles are equal,
corresponding angles are equal, and interior angles on the same side of
the transversal are together equal to two right angles, and

(ii) if any of the conditions in (i) hold, then L and K are parallel.

Definition 5 A parallelogram is a quadrilateral with opposite sides par-
allel and adjacent vertices distinct, whose diagonals each are transversals
of each pair of opposite sides.

In other words, the diagonals form angles between 0 and π with the
sides. It is not required by this definition that diagonally opposite vertices
be distinct.

The following lemmas can all be proved without Markov’s principle.

Lemma 14 Opposite sides of a parallelogram are congruent.

Lemma 15 If opposite sides of a quadrilateral are congruent, and adja-
cent vertices distinct, and the diagonals meet, then the quadrilateral is a
parallelogram.

Lemma 16 The diagonals of a parallelogram meet, and they bisect each
other.

Proof. Let ABCD be a parallelogram. Extend BC to E with CB = BE.
Then E is on the opposite side of AB from C. By definition of parallel,
C and D are on the same side of AB. By the plane separation theorem,
E is on the opposite side of AB from D. Therefore there is a point F
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Figure 16: The diagonals of parallelogram ABCD meet at their
common midpoint M . F exists by the plane separation theorem.
H exists by the crossbar theorem. M exists by inner Pasch.

collinear with AB with B(D, F,E). Then F is in the interior of angle
AEB. Note that 0 < DCB < π, since ABCD is a parallelogram. By
Lemma 13 and Lemma 14, and the SAS congruence theorem, triangle
ABE is congruent to triangle DCB. Hence angle AEB is equal to angle
DBC. Hence 0 < AEB < π. Then the crossbar theorem can be applied
to angle AEB, and since B(A,F,B), the ray FE meets the crossbar AC.
Let H be the intersection point. Now we can apply inner Pasch to the
configuration DHECB (shaded in the figure), because 0 < BDC < π.
The result is a point M such that B(C,M,A) and B(D,M,B). That
point M is the desired intersection of the two diagonals of ABCD. Now
by vertical angles (Lemma 3) and Lemma 13, the four triangles into which
the diagonals divide ABCD are each congruent to their reflections in M .
Hence M is the midpoint of each diagonal. That completes the proof.

Corollary 1 All four vertices of a parallelogram are distinct.

Lemma 17 The lines connecting the midpoints of opposite sides of a par-
allelogram meet at their common midpoint, which is also the point of in-
tersection of the diagonals.

Proof. This follows from Lemma 16 and the fact that reflection in a point
preserves betweenness and congruence.

6.9 Angle copying

Hilbert took as an axiom the proposition that a given angle can be copied
to a new position, specified by a line L, a point p on L, and a point q not
on L; the angle should be copied so that its vertex is at p and its third
point t is on the opposite side of L from q. That is, a point x such that
B(t, x, q) is asserted to exist.

In our development, angle copying is a theorem. We will prove that
any angle can be copied, not just any positive angle. Then evidently the
conclusion B(t, x, q) needs to be weakened to T(t, x, q).
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To specify a side of a line L given by two distinct points p and s, we
have to give a point q which is distinct from the foot of the perpendicular
to L passing through q. It is not enough just to assume ¬L(p, s, q). We
abbreviate this property by “q is distinct from L.”

Theorem 7 (Angle copying) Let p and s be any two distinct points,
and let q be any point distinct from the line containing p and s. Assume
a and c are distinct from b (but not necessarily a#c). Then angle abc can
be copied to the line containing ps, with vertex and p and the third point
lying on the opposite side of ps from q. More precisely, there exist points
a′, c′, and x such that angle abc is congruent to angle a′pc′, L(p, s, c′),
and T(q, x, a′). Moreover, if a#c, then B(q, x, a′).

Proof. Let c′ = ext(s, p, b, c). Then pc′ = bc and L(p, s, c′). Let c′ be a
point with bc = pc′ on Ray(s, p). Erect a perpendicular line K to pc′ at
c′, on the opposite side of ps from q.

Then there are two points a′ on K such that a′c′ = ac. Either choice
will make triangle a′pc′ congruent to abc, since they are right triangles
with corresponding legs equal. We need to choose the correct a′ to be on
the opposite side of pc′ from q. By construction of K, one of the two rays
of K emanating from p is on the opposite side of ps from q. Choose a′ on
that side of ps. That completes the proof.

6.10 Positive angles revisited

Recall that we defined a positive angle by two cases: a positive angle is
either an angle of a right triangle (with positive sides) or an apex angle.

Theorem 8 Suppose abc is any angle with 0 < abc < π. Then a#c.

Remarks. (1) The special case when abc is a right angle is already inter-
esting. That special case can be stated loosely as, “every right angle has
a positive hypotenuse.” Note that abc does not count as a right triangle
until all its sides are positive; to be a right angle it only needs positive
legs. That is why we speak of the hypotenuse of an angle here, rather
than the hypotenuse of a triangle.

(2) The proof makes use of the parallel postulate. But our theory
of non-Markovian geometry has already depended heavily on the parallel
postulate. Our point in this paper is simply that non-Markovian geome-
try is a coherent conception; we make no attempt to develop it without
the parallel axiom, in contrast to [3], where we did develop constructive
neutral geometry to some extent (with Markov’s principle).

Proof. Since abc is an angle, we have a#b and c#b. We construct a
network of copies of abc that “tile” part of the plane near that triangle,
as shown in Fig. 17. The idea is that we can draw lines parallel to ab and
cb, because a#b and c#b, but we cannot necessarily draw lines parallel to
ac because we only know a 6= c. Nevertheless we can construct the tiling
shown in the figure. Here are the details:

Extend ab by ab to point d. Copy angle abc so ab goes to bd, and a goes
to a point e on the same side of ab as a. Then triangle abc is congruent
to triangle bde. Therefore angle cab is congruent to angle ebd. Therefore
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Figure 17: Starting with abc with a#b and b#c, construct the
midpoint m of ab and apply Pasch to prove B(a, c, f). Hence
a#c.

segments ac and be are parallel (in the sense that if there are lines through
those segments, they cannot meet, because that would contradict the
exterior angle theorem). Angle cba is congruent to angle edb, so ed is
parallel to cb. Since c#b and ed = cb, we have e#b, so we can extend de
by de to a point f with ef = bc.

We have cb = ed and eb = be. Since ed is parallel to bc, the alternate
interior angles cbe and bed are equal. Hence, by SAS, triangle ceb is
congruent to triangle dbe. Then cedb is a quadrilateral with opposite sides
equal. Hence, by Lemma 15, it is a parallelogram. Hence, by Lemma 14,
cd = bd = ab. By construction of f , ef = ed = bc. Hence, by SAS,
triangle cef is congruent to triangle abc. Note, however, that we have not
proved that a, c, and f lie on a line, and indeed the betweenness relation
B(a, c, f) is what we are trying to prove, as that is one way to show a#c.
We construct two more copies of triangle abc, by constructing a line vf
through f parallel to ad and ce, with vf = ab and v on the same side of f
as a, and extending df through f by bc to point u. Let m be the midpoint
of segment ab, which exists since a#b. Let ℓ be the midpoint of vf , which
exists since vf = ab and a#b, so v#f .

Angle bde is congruent to angle abc, because triangle cba is congruent
to triangle edb. Since 0 < abc < π by hypothesis, we have 0 < bde < π.
Hence we can apply inner Pasch to the configuration ufdam. The result
is a point k such that B(u, k,m) and B(a, k, f). In fact k = c, although
we have not proved that. Extending segments eb and uv, we get a large
parallelogram pueq as shown in the figure. The intersection of its diagonals
is at the midpoint of each diagonal, namely c. HenceB(u, c, q). Now a and
f are midpoints of opposite sides of the parallelogram, so by Lemma 17,
B(a, c, f). Then by definition, a#c. That completes the proof.

Theorem 9 Every positive angle is an apex angle.

Proof. A positive angle, by definition, is either an apex angle, or a right
angle, or an angle of a right triangle. If it is an apex angle, there is nothing
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to prove.
A right angle is an apex angle, since given a right angle, we can lay

off the same distance on each of its sides, constructing a right isosceles
triangle. By Theorem 8, the base of this triangle has distinct endpoints,
and hence, it has a midpoint. That makes the right angle an apex triangle.

It remains to prove that every angle of a right angle is an apex angle.
Let acb be a right triangle with the right angle at c. Fig. 18 illustrates
the proof.

b
a

b
c

b

d
b

b
Figure 18: Angle abc is an apex angle, because a#d as the hy-
potenuse of right angle acd.

According to Lemma 9, ac < ab. By definition of triangle, a#c. Let e
be the reflection of c in b, so B(e, b, c) ∧ eb = ec. (e is not shown in the
figure.) Then by Lemma 4, there is a unique point d with B(e, b, d) and
bd = ab. By Lemma 9, bc < ab. Hence bc < bd. By definition of <, there
exists a point c′ with B(b, c′, d) and bc′ = bc. We have B(b, c′, d) and
B(e, b, d). Applying inner transitivity (Axiom A15-i), we have B(e, b, c′).
Now we have B(e, b, c′) ∧ bc′ = bc, and also B(e, b, c) ∧ bc = bc. By the
uniqueness part of Lemma 4, c = c′. Since B(b, c′, d) we have B(b, c, d).
Therefore c#d. Now acd is a right triangle since acb is a right angle, and
both legs cd and ac have distinct endpoints. Applying Theorem 8 to right
angle acd, we obtain a#d. Since ba = bd, this proves abc is an apex angle,
as desired. That completes the proof.

Theorem 10 (Angle bisection) Every positive angle can be bisected.

Proof. Let abc be a positive angle. Then by Theorem 9, abc is an apex
angle. That is, there are points u, v on Ray(b, a) and Ray(b, c) respectively
such that bu = bv and u#v. Since u#v, Theorem 5 implies that uv has
a midpoint, say m. By Theorem 8, since b#u and u#m, we have b#m.
Hence bmu and bmv are triangles. Since um = vm, angle ubv is bisected
by Ray(b,m). Since angle abc is the same angle as ubv, angle abc is
bisected by Ray(b,m). That completes the proof.

Remark. Euclid’s Proposition I.9 purports to prove that every angle
can be bisected; but the proof has more than one flaw. First, if the angle
to be bisected is equilateral, the two points determining Euclid’s bisector
might coincide, and thus fail to determine a line. Second, without any
dimension axiom, the equilateral triangle produced by applying I.1 in the
proof of I.9 might lie in a different plane from the angle to be bisected, thus
the “bisector” would fail to lie in the plane of the angle. These difficulties
are not easy to repair, especially without using a dimension axiom; but
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it is done as above, by using Gupta to find the midpoint of the base of
an equilateral triangle, and then using inner Pasch. In other words, the
above approach, which we use here in non-Markovian geometry, is (as far
as I know) actually the simplest way to repair Euclid I.9. Of course, if we
do not care about avoiding Markov’s principle, some of the complications
fall away.

7 Geometric arithmetic without Markov’s

principle

In [4, 3], we showed that in EG plus Markov’s principle, one can define
coordinates, and one can define addition and multiplication of points on a
fixed line. The constructions differ from the classical ones because we need
to avoid a case distinction according to the signs of the arguments. Two
ways of defining addition and multiplication constructively are studied in
the cited paper. One is purely geometrical, in which addition is defined
using uniform rotation and reflection, and multiplication is defined using
a circle, following Hilbert. We have checked that Markov’s principle is not
used in these constructions and proofs in any essential way. Actually, we
found only one place where it was used, and we fixed that by providing in
this paper a non-Markovian proof of Lemma 12. In the discussion below,
we will point out how that lemma is used.

7.1 Coordinates

Once we have the uniform perpendicular, it is possible to define coordi-
nates. Pick two perpendicular lines to serve as the x-axis and the y-axis.
Then to each point p we can assign the feet a and b of the perpendic-
ulars through p to the x-axis and y-axis, respectively. Then a is the
x-coordinate of p. To get the y-coordinate, however, we must rotate b by
90◦, because the y-coordinate is supposed to be a point on the x-axis, the
same distance from the origin as b. Therefore we need to define uniform
rotation; “uniform” in the sense that it works without a case distinction
as to the sign of b. A rotation by 90◦ is equivalent to two reflections in
the line y = x; so it suffices to define uniform reflection.

The final step in the construction of coordinates is to show that, given
points x and y on the x-axis, we can construct a point P (x, y) whose
coordinates are (x, y). Namely, erect a perpendicular J to the x-axis at
x on the opposite side of the x-axis from (0,−1). (The theorem about
erecting perpendiculars requires a point not on the line, and then the
perpendicular is constructed on the opposite side of the line from that
point. This guarantees that J lies in the plane of the two axes. Rotate
y counterclockwise about the origin by 90◦ (in the plane of the two axes,
i.e., using the two axes to define the angle of rotation) to a point q. Drop
a perpendicular from q to J . The foot of that perpendicular is P (x, y).
But why are the coordinates of P (x, y) equal to (x, y)? Let p = P (x, y)
and let 0 be the origin. By construction the quadrilateral qpx0 has right
angles at p,x, and 0; it is therefore a Lambert quadrilateral (three right
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angles). It lies in the plane determined by the two axes since the points p
and q are on the opposite side of the x-axis from (0,−1).

Using the parallel postulate, we prove every Lambert quadrilateral in
a plane is a rectangle. Hence the angle at q is also a right angle; hence
q is the foot of the perpendicular from p to the y-axis; hence y is the
y-coordinate of p, as claimed.

Thus the construction of coordinates depends on the theorem that
every planar Lambert quadrilateral is a rectangle (a quadrilateral with
four right angles). We claim that this theorem can be proved, without
using Markov’s principle, from the weakest form of the parallel postu-
late (Playfair’s axiom). It is mentioned in Lemma 5.24 of [4], but the
proof is not given there. In [3], Lemma 10.2, it is proved in intuitionistic
Tarski geometry that a planar Saccheri quadrilateral is a rectangle. (A
Saccheri quadrilateral is a quadrilateral abcd with right angles at b and c
and ab = cd.) Half a Saccheri quadrilateral is a Lambert quadrilateral,
and a Lambert quadrilateral can be doubled to make a Saccheri quadri-
lateral, so the cited lemma implies that a planar Lambert triangle is a
rectangle, as desired. The proof of that theorem given in [3] is almost
free of Markov’s principle, but it does appeal to Lemma 12 (in the num-
bering of the present paper), which in the cited paper is proved using
Markov’s principle. However, in this paper we proved Lemma 12 without
using Markov’s principle. Hence, the uniqueness of coordinates is proved
without using Markov’s principle.

7.2 Euclidean fields without Markov’s principle

In [4], we gave axioms for (intuitionistic) Euclidean fields. The language
has constants 0 and 1, function symbols +, −, ·, 1/x or x−1 for multi-
plicative inverse, and

√
, and a predicate P (x) for “x is positive.” The

axioms are the field axioms, the axioms for order (involving P ), and the
axiom that non-negative elements have square roots. In addition we took
Markov’s principle ¬¬P (x) → P (x) as an axiom.

Now we want to drop Markov’s principle. When Markov’s principle
is allowed, non-zero elements have multiplicative inverses if and only if
positive elements have inverses, since 1/x = x/|x|, where |x| =

√
x2. This

argument works if |x| is positive when x is nonzero, but that is equivalent
to Markov’s principle. In the absence of Markov’s principle, then, the
axiom that positive elements have multiplicative inverses does not imply
that all nonzero elements have multiplicative inverses, and we leave that
axiom unmodified.

Models of the resulting theory will be called “weakly Euclidean fields”,
since we already used “Euclidean fields” for models that satisfy Markov’s
principle. To be precise, the axioms are the usual axioms of commutative
ring theory, plus the following:

¬x 6= y → x = y stability of equality

0 6= 1 EF0

P (x) → ∃y (x · y = 1 ∧ P (y)) EF1

P (x) ∧ P (y) → P (x+ y) ∧ P (x · y) EF2
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x+ y = 0 → ¬(P (x) ∧ P (y)) EF3

x+ y = 0 ∧ ¬P (x) ∧ ¬P (y) → x = 0 EF4

x+ y = 0 ∧ ¬P (y) → ∃ z(z · z = x) EF5

Equivalently one may express EF1 and EF5 using the function symbols
1/x and

√
x, achieving thereby a quantifier-free axiomatization; and if

one does not like using a function symbol for a not-everywhere-defined
function, one may use the Logic of Partial Terms (LPT), as explained in
[3]. Note that EF1 requires that the inverse positive element not only
exist but also be positive itself. If Markov’s principle is allowed, one can
prove that the inverse of a positive element is positive, but since we are
not assuming Markov’s principle, that cannot (as it turns out) be proved,
and we assume it as part of EF1.

Let F be an ordered field. Then “the plane over F”, denoted by F
2, is

a geometrical structure determined by defining relations of betweenness
and equidistance in F

2, using the given order of F. Namely, b is between
a and c if it lies on the interior of the segment ac. That relation can
be expressed more formally in various ways, for example (using the cross
product) by (c− b)× (b− a) = 0 and (b− c) · (a− b) > 0.

The equidistance relation E(a, b, c, d), which means that segment ab is
congruent to segment cd, can be defined by (b− a)2 = (d− c)2. Note that
no square roots were used, so these definitions are valid in any ordered
field.

The cross product u × v is defined using components as usual. If
the lines through uv and st intersect (and do not coincide), then using
Cramer’s rule, the formula for the intersection point has denominator
given by the cross product D = (t − s) × (v − u). (Details are in §9.3 of
[4].) So, in verifying inner Pasch and outer Pasch, we will need to know
that the cross products for the lines that need to intersect are positive.
Thus what has to be proved is the following lemma:

Lemma 18 In F
2, the cross product (in the sense defined above) of the

vectors giving the sides of angle abc with 0 < abc < π is positive. In
particular, if d lies on ab, then |d − c| > 0, and if ab lies on the x-axis,
then |c2| > 0.

Remark. At the end, the proof requires the modified EF1, which says that
inverses of positive elements are positive.

Proof. By a rotation and translation, we can assume that b = (0, 0) and
a lies on the positive x-axis. (All three cases in the definition of “posi-
tive angle” are invariant under rotation and translation.) Then the cross
product in question is a × c = c2a1. Since a1 > 0, the cross product has
positive absolute value if and only if |c2| > 0. The penultimate statement
follows from c2 > 0, since |d − c| is the hypotenuse a right triangle with
a vertical leg of length c2, and in F

2 the theorem that a leg of a right
triangle is shorter than the hypotenuse holds.

Assume 0 < abc < π. If angle abc is a right angle or an angle of a
right triangle, |v2| > 0 is immediate. So we may assume abc is an apex
angle. Then there are distinct points u = (u1, 0) and v on the ray from
(0, 0) through c, such that u1 > 0 and |u| = |v|. We have |u− v| > 0 since
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u and v are distinct. The cross product of the two sides of the angle is
u× v = u1v2, since u2 = 0. We must show |u1v2| > 0. Since u1 > 0, that
is equivalent to v2 > 0. We have not yet used the assumption abc < π,
which we will now need. Let d = (−a1, 0). Then 0 < dbc, by definition of
abc < π. There are three cases: dbc is an apex angle, a right angle, or an
angle of a right triangle. If either of the latter two then c2 > 0, so v2 > 0
and we are done. So we may assume dbc is an apex angle. Then there are
distinct points p and q on the negative x-axis and bc, respectively, such
that |p| = |q| and |p| > 0. Extending the positive-length vectors u and v by
|p| and the vectors p and q by |u|, we can assume without loss of generality
that |u| = |p| = |v| = |q. Then v = q and angle pqu = pvu is inscribed in
the semicircle pvu with center at b = (0, 0). Since classically F

2 satisfies
the theorem that an angle inscribed in a semicircle is a right angle, and
being a right angle is equationally described, pvu is a right angle. |p2|
is the altitude of that right triangle. By Lemma 18, F2 satisfies that the
altitude of a right triangle (with positive legs) is positive. Hence |p2| > 0.
But c2/|c| = p2/|p|, and 1/|c| and 1/|p| are both positive by EF1, since
|c| > 0. Hence c2 is a positive quantity times p2. Hence |c2| > 0, as
desired. That completes the proof of the lemma.

The following theorem verifies that we have the axioms for weakly
Euclidean fields right.

Theorem 11 Every plane F
2 over a weakly Euclidean field F is a model

of Euclidean geometry EG.

Remark. This theorem depends on the modifications we made to the
extension axiom and to inner and outer Pasch; had we not changed the
formulations of inner and outer Pasch to require an angle to be positive
and have a positive supplement, we would need Markov’s principle to
verify them. Although these calculations are elementary, we need to verify
that Markov’s principle is not necessary, and that we only need to divide
by elements that are known to be positive, and we need square roots only
of positive elements (as opposed to nonzero elements). The fact that these
calculations succeed without Markov is a strong indication that we have
the axioms of EG right.

Proof. We define x > y to abbreviate P (y − x) and x ≥ y to abbreviate
¬x < y, and similarly for < and ≤. We prove the transitivity of <.
Suppose x < y and y < z. Then P (y − x) ∧ P (z − y). By EF2, P ((y −
x) + (z − y)). Hence P (z − x). Hence x < z.

We define absolute value in F
2:

|(x, y)| :=
√

x2 + y2.

We have x2 ≥ 0 for all x (for example, since ≤ is stable, we can prove
that by contradiction). Hence |u| is always defined.

The interpretation of betweenness in F
2 has to be given without using

cases. Collinearity L(u, v, w) can be defined by

L(u, v, w) := (w − u)× (w − v) = 0.

Then betweenness is defined by

B(u, v, w) := L(u, v, w)∧|v−u|+|w−v| = |w−u|∧|v−u| > 0∧|w−v| > 0.
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Since translations and rotations are given by linear maps with determi-
nant one, they preserve cross and dot products, and hence they preserve
distance and collinearity, and hence they preserve betweenness as well.

We claim that two points u and v in F
2 are distinct if and only if

|v − u| > 0. According to the definition of u#v, u and v are distinct if
there is a point x bearing any of the three possible betweenness relations
with u and v. For example, suppose B(u, x, v). Then by the definition of
betweenness, |x − u| > 0 and |v − x| > 0 and L(u, x, v). We must show
|v − u| > 0. By a rotation and translation, we may assume u = (0, 0)
and x = (x1, 0) and y = (y1, 0). Then we have x1 > 0 and y1 > x1, and
we must show y1 > 0; but that is the transitivity of >, which we proved
above. Similarly for the other two possible betweenness relations. Thus
u#v if and only if |v − u| > 0.

We turn to the betweenness axioms. Consider the axiom ¬B(a, b, a).
In F

2, we have B(a, b, c) → L(a, b, c), by the definition of B(a, b, c). Sup-
pose B(a, b, a). Then L(a, b, a). By a rotation and translation, we can as-
sume a and b lie on the x-axis. ThenB(a, b, a) becomes |b2−a2|+|a2−b2| =
|a2−a2|. But the last expression is 0. With x = b2−a2, we have 2|x| = 0.
Hence x = 0; that is, b2 = a2. Hence a = b. But that contradicts
B(a, b, a). Hence our assumption B(a, b, a) is contradictory. That is,
¬B(a, b, a), which is what had to be proved.

Consider the symmetry of betweenness, B(a, b, c) → B(c, b, a). Sup-
pose B(a, b, c); after a rotation and translation, we can assume a, b, and c
lie on the x-axis. For simplicity we drop subscripts, writing just a instead
of a1, etc. Then we have |c − b| + |b − a| = |c − a| and |c − b| > 0 and
|b− a| > 0. What has to be proved is an equation representing non-strict
betweenness T(c, b, a) and the two inequalities |a− b| > 0 and |b− c| > 0.
By the stability of equality, we can argue classically for the non-strict be-
tweenness, which we take as proved. The two inequalities follow from the
easy lemma | − x| = |x|. That completes the verification of the symmetry
of betweenness.

Consider the inner transitivity of betweenness, axiom A15-i:

B(a, b, d) ∧B(b, c, d) → B(a, b, c).

Suppose the hypothesis. Again we can apply a rotation and translation
to bring all the points to the x-axis. As before the non-strict inequality
T(a, b, c) is expressed by an equation, so by the stability of equality, we
can prove it classically, which we assume done. For simplicity we drop
the subscripts, writing just a instead of a1, etc. Then a ≤ b ≤ c ≤ d. We
have a < b < d and b < c < d by hypothesis. We need to prove a < b < c.
But we have both inequalities already; there is no existential assertion to
prove. That completes the verification of the inner transitivity axiom.

Next we turn to the inner Pasch axiom. Please refer to Fig. 8. By a
rotation and translation, and possibly renaming some of the points, we
may assume aq lies on the x-axis and c2 ≥ 0 and q1 ≥ a1. We have
to show that |(q − a) × (b − p)| > 0. That is, |(b2 − p2)(q1 − a1)| > 0.
The hypothesis of inner Pasch includes the specification that either angle
bca or angle pqb is between 0 and π. First assume 0 < bca < π. By
Lemma 18, applied to angle bca, any point on bc is at a positive distance
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from a. Hence |a − q| > 0. Hence q1 − a1 > 0. Therefore by EF1,
1/(q1 − a1) > 0. Hence it suffices to show |b2 − p2| > 0. Because B(c, q, b)
holds by hypothesis, we have |c− q| > 0, so acq is an angle, and the same
angle as acb. Since being positive respects the same-angle relation, and
even angle congruence, 0 < acq < π. Then by Lemma 18, c lies at positive
distance from aq. That is, c2 > 0. Therefore b2 < 0, since B(b, q, c) and
q2 = 0. Because B(a, p, c) holds by hypothesis and c2 > 0 and a2 = 0, we
have p2 > 0. Now we have b2 < 0 < p2. Hence |b2 − p2| > 0, as desired.
That completes the verification of inner Pasch, in the case 0 < bac < π.
We note that it would not work without Markov’s principle if we had only
T(c, q, b) for a hypothesis instead of B(c, q, b).

It remains to verify inner Pasch under the assumption 0 < qpa < π
instead of 0 < bca < π. Then Lemma 18 tells us that |(q− p)× (a− p)| >
0. We are free to choose the origin of coordinates so that p1 = 0 and
a2 = q2 = 0. Then

|(q1 − p1)(a2 − p2)− (q2 − p2)(a1 − p1)| > 0

| − q1p2 − (−p2)(a1)| > 0

|p2(a1 − q1)| > 0.

By Lemma 18, |a1 − q1)| > 0. Hence p2 > 0. Since B(a, p, c), that implies
c2 > 0. That in turn implies |(a− c)× (q− c)| > 0, which in turn implies
|(a− c)× (q − ℓ)| > 0, for any point ℓ on the ray cq; in particular for the
point ℓ such that |ℓ−c| = |a−c|. Hence 0 < acb < π. But we have already
verified that under that hypothesis, inner Pasch holds, so that completes
the verification of inner Pasch.

Now we turn to outer Pasch. We may assume a = (0, 0) and q = (q1, 0),
so aq lies on the x-axis. As with inner Pasch, the crucial issue is to verify
that the lines that need to intersect have positive cross product. For
outer Pasch that is |(q − a) × (b − p)|, which is |q1 − a1| |b2 − p2|. Since
0 < baq < π ∨ 0 < abq < π, q and a are distinct points, so q1 > a1,
and b2 > 0. Hence |q1 − a1| > 0, and to finish the verification it suffices
to prove |b2 − p2| > 0. Since B(b, c, q), we have 0 < c2 < b2, and since
B(a, p, c) we have 0 < p2 < c2. Hence 0 < p2 < b2. That completes the
verification of outer Pasch.

Any axiom whose analytic-geometry interpretation does not involve
a positive occurrence P (x) will be automatically verifiable, by Gödel’s
double-negation interpretation. That is, starting with the classical veri-
fication, we just push double negations inwards, and when they reach an
equality, we drop them by the stability of equality, and the result is an
intuitionistic verification. If the statement had a positive occurrence of
P (x) we would need Markov’s principle to drop the double negation, but a
negative occurrence causes no problem. If the statement does not involve
P (x), the need does not arise. On these grounds, the 5-segment axiom,
line–circle continuity and circle–circle continuity (which have occurrences
of P (x), counting as negative by virtue of being in the hypotheses) hold
in F

2. (See [4] for a more detailed discussion.)
The dimension axioms (once properly formulated) are easily verified

in F
2. That completes the proof of the theorem.
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8 Geometric arithmetic

We have already discussed the construction of coordinates relative to a
pair of perpendicular lines chosen as axes. The definitions of multipli-
cation and addition for positive arguments then offers no difficulty. For
example, the multiplicative inverse of a point (a, 0) on the x-axis is found
by erecting a perpendicular to the x-axis at the point 1, and using Euclid
5 to prove that it meets the line containing the line through (0, 0) and
(a, 1). That point has coordinates (1, 1/a). To use the non-Markovian
version of Euclid 5, we need the hypothesis that point (a, 0) is distinct
from (0, 0). The passage from signed to unsigned multiplication is dis-
cussed in [4], where two solutions are given. For example, the solution by
using Hilbert’s definition of multiplication using a circle works in EG (but
it does require the non-strict version of line–circle continuity, which we
included partly for that reason). It follows that, loosely speaking, “every
model of EG is a plane over a Euclidean field.”

9 Some results about EG

In this section we present some metamathematical results about non-
Markovian geometry EG.

9.1 A Kripke model of non-Markovian geometry

We want to demonstrate that non-Markovian geometry is “about some-
thing” by giving a model of it in which Markov’s principle fails. Of course,
we cannot give a model in the classical sense, since the double negation
of Markov’s principle is a theorem. But we can give a two-node Kripke
model. (For an introduction to Kripke models and a proof of the complete-
ness theorem, see [29], Part V, pp. 324ff. Since our model is particularly
simple, you may be able to understand it without a background in Kripke
models.)

In view of the fact that non-Markovian geometry is interpretable in
the theory of Euclidean fields (without Markov’s principle), it suffices to
give a Kripke model that does not satisfy Markov’s principle of Euclidean
field theory in the form ¬¬P (x) → P (x). Then a corresponding model of
EG can be constructed by replacing each field Fα in the first Kripke model
by the plane F

2

α over Fα, with betweenness and congruence interpreted as
in the previous section.

Theorem 12 Euclidean field theory does not imply Markov’s principle,
and geometry EG does not imply Markov’s principle.

Proof. The second claim follows from the first and Theorem 11. We will
construct a Kripke model of Euclidean field theory in which MP fails. Let
F be any non-Archimedean field (so it contains some “infinite” element,
larger than any positive integer). Let F0 be the set of “finitely bounded”
elements of F, i.e., those elements bounded by some positive integer. F0

contains “infinitesimal” elements x, by definition those whose reciprocals
are not finitely bounded. We interpret P (x) in F0 to mean that x is
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positive in F and not infinitesimal. Then F0 is not a classical model of
Euclidean ordered field theory, but it is still admissible as a node in a
Kripke model.

The definition of a Kripke model includes these two clauses: Mα|=¬φ
means that φ fails everywhere above α, and Mα|=A → B means that if
Mβ |=A for β > α, then Mβ|=B. The soundness theorem (easy to check)
for Kripke models says that the satisfaction relation preserves intuitionis-
tic logical consequence. Hence, to prove that Markov’s principle is not a
theorem of Euclidean field theory, it suffices to exhibit a Kripke model in
which Markov’s principle is not satisfied. That Kripke model, call it M,
will be a two-node model. The root node M0 has universe F0, but P (x)
is interpreted in M0 to mean that x is positive in F and not infinitesimal.
The other node, lying “above” M0, is M1, which is the classical model
F.

We now show that Markov’s principle fails in M. Let x be infinitesimal
in F. Then the root node M0 satisfies ¬¬P (x), since x is positive in F,
and satisfaction in M1 is just classical satisfaction. Suppose, for proof by
contradiction, that M satisfies Markov’s principle. Then the root node
satisfies the hypothesis ¬¬P (x) of Markov’s principle, so it must satisfy
the conclusion P (x). But, by definition of P in M0, that implies x is not
infinitesimal, contradiction. Hence Markov’s principle does not hold in
M.

We still need to check that the axioms of Euclidean field theory hold
in M. Since satisfaction at node M1 is just classical satisfaction, we only
need to check M0.

Consider EF0: ¬x 6= y → x = y. Suppose M0 satisfies ¬x 6= y. Then
M1 does not satisfy x 6= y. Hence x = y in F. Hence x = y in F0. Hence
M satisfies EF0.

Consider EF1: P (x) → ∃y (x · y = 1). Suppose M0|=P (x). Then x
is positive and not infinitesimal. Hence y = 1/x in F is finitely bounded,
so it belongs to F0. Hence x has an inverse in F0. EF1 also requires that
inverse to be positive, which it is, since it is positive in F. Therefore M0

satisfies EF1.
Consider EF2: P (x)∧P (y) → P (x+y)∧P (x·y). SupposeM0|=P (x)∧

P (y). Then x and y are positive and not infinitesimal. Then their sum
and product are positive. Since x is not infinitesimal, by definition 1/x is
finitely bounded. Let n be an integer such that 1/x < n. Then

1

x+ y
<

1

x
< n.

Hence 1/(x+ y) is finitely bounded. Hence x+ y is positive in M0. Also

1

xy
=

1

x

1

y
< nm

provided 1/y < m. Hence xy is also positive in M0. Hence M0 satisfies
EF2.

Consider EF3: x+ y = 0 → ¬(P (x)∧ P (y)). Suppose x+ y = 0 holds
in M0 and P (x)∧P (y) holds in M0 or in M1. Then x and y are positive
in F, contradicting the fact that F satisfies EF3. Hence M satisfies EF3.
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Consider EF4: x + y = 0 ∧ ¬P (x) ∧ ¬P (y) → x = 0. Suppose
M0|=¬P (x). Then M1 does not satisfy P (x), so x is not positive in
F. If the same is true of y = −x, then since F classically satisfies EF4,
x = 0. Hence M0 satisfies EF4.

Consider EF5, namely x + y = 0 ∧ ¬P (y) → ∃ z(z · z = x). Suppose
M0 satisfies x+ y = 0 ∧ ¬P (y). Then y = −x is not positive in F, so by
EF5 in F, x has a square root z in F. We claim z is finitely bounded, and
hence lies in F0. If |z| < 1 we are done. Otherwise, let n be an integer
greater that |x|; then |z| ≤ √

n < n+ 1. That completes the proof of the
theorem.

Remark. In the corresponding geometrical Kripke model, whose two
nodes are M0 = F 2

0 and M1 = F 2

1 , with betweenness and congruence
defined in the obvious way (details in [4]), two points of M0 are distinct if
and only if the difference of both their coordinates is infinitesimal, and an
angle is positive if and only if the rays that form its sides contain points
at equal distances from the vertex that are distinct; loosely speaking, the
angle is not infinitesimal. This model is in accord with the intuition that
if Markov’s principle does not hold, one has to imagine that every point
has a “cloud” of nearby points, infinitesimally close to it but not equal;
so near that the two points cannot determine a line.

Remark. This model, and another more complicated model, were given
in [4], to show that Markov’s principle does not follow from EF0–EF5.
But it was not appreciated at the time that Markov’s principle does fol-
low from the axioms of constructive geometry, unless the extension axiom
and Pasch’s axiom(s) are modified by requiring distinct points and posi-
tive angles; geometry without Markov’s principle was purposely not dealt
with in [4], since “sufficient to the day are the tribulations thereof.” In
other words, the difficulties of non-Markovian geometry then seemed in-
timidating, and were postponed.

9.2 EG is not too weak

We created the theory EG by starting with constructive geometry from [4],
removing Markov’s principle, and modifying the segment extension and
Pasch axioms. We now show that we have not made EG too weak, in the
sense that if we add Markov’s principle back to EG, we also automatically
get back the unmodified axioms of constructive geometry.

Lemma 19 EG plus Markov’s principle proves that any two unequal points
are distinct, and if a, b, c are not collinear, then 0 < abc < π.

Proof. Let a 6= b. Let α#β (two such points exist by the lower dimension
axiom of EG). Extend αβ by ab to point e. Then T (α,β, e). Since a 6= b
and ab = βe, we have β 6= e. With Markov’s principle, we have B(x, y, z)
equivalent to T(x, y, z) ∧ x 6= y ∧ y 6= z. Hence, with Markov’s principle,
B(α, β, e). Hence β#e. Then ab is congruent to the positive segment
βe. Hence it can be extended by cd to a new point f , using the segment
extension axiom of EG. Then B(a, b, f). Then by definition a#b.

Now suppose ¬L(a, b, c). We will prove 0 < abc < π. Since ¬L(a, b, c),
we have a 6= b and b 6= c, and using Lemma 4, we can assume without
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loss of generality that ab = bc. Since ¬L(a, b, c) we have a 6= c. As shown
above, Markov’s principle then implies a#c, so 0 < abc. Let d be the
reflection of c in b; then similarly, 0 < abd, so abc < π. That completes
the proof of the lemma.

Theorem 13 EG plus Markov’s principle proves the axioms of construc-
tive Tarski geometry given in [4].

Proof. We will prove the segment extension axiom A4, which says that
if a 6= b then ab can be extended by any segment cd. By Lemma re-
flemma:nottooweak, with Markov’s principle a 6= b implies a#b, so the
segment extension axiom of EG applies. That completes the proof of
axiom A4.

Next, we will verify the (unmodified) inner Pasch axiom. In con-
structive geometry, the hypotheses include ¬L(a, b, c). By Lemma 19,
0 < abc < π. Then the inner Pasch axiom of EG can be applied. That
completes the verification of inner Pasch.

The dimension axiom of EG immediately implies the dimension ax-
iom of constructive geometry, and no other axioms were modified. That
completes the proof of the theorem.

9.3 EG is strong enough

In this section we advance the following principle

If, in any theorem of Euclidean geometry of the type found in
Books I-IV, we replace “a and b are unequal” by “a and b are
distinct”, and we require that all angles be positive, then the
resulting theorem is provable in non-Markovian geometry EG.

The first difficulty here is “of the type found in Books I-IV.” The principle
surely fails if the theorem in question is Markov’s principle itself. But
Markov’s principle is not a proposition of the kind found in Euclid. As
discussed above, those propositions are “Horn formulas”; that is, their
hypotheses are atomic statements (possibly involving defined concepts)
and some given points, and the conclusions assert the existence of some
points bearing positive relations to the original points.

A second difficulty is that the language of EG does not mention “an-
gles” directly, so what exactly is meant by “require that all angles be
positive”? The phrase “angle abc” means (in ordinary geometry) that
the three points are distinct and not collinear. We call a formula φ “of
Euclidean form” if it is expressed as a Horn formula in a language ex-
tending EG by a 3-ary predicate Angle and a 2-ary predicate D, where
D occurs only negatively (that is, in the antecedent of the implication).
Then the “ordinary interpretation” of φ is obtained by replacing D(a, b)
by a 6= b and Angle(a, b, c) by ¬L(a, b, c). The “non-Markovian inter-
pretation” is obtained by replacing D(a, b) by a#b and Angle(a, b, c) by
0 < abc < π, both of which are abbreviations for existential formulas of
EG. The existential quantifiers in the antecedent are then pulled out, so
that the non-Markovian interpretation of φ has additional free (or univer-
sally quantified) variables. Now we are able to state a theorem:
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Theorem 14 Let φ be a formula of Euclidean form whose ordinary inter-
pretation is provable in constructive geometry. Then the non-Markovian
interpretation of φ is provable in EG.

Remark. By Theorem 13, “provable in constructive geometry” is equiva-
lent to “provable in EG + MP.”

Proof. The non-Markovian interpretation of any Euclidean formula is a
Horn formula, so it suffices to prove that Markov’s principle is conservative
over EG for Horn theorems. Let φ be a Horn formula provable from a
list of axioms Γ and formulas ¬¬P → P , where P is atomic (Markov’s
principle is of that form). We write one instance of Markov’s principle
explicitly and suppose Γ may contain more instances. We will show how
to eliminate one instance at a time. By cut-elimination, there is a cut-free
derivation in Gentzen’s sequent calculus G3 [16] of

Γ,¬¬P → P ⇒ φ.

Since φ and Γ do not contain quantifiers or disjunction, by [17], the in-
ferences may be permuted so that the implication on the left is the last-
introduced connective, introduced by rule →⇒. Then there are cut-free
derivations of P ⇒ φ and of Γ ⇒ ¬¬P . But again we can permute the
inferences so that the last inference introduces ¬¬P . Hence there is a
cut-free derivation of Γ,¬P ⇒⊥. Permuting again if necessary, there is a
cut-free derivation of Γ ⇒ P . Recall that we have a cut-free derivation
of P ⇒ φ. Applying the cut rule to these two derivations, we obtain a
derivation (with one cut) of Γ ⇒ φ. Hence we have eliminated one in-
stance of 6= ¬P → P . Applying cut elimination, we now have a cut-free
proof of Γ ⇒ φ, so we have eliminated one instance of Markov’s principle.
Continuing in this fashion, or more formally, by induction on the num-
ber of instances of Markov’s principle in the original proof, we eventually
eliminate all instances of Markov’s principle. That completes the proof of
the theorem.

In [4] we concluded, by a combination of geometry and metamathe-
matics, that the essential content of Euclid Books I–III is formalizable in
constructive geometry. Now, the above metatheorem allows us to con-
clude that Euclid Books I–III are provable without Markov’s principle, if
the hypotheses of unequal points and nonzero angles are strengthened as
above to distinct points and positive angles.

10 Conclusions

Much of Brouwer’s work was focused on the nature of the continuum.
Although most, but not all, of his work preceded the development of re-
cursive analysis and recursive realizability (which he never mentioned,
even in later papers), he was clearly aware that “lawlike” or computable
real numbers are not enough to “fill out” the geometric continuum; there-
fore choice sequences or even lawless sequences were needed. Brouwer
pointed out the non-constructive nature of the “intersection theorem”,
and by implication, the classical view of elementary geometry.
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Our point in this paper is that Brouwer’s criticisms of “elementary
geometry” definitely do not apply to geometry as Euclid wrote it. We
have shown that there is a coherent and beautiful theory of intuitionistic
Euclidean geometry that neither assumes nor implies Markov’s principle.

The consistency and coherence of this theory of non-Markovian Eu-
clidean geometry show that Euclidean geometry, the law of the excluded
middle, and Markov’s principle are three separate issues. One can choose
to accept Markov’s principle (but not the law of the excluded middle),
in which case one gets a very nice constructive geometry [3, 4]; or one
can choose not to accept Markov’s principle, in which case one is forced
to make some finer distinctions, but still gets a coherent intuitionistic
geometry, as shown here.
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