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Abstract

Euclidean geometry, as presented by Euclid, consists of straightedge-
and-compass constructions and rigorous reasoning about the results of
those constructions. We show that Euclidean geometry can be developed
using only intuitionistic logic. This involves finding “uniform” construc-
tions where normally a case distinction is used. For example, in finding
a perpendicular to line L through point p, one usually uses two different
constructions, “erecting” a perpendicular when p is on L, and “dropping”
a perpendicular when p is not on L, but in constructive geometry, it must
be done without a case distinction. Classically, the models of Euclidean
(straightedge-and-compass) geometry are planes over Euclidean fields. We
prove a similar theorem for constructive Euclidean geometry, by showing
how to define addition and multiplication without a case distinction about
the sign of the arguments. With intuitionistic logic, there are two possible
definitions of Euclidean fields, which turn out to correspond to different
versions of the parallel postulate.

We consider three versions of Euclid’s parallel postulate. The two
most important are Euclid’s own formulation in his Postulate 5, which
says that under certain conditions two lines meet, and Playfair’s axiom
(dating from 1795), which says there cannot be two distinct parallels to
line L through the same point p. These differ in that Euclid 5 makes an
existence assertion, while Playfair’s axiom does not. The third variant,
which we call the strong parallel postulate, isolates the existence assertion
from the geometry: it amounts to Playfair’s axiom plus the principle
that two distinct lines that are not parallel do intersect. The first main
result of this paper is that Euclid 5 suffices to define coordinates, addition,
multiplication, and square roots geometrically.

We completely settle the questions about implications between the
three versions of the parallel postulate. The strong parallel postulate eas-
ily implies Euclid 5, and Euclid 5 also implies the strong parallel postulate,
as a corollary of coordinatization and definability of arithmetic. We show
that Playfair does not imply Euclid 5, and we also give some other inde-
pendence results. Our independence proofs are given without discussing
the exact choice of the other axioms of geometry; all we need is that one
can interpret the geometric axioms in Euclidean field theory. The inde-
pendence proofs use Kripke models of Euclidean field theories based on
carefully constructed rings of real-valued functions. “Field elements” in
these models are real-valued functions.

1



Contents

1 Introduction 3
1.1 The purposes of this paper . . . . . . . . . . . . . . . . . . . . . 3
1.2 What is constructive geometry? . . . . . . . . . . . . . . . . . . . 5
1.3 Is Euclid constructive? . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Criteria for a constructive axiomatization of geometry . . . . . . 8
1.5 Basic metamathematical results . . . . . . . . . . . . . . . . . . . 9
1.6 Postulates vs. axioms in Euclid . . . . . . . . . . . . . . . . . . . 10
1.7 The parallel postulate . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Triangle circumscription as a parallel postulate . . . . . . . . . . 13
1.9 Past work on constructive geometry . . . . . . . . . . . . . . . . 13

2 Euclid’s reasoning considered constructively 15
2.1 Order on a line from the constructive viewpoint . . . . . . . . . . 15
2.2 Logical form of Euclid’s propositions and proofs . . . . . . . . . . 19
2.3 Case splits and reductio inessential in Euclid . . . . . . . . . . . . 20
2.4 Betweenness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Incidence and betweenness . . . . . . . . . . . . . . . . . . . . . . 24

3 Constructions in geometry 24
3.1 The elementary constructions . . . . . . . . . . . . . . . . . . . . 24
3.2 Circles and lines eliminable when constructing points . . . . . . . 29
3.3 Describing constructions by terms . . . . . . . . . . . . . . . . . 30

4 Models of the elementary constructions 30
4.1 The standard plane . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 The recursive model . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 The algebraic model . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 The Tarski model . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Development of constructive geometry 33
5.1 Pasch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Some Euclidean lemmas . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Sides of a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Uniform perpendicular . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Uniform projection and parallel . . . . . . . . . . . . . . . . . . . 44
5.7 Midpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 The parallel postulate 47
6.1 Alternate interior angles . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Euclid’s parallel postulate . . . . . . . . . . . . . . . . . . . . . . 49
6.3 The rigorous use of Euclid 5 . . . . . . . . . . . . . . . . . . . . . 51
6.4 Playfair’s axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.5 Euclid 5 implies Playfair’s axiom . . . . . . . . . . . . . . . . . . 59

2



6.6 The strong parallel postulate . . . . . . . . . . . . . . . . . . . . 59
6.7 The strong parallel postulate proves Euclid 5 . . . . . . . . . . . 61
6.8 Triangle circumscription . . . . . . . . . . . . . . . . . . . . . . . 62

7 Rotation and reflection 67
7.1 Uniform rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Uniform reflection . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3 The other intersection point . . . . . . . . . . . . . . . . . . . . . 71

8 Geometrization of arithmetic without case distinctions 73
8.1 Coordinatization . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.3 Unsigned multiplication . . . . . . . . . . . . . . . . . . . . . . . 79
8.4 An alternative approach to constructive addition . . . . . . . . . 81
8.5 From unsigned to signed multiplication . . . . . . . . . . . . . . . 81
8.6 Reciprocals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.7 Square roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9 The arithmetization of geometry 89
9.1 Euclidean fields in constructive mathematics . . . . . . . . . . . 89
9.2 Line-circle continuity over Playfair rings . . . . . . . . . . . . . . 90
9.3 Pasch’s axiom in planes over Playfair rings . . . . . . . . . . . . . 93
9.4 The representation theorem . . . . . . . . . . . . . . . . . . . . . 97
9.5 Models and interpretations . . . . . . . . . . . . . . . . . . . . . 98

10 Independence in Euclidean field theory 100
10.1 What is a Kripke model of ring theory? . . . . . . . . . . . . . . 101
10.2 A Kripke model whose points are functions . . . . . . . . . . . . 102
10.3 A Kripke model with fewer reciprocals . . . . . . . . . . . . . . . 106
10.4 Independence of Markov’s principle . . . . . . . . . . . . . . . . 108

11 Independence of Euclid 5 109
11.1 Playfair does not imply Euclid 5 . . . . . . . . . . . . . . . . . . 109
11.2 Another proof that Playfair does not imply Euclid 5 . . . . . . . 110

12 Conclusion 111

1 Introduction

1.1 The purposes of this paper

Euclid’s geometry, written down about 300 BCE, has been extraordinarily in-
fluential in the development of mathematics, and prior to the twentieth century
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was regarded as a paradigmatic example of pure reasoning.1 In this paper, we
re-examine Euclidean geometry from the viewpoint of constructive mathematics.
The phrase “constructive geometry” suggests, on the one hand, that “construc-
tive” refers to geometrical constructions with straightedge and compass. On
the other hand, the word “constructive” suggests the use of intuitionistic logic.2

We investigate the connections between these two meanings of the word. Our
method is to focus on the body of mathematics in Euclid’s Elements, and to
examine what in Euclid is constructive, in the sense of “constructive mathe-
matics”. Our first aim was to formulate a suitable formal theory that would
be faithful to both the ideas of Euclid and the constructive approach of Errett
Bishop. We presented a first version of such a theory in [3], based on Hilbert’s
axioms, and a second version in [6], based on Tarski’s axioms. These axiomati-
zations helped us to see that there is a coherent body of informal mathematics
deserving the name “elementary constructive geometry,” or ECG. The first
purpose of this paper is to reveal constructive geometry and show both what
it has in common with traditional geometry, and what separates it from that
subject.3

The second purpose of this paper is to demonstrate that constructive geome-
try is sufficient to develop the propositions of Euclid’s Elements, and more than
that, it is possible to connect it, just as in classical geometry, to the theory of
Euclidean fields. A Euclidean field is an ordered field F in which non-negative
elements have square roots. Classically, the models of elementary Euclidean ge-
ometry are planes F2 over a Euclidean field F. We show that something similar
is true for ECG. This requires an axiomatization of ECG, and also a construc-
tive axiomatization of Euclidean field theory; but just as in classical geometry,
the result is true for any reasonable axiomatization.

The third purpose of this paper, represented in its title, is to investigate
the famous Postulate 5 of Euclid. There are several ways of formulating the
parallel postulate, which are classically equivalent, but not all constructively
equivalent. These versions are called “Euclid 5”, the “strong parallel postu-
late”, and “Playfair’s axiom.” The first two each assert that two lines actually
meet, under slightly different hypotheses about the interior angles made by a
transversal. Playfair’s axiom simply says there cannot be two distinct parallels
to line L through point p not on L; so Playfair’s axiom seems to be constructively
weaker, as it makes no existential assertion.

1Readers interested in the historical context of Euclid are recommended to read [10], where
Max Dehn puts forward the hypothesis that Euclid’s rigor was a reaction to the first “foun-
dational crisis”, the Pythagorean discovery of the irrationality of

√
2.

2In intuitionistic logic, one is not allowed to prove that something exists by assuming it
does not exist and reasoning to a contradiction; instead, one has to show how to construct
it. That in turn leads to rejecting some proofs by cases, unless we have a way to decide
which case holds. These are considerations that apply to all mathematical reasoning; in this
paper, we apply them to geometrical reasoning in particular. In this paper, “constructive”
and “intuitionistic” are synonymous; any differences between those terms are not relevant
here.

3The phrase “classical geometry” is synonymous with “traditional geometry”; it means
geometry with ordinary, non-constructive logic allowed. Incidentally, that geometry is also
classical in the sense of being old.
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The obvious question is: are these different versions of the parallel postulate
constructively equivalent, or not? It turns out that Euclid 5 and the strong par-
allel postulate are equivalent in constructive geometry (contrary to [4], where
it is mistakenly stated that Euclid 5 does not imply the strong parallel postu-
late). The proof depends on showing that coordinatization and multiplication
can be defined geometrically using only Euclid 5, so it is somewhat lengthy, but
conceptually straightforward.

On the other hand, we show that Playfair’s axiom does not imply Euclid 5 (or
the strong parallel axiom). This is done in two steps: First, we define a Playfair
ring, which is something like a Euclidean field, but with a weaker requirement
about the existence of reciprocals. We show that if F is a Playfair ring, then F2

is a model of geometry with Playfair’s axiom. If Playfair implies Euclid 5, then
the axioms of Playfair rings would imply the Euclidean field axioms. The second
step is to show that the axioms for Playfair rings are constructively weaker than
those for Euclidean fields. This is proved using Kripke models, where the field
elements are interpreted as certain real-valued functions.

Because these formal independence results are proved in the context of Eu-
clidean field theory, they apply to any axiomatizations of geometry that have
planes over Euclidean fields as models. For example, they apply to the Hilbert-
style axiomatization in [3], and to the Tarski-style axiomatization in [6]. It is
therefore not necessary in this paper to settle upon a particular axiomatization
of geometry. All that we require is that certain basic theorems of Euclid be
provable.

I would like to thank Jeremy Avigad for encouraging me to investigate the
logical relations between the different parallel postulates.

1.2 What is constructive geometry?

In constructive mathematics, if one proves something exists, one has to show
how to construct it. In Euclid’s geometry, the means of construction are not
arbitrary computer programs, but ruler and compass. Therefore it is natural to
look for quantifier-free axioms, with function symbols for the basic ruler-and-
compass constructions. The terms of such a theory correspond to ruler-and-
compass constructions. These constructions should depend continuously on
parameters. We can see that dramatically in computer animations of Euclidean
constructions, in which one can select some of the original points and drag them,
and the entire construction “follows along.” We expect that if one constructively
proves that points forming a certain configuration exist, that the construction
can be done “uniformly”, i.e., by a single construction depending continuously
on parameters.

To illustrate what we mean by a uniform construction, we consider an impor-
tant example. There are two well-known classical constructions for constructing
a perpendicular to line L through point p: one of them is called “dropping a
perpendicular”, and works when p is not on L. The other is called “erecting a
perpendicular”, and works when p is on L. Classically we may argue by cases
and conclude that for every p and L, there exists a perpendicular to L through
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p. But constructively, we are not allowed to argue by cases. If we want to
prove that for every p and L, there exists a perpendicular to L through p, then
we must give a single, “uniform” ruler-and-compass construction that works for
any p, whether or not p is on L.

Readers new to constructive mathematics may not understand why an ar-
gument by cases is not allowed. Let me explain. The statement, “for every p
and L there exists a perpendicular to L through p” means that, when given
p and L, we can construct the perpendicular. The crux of the matter is what
it might mean to be “given” a point and a line. In order to be able to decide
algorithmically (let alone with ruler and compass) whether p lies on L or not,
we would have to make very drastic assumptions about what it means to be
“given” a point or a line. For example, if we were to assume that every point
has rational coordinates relative to some lines chosen as the x and y axes, then
we could compute whether p lies on L or not; but that would require bringing
number theory into geometry. Anyway, we wouldn’t be able to construct an
equilateral triangle. We want to allow an open-ended concept of “point”, per-
mitting at least the interpretation in which points are pairs of real numbers;
and then there is no algorithm for deciding if p lies on L or not. That is why
an argument by cases is not allowed in constructive geometry.

The other type of argument that is famously not allowed in constructive
mathematics is proof by contradiction. There are some common points of con-
fusion about this restriction. The main thing one is not allowed to do is to prove
an existential statement by contradiction. For example, we are not allowed to
prove that there exists a perpendicular to L through x by assuming there is
none, and reaching a contradiction. From the constructive point of view, that
proof of course proves something, but that something is weaker than existence.
We write it ¬¬∃, and constructively, you cannot cancel the two negation signs.

However, you are allowed to prove inequality or order relations between
points by contradiction. Consider for the moment two points x and y on a line.
If we derive a contradiction from the assumption x 6= y then x = y. This is taken
as an axiom of constructive geometry: ¬x 6= y → x = y. In the style of Euclid:
Things that are not unequal are equal. It has its intuitive grounding in the idea
that x = y does not make any existential statement. Similarly, we are allowed
to prove x < y by contradiction; that is, we take ¬¬x < y → x < y as an
axiom of constructive geometry. (That can also be written ¬ y ≤ x → x < y.)
Without this principle, Euclidean geometry would be complicated and nuanced,
since arguments using it occur in Euclid and are not always avoidable. Since
order on a line is not a primitive relation, we take instead the corresponding
axiom for the betweenness relation, namely ¬¬B(a, b, c) → B(a, b, c). These
two axioms are called the “stability” of equality and betweenness.4

4In adopting the stability of betweenness as an axiom, we should perhaps offer another
justification than the pragmatic necessity for Euclid. The principle reduces to a question,
given two points s and t, can we find two circles with centers s and t that separate the two
points? The obvious candidate for the radius is half the distance between s and t, so the
question boils down to Markov’s principle for numbers: if that radius is not not positive,
must it be positive? The stability of betweenness thus has the same philosophical status as
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The theorems of Euclidean geometry all have a fairly simple logical form:
Given some points, lines, and circles bearing certain relations, then there ex-
ist some further points bearing certain relations to each other and the original
points. This logical simplicity implies that (although this may not be obvious at
first consideration) if we allow the stability axioms, then essentially the only dif-
ferences between classical and constructive geometry are the two requirements:

• You may not prove existence statements by contradiction; you must pro-
vide a construction.

• The construction you provide must be uniform; that is, it must be proved
to work without an argument by cases.

Sometimes, when doing constructive mathematics, one may use a mental
picture in which one imagines a point p as having a not-quite-yet-determined
location. For example, think of a point p which is very close to line L. We
may turn up our microscope and we still can’t see whether p is or is not on L.
We think “we don’t know whether p is on L or not.” Our construction of a
perpendicular must be visualized to work on such points p. Of course, this is
just a mental picture and is not used in actual proofs. It can be thought of as
a way of conceptualizing “we don’t have an algorithm for determining whether
p is on L or not.”

We illustrate these principles with a second example. Consider the problem
of finding the reflection of point p in line L. Once we know how to construct a
perpendicular to L through p, it is still not trivial to find the reflection of p in
L. Of course, if p is on L, then it is its own reflection, and if p is not on L, then
we can just drop a perpendicular to L, meeting L at the foot f , and extend the
segment pf an equal length on the other side of f to get the reflection. But what
about the case when we don’t know whether p is or is not on L? Of course,
that sentence technically makes no sense; but it illustrates the point that we
are not allowed to argue by cases. The solution to this problem may not be
immediately obvious; but in the body of this paper, we will exhibit a uniform
construction of the reflection of p in L.

1.3 Is Euclid constructive?

Our interest in constructive geometry was first awakened by computer anima-
tions of Euclid’s constructions; we noticed that the proposition in Euclid I.2
does not depend continuously on parameters, but instead depends on an argu-
ment by cases.5 Proposition I.2 says that for every points a, b, and c, there is a
point d such that ad = bc (in the sense of segment congruence). The computer
animation of Euclid’s construction of d shows that as b spirals inwards to a, d

Markov’s principle: it is self-justifying, not provable from other constructive axioms, and leads
to no trouble in constructive mathematics, while simplifying many proofs.

5Should any reader not possess a copy of Euclid, we recommend [14] and [13]; or for those
wishing a scholarly commentary as well, [12]. There are also several versions of Euclid available
on the Internet for free.
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makes big circles around a, and so does not depend continuously on b as b goes
to a. Classically, we can argue by cases, taking d = a if b = a, but Euclid’s
proof of I.2 is non-constructive.6

After discovering the non-constructivity of the proof of I.2, we then read Eu-
clid with an eye to the constructivity of the proofs. There is no other essentially
non-constructive proof in Euclid’s Elements I–IV.7

1.4 Criteria for a constructive axiomatization of geometry

In order to meet the second and third purposes of this paper (namely, to relate its
models to planes over Euclidean fields, and to show that Playfair does not imply
Euclid 5, we need to make use of some formal theory of constructive geometry.
There are, of course, as many ways to formalize constructive geometry as there
are to formalize classical geometry; see page 4 of [5], where we enumerate eleven
possible choices, more or less independent, so there are several thousand different
ways to formalize geometry. We want an axiomatization that is

• is faithful to Euclid’s Elements, i.e., it can express Euclid’s propositions
and proofs in a natural way;

• has terms for geometrical constructions, and those terms describe con-
structions continuous in parameters;

• uses intuitionistic logic

In addition we want the axioms of our theory to be

• quantifier-free.

• disjunction free.

The last two criteria make the proof theory of such an axiomatization easy:
they permit the applications of cut-elimination that we want to make, in order
to connect existence proofs to ruler-and-compass constructions. They are also
very reasonable criteria. First, disjunction does not occur in Euclid. Euclid did
not use first-order logic; the logical structure of his theorems is discussed in §2.2,

6Prop. I.2 can be views as showing that a “collapsible compass” can simulate a “rigid
compass.”. A “rigid compass” can be used to transfer a given distance, say bc, from one
location in the plane to another, so it enables construction of a circle “by center and radius.”
A “collapsible compass” can only be used to construct a circle “by center and point”, i.e.,
to draw a circle with a given center a passing through another given point b. The compass
“collapses” as soon as you pick it up. There is a word in Dutch, passer, for a rigid compass,
which was used in navigation in the seventeenth century. But there seems to be no single
word in English that distinguishes either of the two types of compass from the other.

7In fact, it is only Euclid’s proof that is non-constructive, not the proposition itself. A
constructive proof of Euclid I.2 is given in Lemma 3.1; see also §5.1 of [6].
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but for now we just note that he never states or uses a disjunctive proposition,
i.e., one with “or” in the conclusion.8

We have developed two rather different axiomatizations of ECG, each of
which has all these properties. The first one, presented in [3], was based on
Hilbert’s axioms for geometry. In [4] we mentioned a version more closely re-
lated to Tarski’s concise and elegant axiomatization of classical Euclidean ge-
ometry, but space did not permit a full description there. That theory has
now been fully described and studied in [6]. The results in this paper apply
to either axiomatization, and we believe, to all reasonable variations of these
axiomatizations. Therefore, in this paper we do not commit to any particu-
lar axiomatization of geometry; all we require is that certain basic theorems of
Euclid should be provable and the logical rules should be intuitionistic.

1.5 Basic metamathematical results

The results of our metamathematical analysis of constructive geometry are:

• Things proved to exist in (a formal version of) ECG can be constructed
with ruler and compass.

• The models of (a formal version of) ECG are exactly planes F2 over Eu-
clidean fields F, with two different choices of the axiom about multiplica-
tive inverses in F corresponding to two different versions of the parallel
axiom.

• These different versions of the parallel axiom are formally inequivalent.

We now describe these results in more detail. Once a particular axiomatiza-
tion of ECG is chosen (meeting the criteria listed above), then one can apply
cut-elimination to obtain several fundamental properties of such a theory, as
discussed in [3] and [6]. For example, we have the result alluded to above, that
existential theorems are “realized” by ruler-and-compass constructions. For a
second example, propositions involving a negative hypothesis and a disjunctive
conclusion cannot be proved. Examples include a < b → a < x ∨ x < b
and x 6= 0 → 0 < x ∨ x < 0, which are discussed more fully in §2.1 and
Theorem 10.3.

Next there is Tarski’s “representation problem”. We want to characterize the
models of ECG. Classically, the models of Euclidean geometry are well-known
to be planes over Euclidean fields (ordered fields in which nonnegative elements
have square roots). But constructively, what is a Euclidean field? It turns out
that there are two natural ways of defining that, and that planes over such
fields correspond to two different versions of the parallel postulate. The proof
of such a representation theorem (classically or constructively) involves both

8In Prop. I.26, he mentions “or”, but in the hypothesis, not the conclusion, so the propo-
sition can be expressed as two propositions without “or”. Prop. III.4 is an example in which
Euclid chooses a negative formulation, when a modern mathematician might choose a dis-
junction: if two chords of a circle bisect each each other, then one or the other passes through
the center.
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the “arithmetization of geometry” and the “geometrization of arithmetic.” The
geometrization of arithmetic (originally due to Descartes) shows how to add,
subtract, multiply, divide, and take square roots of segments, and how to intro-
duce coordinates in an arbitrary plane. The arithmetization of geometry (also
due to Descartes) is the verification (using coordinates and algebraic calcula-
tions) that the axioms of geometry hold in F2, where F is a Euclidean field.
Both of these offer some constructive difficulties; for example, Descartes’s con-
structions apply only to positive segments, but we need to define arithmetic on
signed numbers, without making case distinctions whether the numbers are zero
or not. These difficulties are overcome and the representation theorem proved
in Theorem 9.4.

Finally, we settle the relations between three versions of the parallel postulate
(which are explained below). Two of these assert the existence of a point of
intersection, while the third (Playfair’s axiom) does not. The two that assert
existence are equivalent, and they are not implied by Playfair’s axiom. This
independence proof (and others) are obtained using Kripke models of Euclidean
field theory, so they do not depend on the details of the axiomatization of
constructive geometry, but only on the fact that constructive geometry can be
interpreted in Euclidean field theory.

1.6 Postulates vs. axioms in Euclid

Euclid presents his readers with both “postulates” and “axioms”. Modern math-
ematicians often treat these words as synonyms. For Euclid and his contem-
poraries, however, they had quite different meanings. Here is the difference, as
explained by Pambuccian [25], p. 130:

For Proclus, who relates a view held by Geminus, a postulate prescribes
that we construct or provide some simple or easily grasped object for the
exhibition of a character, while an axiom asserts some inherent attribute
that is known at once to one’s auditors. And just as a problem differs from
a theorem, so a postulate differs from an axiom, even though both of them
are undemonstrated; the one is assumed because it is easy to construct,
the other accepted because it is easy to know. That is, postulates ask
for the production, the poesis of something not yet given. . . , whereas
axioms refer to the gnosis of a given, to insight into the validity of certain
relationships that hold between given notions.

1.7 The parallel postulate

Euclid’s famous “parallel postulate” (Postulate 5, henceforth referred to as Eu-
clid 5) states that if two lines L andM are traversed by another line T , forming
interior angles on one side of T adding up to less than two right angles, then L
and M will intersect on that side of T . The version of Euclid 5 given in Fig. 1
shows how to state this without referring to “addition of angles.”
Euclid 5 makes an assertion about the existence of the point of intersection of
K and L, and hence it can be viewed as a construction method for producing
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Figure 1: Euclid 5: M and L must meet on the right side, provided B(q, a, r)
and pq makes alternate interior angles equal with K and L.

certain triangles. In view of the remarks of Geminus and Proclus, it seems
likely that Euclid viewed his postulate in this way, or he would have called it
an axiom.

Fig. 2 shows how to eliminate all mention of angles in the formulation of
Euclid 5.

b
p

b

a

b

q
b

s

b
r

b

t

L

K

M

Figure 2: Euclid 5: M and L must meet on the right side, provided B(q, a, r)
and pt = qt and rt = st.

In 1795, Playfair introduced the version that is usually used today, which
is an axiom rather than a postulate: Given a line L, and a point p not on L,
there cannot be two distinct lines through p parallel to L. (Parallel lines are by
definition lines in the same plane that do not meet.) Unlike Euclid 5, Playfair’s
axiom does not assert the existence of any specific point. See Fig. 3.
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Figure 3: Playfair: if K and L are parallel, M and L can’t fail to meet.

To compare different versions of the parallel postulate, we begin with a
fundamental observation. Given point p not on line L, and a line T through
p that meets L, there is (without using any parallel postulate at all) exactly
one line M through p that makes the sum of the interior angles on one side of
the transversal T equal to two right angles (or makes alternate interior angles
equal). This line M is parallel to L, since if M meets L in q then there is a
triangle with two right angles, contradicting Euclid I.17 (and Euclid does not
use the parallel postulate until I.29).

With classical logic, Playfair’s axiom implies Euclid 5, as follows. Suppose
given point p not on line L, and line T through p meeting L, and line K through
p such that the angles formed on one side of T by K and L are together less than
two right angles. Let M be the line through p that does make angles together
equal to two right angles with T . As remarked above,M is parallel to L, Hence,
by Playfair, K cannot be parallel to L. Classically, then, it must meet L, which
is the conclusion of Euclid 5. But this proof by contradiction does not provide
an explicit point of intersection.

That raises the question whether Playfair’s axiom implies Euclid 5 using
only intuitionistic (constructive) logic. This question is resolved in this paper.
The answer is in the negative: Playfair does not imply Euclid 5.

The following is the strong parallel postulate.

If p is not on L, q is on L, line K passes through p, and pq makes al-
ternate interior angles equal with K and L, then any lineM through
p that is distinct from K meets L. See Fig. 4.

This is like Euclid 5, except that the hypothesis is weaker (in that it does not
require us to specify on which side of T the interior angles are less than two
right angles), and the conclusion is also weaker (not saying on which side of q
the two lines meet). Technically, the hypothesis B(q, a, r) in Fig. 1 is replaced
by simply requiring a to not lie on K.

Both the strong parallel postulate and Euclid 5 make existence assertions. It
is not hard to show that the strong parallel postulate implies Euclid 5 (hence the
name). Much less obviously, the strong parallel postulate turns out to be equiv-
alent to Euclid 5. This is proved by developing coordinates, and the geometric
definitions of addition and multiplication using only Euclid 5, instead of the
strong parallel postulate. Once coordinates and arithmetic can be defined, then
the strong parallel postulate boils down to the property that nonzero points on
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Figure 4: Strong Parallel Postulate: M and L must meet (somewhere) provided
a is not on K and and p is not on L and pt = qt and rt = st sand r 6= p.

the x-axis have multiplicative inverses, and Euclid 5 says that positive elements
have multiplicative inverses; but 1/x = x/|x|2, so they are equivalent. The
delicate question is then whether Euclid 5 suffices for constructive (case-free)
definitions of coordinates and arithmetic. We will show that it does.

In the presence of Playfair’s axiom, the strong parallel postulate is equivalent
to

If M and L are distinct, non-parallel lines, then M meets L.

This equivalence (proved in Lemma 6.12) separates the parallel postulate into
two parts: a negative statement about parallelism (Playfair) and an existential
assertion about the result of a construction (the two lines meet in a point that
can be found with a ruler, albeit perhaps a very long ruler).

1.8 Triangle circumscription as a parallel postulate

In classical geometry, there are many propositions equivalent to the parallel
postulate; for example, the triangle circumscription principle, which says that
given three non-collinear points a, b, and c, there is a fourth point equidistant
from a, b, and c (the center of a circle passing through those three points).
Szmielew used the triangle circumscription principle as an axiom in her lectures,
although in [28], a different formulation of the parallel axiom due to Tarski
is used. In Theorem 6.18 below, we show that the triangle circumscription
principle is constructively equivalent to the strong parallel postulate, and in [6]
we follow Szmielew in adopting this as an axiom. There is a natural ruler and
compass construction of the center point of the circle through a, b, and c, as the
intersection point of the perpendicular bisectors of ab and bc.

1.9 Past work on constructive geometry

L. E. J. Brouwer, the founder of intuitionism, apparently held the axiomatic
approach to mathematics in low esteem; at least, he never took that approach
in his papers. It is therefore a bit surprising that his most famous student, Arend
Heyting, wrote his dissertation on an axiomatic (and intuitionistic) treatment of
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projective geometry (published two years later as [17] and again 34 years later
as [18], which is probably the same as the easier-to-locate [19]). Heyting took
a relation of “apartness” as primitive. This is a “positive notion of inequality”.
The essence of the notion can be captured without a new symbol in the following
axiom about order on the line:

a < b → x < b ∨ a < x

Heyting’s work was so influential that every subsequent paper about intuition-
istic or constructive geometry has taken an apartness relation as primitive; it
was still being discussed in 1990 and 1996 (see [32, 33]). A somewhat different
tack was taken by von Plato [34, 35], who worked on axioms for affine geometry
(no congruence).

Lombard and Vesley [23] gave a constructive theory of geometry, perhaps the
first to apply to Euclidean geometry. They followed Heyting in taking apartness
as primitive, and they wished to avoid having equality as a primitive, which led
them to the six-place relation “the sum of the lengths of ab and cd is more than
the length pq.” They were able to recover betweenness and congruence from
this relation and give a realizability interpretation.

The unpublished dissertation [21] is about constructive geometry in the sense
of geometric constructions, but explicitly non-constructive in that it makes use
of “decision operations”, or “branching operations”. As [23] points out, ge-
ometers sometimes use the word “constructive” to mean that the axioms are
quantifier-free, i.e., function symbols are used instead of existential quantifiers.
That is neither necessary nor sufficient for a constructive theory in the sense
of “constructive mathematics”. Nevertheless our constructive geometry does
have quantifier-free axiomatizations. The first quantifier-free axiomatization of
geometry may have been [24]; but that was a theory with classical logic.

The use of apartness stemmed from a reluctance to apply classical logic to
the equality of points. In our constructive geometry, we assume the stabil-
ity of equality, and we assume Markov’s principle ¬x ≤ y → y < x (but
expressed using betweenness). This allows one to prove the equality or inequal-
ity of two points by contradiction. The strong parallel postulate, as we show,
allows one to prove that two lines intersect by contradiction. What is not al-
lowed is an argument by cases, where the cases concern ordering or equality
relations between points. Also, of course, existential assertions are supposed
to be proved by explicit construction, which, coupled with the prohibition on
arguments by cases, requires a uniform construction, continuous in parameters.
That contrasts with geometry based on apartness, which is designed to allow
certain arguments by “overlapping” cases. No theory with apartness can have
the property that points it proves to exist depend continuously on parameters,
which is an important feature of constructive geometry as developed here.

14



2 Euclid’s reasoning considered constructively

In the late twentieth century, contemporaneously with the flowering of computer
science, there was a new surge of vigor in algorithmic, or constructive, mathe-
matics, beginning with Bishop’s book [7]. In algorithmic mathematics, one tries
to reduce every “existence theorem” to an assertion that a certain algorithm has
a certain result. It was discovered by Brouwer that if one restricts the laws of
logic suitably (to “intuitionistic” logic), then one only obtains algorithmic exis-
tence theorems, so there is a fundamental connection between methods of proof,
and the existence of algorithms to construct the things that have been proved
to exist. Brouwer thought it necessary to do more than just restrict logic; he
also wanted to state some additional principles. Bishop renounced additional
principles and worked by choosing his definitions very carefully, but using only
a restricted form of logic. Results obtained by Bishop’s methods are classically
valid as well as constructively.

What happens if we examine Euclid’s Elements from this point of view?
It turns out that the required changes are few and minor. Euclid’s proof of
Prop. I.2 is non-constructive (but the theorem itself has a different and con-
structive proof, given in Lemma 3.1), and and the parallel axiom needs a more
explicit formulation. Euclid is essentially constructive as it stands. In §5, we
justify this conclusion in more detail.

2.1 Order on a line from the constructive viewpoint

In this section we explain how a constructivist views the relations x < y and
x ≤ y on the real line. This section can be skipped by readers familiar with
constructive order, but it will be very helpful in understanding constructive
geometry. Order on a line can be thought of as one-dimensional geometry,
so it makes sense for the reader new to constructivity to start with the one-
dimensional case. The theory of order translates directly into the betweenness
relation in geometry, since for positive x and y we have that x < y is the same as
“x is between 0 and y”. In constructive mathematics, the real numbers are given
by constructive sequences of rational approximations. For example, we could
take Bishop’s definition of a real number as a (constructively given) sequence
xn of rationals such that for every n ≥ 1,

|xn − xm| < 1

n
+

1

m
.

This guarantees that the limit x of such a sequence satisfies |x − xn| ≤ 1/n.
Two such sequences are considered equal if xn − yn ≤ 2/n; it is important
that different sequences can represent equal (or “the same”, if you prefer) real
numbers. Now observe that if x < y, we will eventually become aware of that
fact by computing fine enough approximations to x and y, so that xn + 1

n
<

yn − 1

n
. Then we will have an explicit positive lower bound on y − x, which is

what is required to assert x < y.
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The “recursive reals” are defined this way, but specifying that the sequences
xn are to be computed by a Turing machine (or other formal definition of “com-
puter program”). In more detail: We write {e}(n) for the result, if any, of the
e-th Turing machine at input n. Rational numbers are coded as certain integers,
and modulo this coding we can speak of recursive functions from N to Q. A
“recursive real number” x is given by an index of a Turing machine e, whose
output {e}(n) at input n codes a rational number, such that |{e}(n)−x| ≤ 1/n
for each n ∈ N. We can, if we wish, avoid assuming that the real numbers
are given in advance, by considering the Turing machine index e to be the real
number x.

It may be helpful to keep the “model” of recursive reals in mind, but in the
spirit of “tables, chairs, and beer mugs”, modern constructivists often prefer not
to make this commitment, but refer in the abstract to “constructive sequences.”
Thus the “classical model” is always a possible interpretation.

Given two (definitions of) numbers x and y, we may compute approximations
to x and y for many years and still be uncertain whether x = y or not. Hence,
we are not allowed to constructively assert the trichotomy law x < y ∨ x =
y ∨ y < x, since we have no way to make the decision in a finite number of
steps. One can prove that the recursive reals definitely cannot constructively be
proved to satisfy the trichotomy law, as that would imply a computable solution
to the halting problem. But without a commitment to a definite definition
of “constructive sequence”, the most we can say is that “we cannot assert”
trichotomy. This phrase “we cannot assert” in constructive mathematics is
usually code for, “it fails in the recursive model.”

Note, however, that we may be able to assert the trichotomy law for various
subfields of the real numbers. For example, it is valid for the rational numbers,
and it is also valid (though less obviously) for the real algebraic numbers. In
each of these cases, the elements of the field are given by finite objects, that
can be presented to us “all at once”, unlike real numbers; but that property
is not sufficient for trichotomy to hold, since the recursive reals fail to satisy
trichotomy, but a recursive real can be given “all at once” by handing over a
Turing machine to compute the sequence xn of approximations.

The relation x ≤ y is equivalent to ¬(y < x), either by definition, or by a
simple theorem if one defines x ≤ y in terms of approximating sequences. It is
definitely not equivalent to x < y ∨ x = y (see the refutation of the trichotomy
law in the recursive model given below). But now consider negating x ≤ y.
Could we assert ¬x ≤ y implies y < x? Subtracting y we arrive at an equivalent
version of the question with only one variable: can we assert ¬x ≤ 0 implies
0 < x? Since x ≤ 0 is equivalent to ¬0 < x, the question is whether we can
assert

¬¬x > 0 → x > 0 (Markov’s principle)

In other words, is it legal to prove that a number is positive by contradiction?
One could argue for this principle as follows: Suppose ¬¬x > 0. Now compute
the approximations xn one by one for n = 1, 2, . . .. Note that trichotomy does
hold for xn and 1/n, both of which are rational. You must find an n such that
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xn > 1/n, since otherwise for all n, we have xn ≤ 1/n, which means x ≤ 0,
contradicting ¬¬x > 0. Well, this is a circular argument: we have used Markov’s
principle in the justification of Markov’s principle.

Shall we settle it by looking at the recursive model? There it can easily be
shown to boil down to this: if a Turing machine cannot fail to halt, then it halts.
Again one sees no way to prove this, and some may feel is intuitively true, while
others may not agree.

Historically, the Russian constructivist school adopted Markov’s principle,
and the Western constructivists did not. It reminds one of the split between
the branches of the Catholic Church, which also took place along geographical
lines. In any case, as discussed in §1.2 and §2.3, it seems appropriate to adopt
this principle for a constructive treatment of Euclid.

From the constructive viewpoint, the main difference between x < y and
x ≤ y, as applied to real numbers, is that x < y involves an existential quantifier;
it contains the assertion that we can find a rational lower bound on |y − x|,
while x ≤ y is defined with a universal quantifier, and contains no hidden
assertions. If we take any formula involving inequalities, and replace x < y
with ¬ y ≤ x, we obtain a classically equivalent assertion no longer containing
an existential quantifier. If in addition we replace A ∨ B by ¬ (¬A ∧ ¬B), we
will have eliminated all hidden claims, and the result will be classically valid if
and only if it is constructively valid. To understand constructive mathematics,
one has to learn to see the “hidden claims” that are made by disjunctions and
existential quantifiers, which can make a formula “stronger” than its classical
interpretation. Of course, if existential quantifiers or disjunctions occur in the
hypotheses, then a stronger hypothesis can make a weaker theorem.

A given classical theorem might have more than one (even many) classically
equivalent versions with different constructive meanings. Therefore, finding a
constructive version of a given theory is often a matter of choosing the right
definitions and axioms.

Consider the following proposition, which is weaker than trichotomy:

x ≤ 0 ∨ x ≥ 0.

This is also not constructively valid. Intuitively, no matter how long we keep
computing approximations xn, if they keep coming out zero we will never know
which disjunct is correct. As soon as we stop computing, the very next term
might have told us.

We now show that both trichotomy and x ≤ 0 ∨ x ≥ 0 fail in the recusive
reals, if disjunction is interpreted as computable decidability. First consider
trichotomy. We will show that there is no computable test-for-equality function,
that is, no computable function D that operates on two Turing machine indices
x and y, and produces 0 when x and y are equal recursive real numbers (i.e.,
have the same limiting value), and 1 when they are recursive real numbers with
different values. Proof, if we had such a D, we could solve the halting problem
by applying D to the point (E(x), 0), where {E(x)}(n) = 1/n if Turing machine
x does not halt at input x in fewer than n steps, and {E(x)}(n) = 1/k otherwise,
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where x halts in exactly k steps. Namely, {x}(x) halts if and only if the value
of E(x) is not zero, if and only if D(Z,E(x)) 6= 0, where Z is an index of the
constant function whose value is the (number coding the) rational number zero.

Now consider the proposition x ≥ 0 ∨ x ≤ 0. We can imitate the above
construction, but replacing the halting problem by two recursively inseparable
r.e. sets A and B, and making the number E(x) be equal to 1/n if at the n-th
stage of computation we see that x ∈ A, and −1/n if we see x ∈ B; so if x is in
neither A nor B, E(x) will be equal to zero. Hence x ≥ 0 ∨ x ≤ 0 fails to hold
in the recursive reals.

Finally we consider this proposition:

x 6= 0 → x < 0 ∨ x > 0 (two-sides)

We call this principle “two-sides” since it is closely related to “a point not
on a line is on one side or the other of the line”. (Here the “line” could be the
y-axis.) Two-sides does hold in the recursive model, since, assuming that x 6= 0,
if we compute xn for large enough n, eventually we will find that xn + 1/n < 0
or xn − 1/n > 0, as that is what it means in the recursive model for x to be
nonzero. But since xn and 1/n are rational numbers, we can decide computably
which of the disjuncts holds, and that tells us whether x < 0 or x > 0.

On the other hand, this verification of two-sides in the recursive model is
not a proof that it is constructively valid; the following lemma shows that it is
at least as “questionable” as Markov’s principle:

Lemma 2.1 two-sides implies Markov’s principle (with intuitionistic logic).

Proof. Suppose ¬¬x > 0, the hypothesis of Markov’s principle. Then x 6= 0,
so by two-sides x < 0 or x > 0; if x < 0 then ¬x > 0, contradicting ¬¬x > 0;
hence the disjunct x < 0 is impossible. Hence x > 0, which is the conclusion of
Markov’s principle. That completes the proof of the lemma.

If we assume that points on a line correspond to Cauchy sequences of rational
numbers, then we can also prove the converse:

Lemma 2.2 If real numbers are determined by Cauchy sequences, then Markov’s
principle implies two-sides.

Proof. We may suppose that real numbers are given by “Bishop sequences” as
described above, as it is well-known to be equivalent to the Cauchy sequence
definition. A Bishop sequence for |x| is given by |x|n = max (xn,−xn). Suppose
x 6= 0 (the hypothesis of two-sides). Then |x| 6= 0. We claim |x| > 0. By
Markov’s principle, it suffices to derive a contradiction from |x| ≤ 0. Suppose
|x| ≤ 0. Then x = 0, contradicting |x| 6= 0. Hence by Markov’s principle,
|x| > 0. Then by definition of >, for some n we have max (xn,−xn) > 1/n. But
xn is a rational number, so xn > 1/n or −xn > 1/n. In the former case we have
x > 0; in the latter case x < 0. But this is the conclusion of two-sides. That
completes the proof.

Since Markov’s principle is known to be unprovable in the standard intu-
itionistic formal theories of arithmetic and arithmetic of finite types (see [30],
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pp. 213 ff.), two-sides is also not provable in these theories. However, in the
context of geometry we do not assume that points are always given to us as
Cauchy sequences of rationals; we do not even assume that we can always con-
struct a Cauchy sequence of rationals corresponding to a given point. (There
are non-Archimedean models of elementary geometry, for example.) The lemma
therefore does not imply that two-sides and Markov’s principle are equivalent
in geometry; and indeed that is not the case. Two-sides is not provable in our
geometric theory, even though we adopt Markov’s principle as an axiom.

It is an open (philosophical) question whether our geometrical intuitions
compel us to accept Markov’s principle, or whether they compel us, having done
that, to also accept two-sides.9 In this paper we take a pragmatic approach:
geometry without Markov’s principle will be more complicated, but it is possible
without undue complexity to consider two-sides as an added principle, which
can be accepted or not. We choose not to accept it, since (as we show here) it is
not required if our goal is to prove the theorems in Euclid or of the type found
in Euclid.10

2.2 Logical form of Euclid’s propositions and proofs

One should remember that Euclid did not work in first-order logic. This is not
because, like Hilbert, he used set-theoretical concepts that go beyond first order.
It is instead because he does not use any nested quantifiers or even arbitrary
Boolean combinations of formulas. All Euclid’s propositions have the form,
given some points bearing certain relations to each other, we can construct
one or more additional points bearing certain relations to the original points
and each other. A modern logician would describe this by saying that Euclid’s
theorems have the form, a conjunction of literals implies another conjunction
of literals, where a literal is an atomic formula or the negation of an atomic
formula. One does not even find negation explicitly in Euclid; it is hidden in
the hypothesis that two points are distinct. Often even this wording is not
present, but is left implicit.

In particular there is no disjunction to be found in the conclusion of any
proposition in Euclid. Note that a disjunction in the hypothesis of theorem
is inessential: (P ∨ Q) → R is equivalent to the conjunction of P → R
and Q → R. This kind of eliminable disjunction occurs implicitly in Euclid,
because in some of his propositions, a complete proof would include an argument
by cases, and Euclid handles only one case. For example, we have already

9Brouwer did not accept two-sides (or Markov’s principle, for that matter), as a discussion
about the creative subject on p. 492 of [9] makes clear, although the principle is not explicitly
stated there.

10A philosophical argument can be made that Markov’s principle in geometry is related to
Hilbert’s “density axiom”, according to which there exists a point c strictly between any two
distinct points a and b. For, if ¬¬a < b, then b 6= a, so by the density axiom there is a point
c between a and b, and the circle with center b passing through c shows that a < b. But this
argument may also be circular, for how are we to justify the density axiom? The obvious
justification is to take c to be the midpoint of segment ab, but constructing the midpoint
uniformly without assuming a 6= b is problematic, as we discuss below.
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discussed Prop. I.2, where Euclid shows that given b 6= c, and given a, it is
possible to construct d with ad = bc. Euclid does not mention the case when
a = b, presumably because it was obvious that in that case one can take d = c,
and similarly for the case a = c. Euclid was already criticized for this sloppiness
about case distinctions thousands of years ago. Our point here is that the
failure to write out a separate proof of every case is not relevant to our claim
that Euclid is disjunction-free.

Euclid’s proofs have been analyzed in detail by Avigad et. al. in [1], and
they conclude:

Euclidean proofs do little more than introduce objects satisfying
lists of atomic (or negation atomic) assertions, and then draw fur-
ther atomic (or negation atomic) conclusions from these, in a simple
linear fashion. There are two minor departures from this pattern.
Sometimes a Euclidean proof involves a case split; for example, if
ab and cd are unequal segments, then one is longer than the other,
and one can argue that a desired conclusion follows in either case.
The other exception is that Euclid sometimes uses a reductio; for
example, if the supposition that ab and cd are unequal yields a con-
tradiction then one can conclude that ab and cd are equal.

“Reductio” refers to reductio ad absurdum, which means proof by contradiction.

2.3 Case splits and reductio inessential in Euclid

It is our purpose in this section to argue that Euclid’s reasoning can be sup-
ported in ECG, including the two types of apparently non-constructive rea-
soning just mentioned. The reason for this is that the case splits and reductio
arguments in Euclid can be made constructive using the “stability” of equality
and betweenness. By the stability of equality, we mean

¬¬x = y → x = y.

This formula simply codifies the principle that it is legal to prove equality of two
points by contradiction, and we take it as a fundamental principle. In words:
Things that are not unequal are equal. Similarly, if B(a, b, c) means that b is
between a and c on a line, we take as an axiom the stability of betweenness:

¬¬B(a, b, c) → B(a, b, c).

While Euclid never explicitly mentions betweenness (which is, as is well-known,
the main flaw in Euclid), the stability of betweenness and equality together
account for all apparent instances of nonconstructive arguments in Euclid.

A typical example of such an argument in Euclid is Prop. I.6, whose proof
begins

Let ABC be a triangle having the angle ABC equal to the angle
ACB. I say that the side AB is also equal to the side AC. For, if
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AB is unequal to AC, one of them is greater. Let AB be greater,
. . .

To render this argument in first-order logic, we have to make sense of Euclid’s
“common notion” of quantities being greater or less than other quantities. This
is usually done formally using the betweenness relation. In the case at hand,
we would lay off segment AB along ray AC, finding point D on ray AC with
AD = AC. Then since AB is unequal to AC, D 6= C. Then “one of them is
greater” becomes the disjunction B(A,D,C) ∨B(A,C,D). This disjunction is
not constructively valid. But its double negation is valid, since if the disjunction
were false, we would have ¬B(A,D,C) and ¬B(A,C,D), which would contra-
dict D 6= C. The rest of Euclid’s argument shows that each of the disjuncts
implies the desired conclusion. We therefore conclude that the double negation
of the desired conclusion is valid.11 The conclusion of I.6, however, is negative
(has no ∃ or ∨). Hence the double negation can be pushed inwards, and then the
stability of the atomic sentences can be applied to make the double negations
disappear.

In Euclid, disjunctions never appear, even implicitly, in the conclusions of
propositions.12 The conclusions are simply conjunctions of literals. Sometimes
there is an implicit existential quantifier, but if (as will always be the case in
our formalizations of constructive geometry) we can explicitly exhibit terms
for the constructed points, the resulting explicit form of the proposition will
be quantifier-free. Then the double negation can be pushed inwards as just
illustrated. In this way, all arguments of the form beginning “For, if AB is
unequal to AC, one of them is greater”, can be constructivized.

Prop. I.26 gives an example of the use of the stability of equality: “. . .DE is
not unequal to AB, and is therefore equal to it.” It that example, and all other
examples in Euclid, the following general reasoning applies: Since the conclusion
concerns the equality of certain points, we can simply double-negate each step
of the argument, and then add one application of the stability of equality at
the end. In fact, this had to happen: the Gödel double-negation interpretation
implies that classical logic can in principle be eliminated from proofs of theorems
of the form found in Euclid. (See [3] and [6] for the details using a Hilbert-style
axiomatization and Tarski-style axiomatization, respectively.)

2.4 Betweenness

The betweenness relationB(a, b, c) means that points a, b, and c lie on a common
line L, and b is the middle one of the three. This is taken as a primitive

11Those new to intuitionistic logic may need more detail: if P → R and Q → R, then
P ∨Q → R. Now we can double-negate both sides of an implication, using the constructively
valid law ¬¬ (S → R) → (¬¬ S → ¬¬R), obtaining ¬¬ (P ∨Q) → ¬¬R. Hence, if we
know ¬¬ (P ∨Q), we can conclude ¬¬R.

12An apparent exception to this rule is Prop. I.13, “If a straight line set up on a straight
line make angles, it will make either two right angles or angles equal to two right angles.”
Here the disjunction is superfluous: we can just say, “it will make angles equal to two right
angles.”
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(undefined) notion. Euclid never mentioned it, which was later viewed as a
flaw. Betweenness was used in early (nineteenth-century) axiomatic studies in
geometry, for example [26, 27]. It was used by Hilbert in his famous book [20].
When Tarski developed his theory of geometry, he used non-strict betweenness,
but used the same letter B. To avoid confusion, we use T(a, b, c) for non-strict
betweenness. Either of these two relations can be defined in terms of the other,
even constructively; it really does not matter which is taken as primitive. We
take B as primitive. Then T can be defined by

T(a, b, c) := ¬(a 6= b ∧ b 6= c ∧ ¬B(a, b, c))

In the other direction, B(a, b, c) can be defined as

T(a, b, c) ∧ a 6= b ∧ a 6= c.

We use the equality sign for segment congruence: ab = cd. Hilbert viewed
segments as sets of points, and congruence as a relation between segments.
Tarski viewed segment congruence as a relation between four points. In this
paper, we do not work with formal theories of geometry in detail, and what
we present will work with either Hilbert’s or Tarski’s theories. Occasionally we
may mention “null segment”: that refers to a segment aa. Corresponding to the
confusion aboutT versusB is a confusion about “closed segments” versus “open
segments”. Is a null segment a singleton or an empty set? These technicalities
do not arise if we follow Tarski in thinking of statements about segments as
abbreviations for statements mentioning points only. Even in informal geometry,
we do not think about sets of points.

The fundamental properties of betweenness include symmetry (B(a, b, c) is
equivalent to B(c, b, a)) and identity (B(a, b, a) is impossible.) In terms of T
this becomes T(a, b, a) → a = b.

Betweenness is closely related to order.

Definition 2.3 (Segment ordering) ab < cd if there exists a point e with
B(c, e, d) and ab = ce. Similarly, ab ≤ cd if there exists a point e with T(c, e, d)
and ab = ce.

Both Hilbert and Tarski gave axioms for betweenness, and both (but espe-
cially Tarski) tried to be parsimonious about the axioms, i.e., they tried to
make the axioms few and simple, at the cost of making the proofs of relatively
simple-sounding theorems fairly difficult. For example, the “outer transitivity
of betweenness” is

T(a, b, c) ∧T(b, c, d) ∧ b 6= c → T(a, c, d) ∧T(a, b, d)

and the “inner transitivity of betweenness” is

T(a, b, d) ∧T(b, c, d) → T(a, b, c) ∧T(a, c, d).

We also have the “transitivity of betweenness” (with no adjective):

T(a, b, c) ∧T(a, c, d) → T(b, c, d) ∧T(a, b, d).
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One can use B instead of T, of course. These axiomatic exercises do not concern
us here; see [28], chapters I.3 and Satz 5.1 for details. After having established
the fundamental properties of betweenness, it is easy to show that segment
ordering satisfies the usual properties for a linear ordering. See, for example,
p. 42 of [28].

The trichotomy law classically takes the form

B(a, b, c) ∧B(a, b, d) → T(b, c, d) ∨T(b, d, c).

Constructively this is not valid: we need to double-negate the right hand side.
One constructive formulation that does not involve double negation is

B(a, b, c) ∧B(a, b, d) ∧ ¬T(a, c, d) → T(a, d, c).

We refer to this principle as “comparability.” For a proof from Tarski’s axioms,
see [28], Satz 5.2. In this paper, we view geometry informally, and take the
view that any reasonable axiomatic theory of constructive geometry must either
assume or prove these principles.

To say “x is the midpoint of ab” means ax = xb and T(a, x, b). (So the
concept applies even if a = b, because T is used instead of B.) We will give
an example of a lemma about betweenness. The example will help illustrate
the relations between informal and formal geometry, which is of interest at
this point, but we also need to refer to this particular lemma in the proof of
Lemma 6.15. The point about informal and formal geometry is that, informally,
we feel free to use any of the transitivity and order principles discussed above,
whereas in formal geometry, some of these principles are difficult to prove from
a minimal set of axioms. The following proof is thus an informal one, although
it is a rigorous proof from the above principles.

Lemma 2.4 Suppose a, b, and t all lie on a line L. If x is the midpoint of ab,
and f is the midpoint of at, and B(a, f, x), then B(a, t, b).

Proof. From the definition of midpoint we have ax = xb and af = ft. We
have af < ax, since B(a, f, x) and af = af . Since B(a, f, x) and B(a, x, b), by
transitivity we have B(a, f, b), so a 6= b and ab is not a null segment. Similarly
f 6= a and at is not a null segment. We have

T(a, x, b) from the definition of midpoint (1)

T(a, f, x) by hypothesis (2)

T(f, x, b) by 2, 1, and transitivity (3)

T(a, f, b) by 2, 1, and transitivity (4)

T(a, f, t) from the definition of midpoint (5)

Hence bx < bf = fb, by the definition of <. Now, if T(f, b, t), then fb < ft, so
we have

af < ax = bx < fb < ft = af,

which is impossible. Hence ¬T(f, b, t).
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By (4), (5), and comparability, we have T(f, t, b). By (5) and outer tran-
sitivity, if f 6= t we have T(a, t, b). Since at is not a null segment, a 6= t, and
since ¬T(f, b, t), t 6= b. Hence B(a, t, b). That completes the proof.

2.5 Incidence and betweenness

We use on(x, L) to express the relation that point x lies on line L. This paper
does not focus on the details of formalization of geometry, but rather on con-
structivity in geometrical proofs and constructions; nevertheless some confusion
will be avoided by the following discussion. Some formal theories of geome-
try treat lines as first-order objects (that was the case for Hilbert, although he
then treated line segments and circles as sets of points). Tarski’s geometry, by
contrast, officially does not even mention lines. The “official” development of
geometry from Tarski’s axioms, [28], does treat lines as sets of points, in what
amounts to a conservative extension of the original theory, but the authors insist
that these mentions of lines are just abbreviations. The point we wish to call
attention to now is the connection between the incidence relation on(x, L) and
the betweenness relation B(a, b, c). Namely, if L = Line (a, b) is given by two
distinct points a and b, then on(x, L) is classically equivalent to

B(a, b, x) ∨B(b, x, a) ∨B(x, a, b) ∨ x = a ∨ x = b.

Constructively, on(x, L) is equivalent to the double negation:

on(x, L) ↔ ¬¬(B(a, b, x) ∨B(b, x, a) ∨B(x, a, b) ∨ x = a ∨ x = b)

and we have the following lemma:

Lemma 2.5 [Stability of incidence] ¬¬on(x, L) implies on(x, L).

Discussion. Since we are not committing in this paper to a fixed axiomatization
of constructive geometry, we enumerate some possibilities. In Tarski’s theory,
on(x, L) is defined by the formula above, so the stability is immediate. In a
Hilbert-style axiomatization, we would have a choice to define incidence or take
it as a primitive relation. If we define it in terms of betweenness, we need to use
double negations as above, so stability is immediate. If we take it as primitive,
we will want to include stability of incidence as an axiom.

3 Constructions in geometry

3.1 The elementary constructions

The Euclidean constructions are carried out by constructing lines and circles
and marking certain intersection points as newly constructed points. Our aim
is to give an account of this process with modern precision. We use a system of
terms to denote the geometrical constructions. These terms can sometimes be
“undefined”, e.g. if two lines are parallel, their intersection point is undefined.
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A model of such a theory can be regarded as a many-sorted algebra with partial
functions representing the basic geometric constructions. Specifically, the sorts
are Point, Line, and Circle. We have constants and variables of each sort.

It is possible to define extensions of this theory with definitions of Arc and
Segment. These are “conservative extensions”, which means that no additional
theorems about lines and points are proved by reasoning about arcs and seg-
ments. Angles are treated as triples of points. While this conservative extension
result applies to logical theories, a similar result applies to constructions consid-
ered algebraically. If we replace rays and segments by lines, and angles by pairs
of lines, then some terms may become defined that were not defined before, as
lines may intersect where rays or segments did not, etc. But any point that
was constructible with rays and angles will still be constructible when rays and
angles are replaced by lines. Therefore it suffices to restrict attention to points,
lines, and circles, which we do from now on.13

Lines are constructed by drawing a line through two distinct points; the
resulting line is Line (a, b). Circles are constructed “by center and radius”;
Circle3 (a, b, c) is the circle with center a and radius bc. This term corresponds
to a “rigid compass”.

We have already discussed the discontinuity of Euclid’s proof of (the uniform
version of) Euclid I.2. More generally, any construction ext(a, b, c, d) that ex-
tends segment ab by cd will exhibit a discontinuity as a tends to b with cd fixed,
since a can spiral in towards b, causing ext(a, b, c, d) to make (approximately)
circles of a fixed size around b. That shows that we cannot hope to define the
extension of a segment ab by cd without a case distinction on whether a = b
or not. In constructive geometry, we can extend non-null segments, not any
segment.

We can, however, always construct a point e(x) different from x, and that
fact can be used to give a constructive proof of Euclid I.2.

Lemma 3.1 [Euclid I.2] Given points a, c, and d, there exists a point d such
that ad = bc.

Remarks. There is no restriction that a 6= b here; so Euclid I.2 is constructively
provable after all: it is only Euclid’s proof that is non-constructive, not the
theorem.

Proof. First we show how, given x, to construct a point e(x) not equal to x.
Fix two unequal points α and β. Then define e(x) to be the extension of the
non-null segment αβ by αx. It is easy to show that if e(x) = x then the segment
αx is congruent to its proper subsegment βx, which is not the case. Now if we
extend the segment with endpoints e(a) and a by bc, we obtain a point d such
that ad = bc. That completes the proof.

It follows that Circle3 can in principle be eliminated in favor of Circle , by
the definition

Circle3 (a, b, c) = Circle (a, ext(e(a), a, b, c))

13Of course, when drawing diagrams to be viewed by people, we use rays and segments.
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We allow circles of radius zero, which we call “degenerate circles”. That is,
we consider Circle3 (a, b, c) to be defined when b = c. It is not that we need
such circles, but allowing them permits the avoidance of case distinctions.

Starting with at least three noncollinear points, we can construct more points
using the following six “elementary constructions”, each of which has return type
Point (that is, constructs a point):

IntersectLines (LineK,LineL)

IntersectLineCircle1 (LineL,CircleC)

IntersectLineCircle2 (LineL,CircleC)

IntersectCircles1 (CircleC,CircleK)

IntersectCircles2 (CircleC,CircleK)

IntersectCircles1 and IntersectCircles2 construct the intersection points of
two circles; how the two points are distinguished will be explained below (in
this same section). Euclid does not use function symbols for the intersection
points of two circles, and in particular did not worry about how to distinguish
one from the other, although sometimes (as in Euclid I.9, the angle bisector
theorem14) his proofs need to be repaired by selecting “the intersection point
on the opposite side of the line joining the centers as the given point x”, or “on
the same side.” To directly support this kind of argument we might consider
adding function symbols

IntersectCirclesSame (Circle C,Circle K,Point p)

IntersectCirclesOpp (Circle C,Circle K,Point p)

These two constructions give the intersection point of C and K that is on the
same side (or the opposite side) of the line joining their centers as p, when p is
not on that line. It turns out that constructions meeting this specification can
be defined in terms of those already mentioned, and hence it is not necessary
to include them as primitive symbols. Space does not permit the inclusion of
these constructions here; but even without seeing them explicitly, we know they
must exist by the metamathematical results of [3] and [6], according to which,
since we can prove the existence of an intersection point on a given side of a
line, there must be a way to construct it.

Another way in which Euclid avoids the need for function symbols to identify
the intersection points is the phrase “the other intersection point.” Of course
“the other intersection point” is just the reflection of the given intersection
point in the line connecting the two centers; but constructively, we need uniform
reflection, because we cannot assume that the given intersection point does not
lie on that center line (it will in case the circles are tangent). See Theorem 7.6
for details.

14See Heath’s commentary on I.9 in [12]. In order to fix I.9, Euclid should have proved a
stronger version of I.1, constructing on a given segment AB two equilateral triangles, one on
each side of AB.
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Constructively, every line comes equipped with the two points that were
used to construct it. Informally we simply say, let L = Line (a, b) to recover
the two points a and b that were used to construct L. In a formal theory
with variables for points and lines, such as was used in [3], we need “accessor
functions” to recover points on those lines. Thus, pointOn1 (L) and pointOn2 (L)
would construct two points on a line; those will be a and b where L = Line (a, b).
In this paper, we work informally, so there is no need to mention accessor
functions. In [6], we use a formal theory with only one sort of variables, for
points. That keeps the formal apparatus to a minimum.

Similarly, since circles can only be constructed from a given center, every
circle comes equipped with its center, so in a formal many-sorted theory, we
would need an “accessor function” center(C) for the center of C.

There are three issues to decide:

• when there are two intersection points, which one is denoted by which
term?

• When the indicated lines and/or circles do not intersect, what do we do
about the term(s) for their intersection point(s)?

• In degenerate situations, such as Line (p, p), or the intersection points of
two coincident circles, what do we do?

We summarize the answers to these questions, with details to follow:

• The two intersection points IntersectLineCircle1 (L,C) and

IntersectLineCircle2 (L,C) occur on L in the same order as the two points
p and q such that L = Line (p, q).

• The two intersection points p = IntersectCircles1 (C,K) and

q = IntersectCircles2 (C,K) are distinguished by requiring that abp is a
right turn and abq is a left turn, where a and b are the centers of C and
K respectively.

• When the indicated lines and/or circles do not intersect, or when two
circles coincide, the term for their intersection points will be “undefined”.

• In degenerate situations such as Line (p, p), we will be guided by continuity.
Thus Line (p, p) is undefined, but Circle (a, a) is defined.

That summary leaves several details to spell out. First, there is the matter of
points occurring “in the same order” on a line. We define SameOrder (p, q, s, t)
to say that p 6= q and s and t both lie on Line (p, q), and then to be a double-
negated disjunction giving the many possible combinations of betweenness re-
lations between p, q, s, and t that are allowed. The case s = t is allowed and
SameOrder (p, q, s, s) is considered true. That is, SameOrder (p, q, s, t) says
that the non-strict order of s, t is the same as the order of p, q. (This allows
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for the case when a line is tangent to a circle and the two intersection points
coincide.)

We note that lines are treated intensionally. That is, Line (a, b) is not equal
to Line (b, a), even though the two lines are extensionally equal, i.e., the same
points lie on them. The reason for this is that if the line is rotated about the
midpoint of segment ab by 180◦, the two intersection points of the line with a
circle must change places. That is, a line “comes equipped” with two points
that were used to construct it; to “be given” a line involves being given two
points on that line, and order matters. It thus makes sense to define the two
intersection points of Line (A,B) and a circle to be such that their ordering on
the line is the same as that of A and B. If one does not want to think about
“lines with direction”, then just work with a points-only theory in the style of
Tarski, as developed in [6].

Second, there is the question of “undefined terms”. The operations of these
“algebras of constructions” do not have to be defined on all values of their
arguments. The same issue, of course, arises in many other algebraic contexts,
for example, division is not defined when the denominator is zero, and

√
x is

not defined (when doing real arithmetic) when x is negative. The symbol for
“defined” is ↓. In dealing with undefined terms, we adopt the convention of
“strictness”. For example, if we write B(a, t, b) for some term t, then that
implies t ↓. One cannot make assertions about undefined objects. There are
precise rules for a “logic of partial terms”, which can be found in [2], and
geometric theories incorporating these rules are discussed in [3] and the last part
of [6]. For this paper it does not matter–any one of several ways of handling
“undefined terms” will work.

Third, we mentioned the concepts “right turn” and “left turn” to distinguish
the intersection points of two circles. There is a definition of Right and Left
in field theory, well known to all computer graphics programmers: abc is a
right or left turn, provided a 6= b, according to the (non-strict) sign of the
cross product of the vectors bc and ba. (The two-dimensional cross product
is a scalar, defined by (a, b) × (c, d) = ad − bc.) This definition of Right and
Left can be used within a geometrical theory, as soon as coordinates can be
introduced based on the geometrical axioms.15 We refer the interested reader
to [6] for a full discussion. We emphasize that the reason to define Right and
Left is to be able to give axioms guaranteeing the continuity of the terms for
intersections of circles, and for intersections of circles and lines. Without such
axioms, those function symbols might be interpreted by wildly discontinuous
functions. Regarding the borderline cases: we use the non-strict sign of the
cross product, so abb is both a left and a right turn if a 6= b. We do not even
need to ask the question whether aab is a right or left turn, since we do not ask

15The relation of continuity to ruler and compass constructions, and the problem of dis-
tinguishing the intersection points of circles, have been considered before by Kortenkamp
[22]. His interest, like mine, originally arose out of programming dynamic geometry software.
The cited dissertation contains many interesting examples, on some of which, for example
his Fig. 6.9, I do not agree about the most desirable behavior. Kortenkamp’s approach is
algebraic and computational rather than axiomatic, so is not directly related to this paper.
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for the intersection points of concentric circles, but officially aab is neither a left
turn nor a right turn.

For the metamathematical results in this paper, the introduction of coordi-
nates and the definitions of Right and Left are minor issues. We wish to clarify
this point. What we need for the results of this paper is that every Euclidean
field F provides a model F2 for our geometrical theories. Which version of the
parallel axiom is satisfied in F2 depends on which axioms about multiplicative
inverses (or division) we take in the axioms of Euclidean fields. Thus our inde-
pendence results do not become harder if we change the (non-parallel) axioms,
as long as Euclidean planes satisfy the axioms, and the axioms hold in planes
over Playfair fields; in other words the coordinates of any points asserted to
exist should be explicitly bounded in terms of the given points. We give two
different proofs of the independence of Euclid 5 from Playfair, and both have
this property.

The ability to define coordinates and arithmetic, on the other hand, says
that a geometrical theory is “strong enough”. This in turn implies that every
model is a plane over a Euclidean field (at least, if we have line-circle and circle-
circle continuity as well as coordinates). It is for this “representation theorem”
that coordinates and arithmetic are required.

3.2 Circles and lines eliminable when constructing points

It is intuitively plausible that one does not really need to draw the lines and
circles in a geometric diagram; one just uses the circles and lines to get their
points of intersection with other circles and lines. Indeed, one can formulate an
axiomatic theory that has only variables for points. One first gives a constructive
proof of Euclid I.2, providing a term E(a, b, c) for a point d such that ad = bc.
Then one can define Circle3 (a, b, c) = Circle (a,E(a, b, c)). One has, informally,
“overloaded” variants of the function symbols mentioned above:

IntersectLines (Point a,Point c,Point c,Point d)

= IntersectLines (Line (a, b),Line (c, d))

IntersectLineCircle1 (Point a,Point b,Point c,Point d)

= IntersectLineCircle1 (Line (a, b),Circle (c, d))

IntersectLineCircle1 (Point a,Point b,Circle c)

= IntersectLineCircle1 (Line (a, b), c)

As these three examples illustrate, one can regard circles and lines as mere
intermediaries; points are ultimately constructed from other points. Such a
points-only axiomatization, in the spirit of Tarski, is elegant, and convenient
for metamathematical studies. Below we give points-only formulations of all
three versions of the parallel postulate. In [6] we give a precise axiomatization
of constructive geometry using a points-only language.
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3.3 Describing constructions by terms

It is customary to describe constructions by a sequence of elementary construc-
tion steps. In this section, for the benefit of readers not expert in logic, we
show how terms in a logical system correspond to traditional descriptions. For
example, we might describe bisecting a segment this way:

Midpoint(a,b)

{ C = Circle(a,b); // center at A, passing through B

K = Circle(b,a);

P = IntersectCircles1(C,K);

Q = IntersectCircles2(C,K);

L = Line(P,Q); // the perpendicular bisector of AB

J = Line(a,b);

m = IntersectLines(L,J); // the desired midpoint

return m;

}

This description (which actually is in a precisely-defined language used for com-
puter animation of constructions) looks quite similar to textbook descriptions
of constructions (see for example, [16]). We call such a description a “construc-
tion script” or just a “script.” For theoretical purposes, as in this paper, it is
easier to describe constructions officially by terms as above. When the midpoint
construction is described as a term, it looks like this:

IntersectLines (Line (IntersectCircles1 (Circle (a, b),Circle (b, a)),

IntersectCircles2 (Circle (a, b),Circle (b, a))),Line (a, b))

Conversely, given a term, one can “unpack” it, introducing new variable
names for subterms, and even, if desired, collapsing duplicate subterms (e.g.,
Circle (A,B) need not be drawn twice). Since we have chosen readable names
for our function symbols, such as IntersectLines instead of f or even iℓ, our
terms sometimes grow typographically cumbersome, and for human readability
we will often use scripts to describe constructions; but we do not define scripts
formally; they always just stand for terms.

4 Models of the elementary constructions

We will explain four particularly interesting models of the elementary construc-
tions. We assume there are three constants α, β, and γ of type Point, intended
to stand for three non-collinear points.

4.1 The standard plane

The standard plane is R2. Points, lines, and circles (as well as segments, arcs, tri-
angles, squares, etc., in extended algebras in which such objects are considered)
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are interpreted as the objects that usually bear those names in the Euclidean
plane. More formally, the interpretation of the type symbol “Point ” is the set
of points, the interpretation of “Line ” is the set of lines, etc. In particular we
must choose three specific non-collinear points to serve as the interpretations
of α, β, and γ. Let us choose α = (0, 1), β = (1, 0), and γ = (0, 0). The
constructor and accessor functions listed above also have standard and obvious
interpretations. It is when we come to the five operations for intersecting lines
and circles that we must be more specific. As discussed above, the interpre-
tations of the five function symbols for the elementary constructions, such as
IntersectLineCircle1 , are partial functions, so that if the required intersection
points do not exist, the term simply has no interpretation. In degenerate situ-
ations, terms are defined if and only if they can be defined so as to make the
interpreting function continuous; thus Line (p, p) is undefined and Circle (p, p)
is the zero-radius circle, and the only point on it is p.

To distinguish the intersection points of two circles: IntersectCircles1 (C,K)
is the intersection point p such that the angle from center (C) to center (K) to
p makes a “left turn”. This is defined as in computer graphics, using the sign of
the cross product. Specifically, let a be the center of circle C and b the center
of K. Then the sign of (a− b)× (p− b) determines whether angle abp is a “left
turn” or a “right turn”. These definitions can be given in geometry, as soon
as one can introduce coordinates and define addition and multiplication. This
notion is constructively appealing, because of continuity: there exists a unique
continuous function of C and K that satisfies the stated handedness condition
for IntersectCircles1 when C and K have two distinct intersection points, and
is defined whenever C and K intersect (at all). But it is also interesting, even
with classical logic, to introduce function symbols for the intersection points
and then distinguish the intersection points in a continuous way.

The principle of continuity leads us to make IntersectCircles1 (C,K) and
IntersectCircles2 (C,K) undefined in the “degenerate situation” when circles C
and K coincide, i.e., have the same center and radius. Otherwise, as the center
of C passes through the center of K, there is a discontinuity. It makes sense,
anyway, to have them undefined when C and K coincide, as the usual formulas
for computing them get zero denominators, and there is no natural way to select
two of the infinitely many intersection points.

4.2 The recursive model

The recursive plane Rrec

2 consists of points in the plane whose coordinates are
given by “recursive reals”, which were defined above. It is a routine exercise
to show that the recursive points in the plane are closed under the Euclidean
constructions. In particular, given approximations to two circles (or to a circle
and a line), we can compute approximations to their “intersection points”, even
though it may turn out that when we compute still better approximations to
the circles, we see that they do not intersect at all.

We showed above that in the recursive plane, there is no computable test-
for-equality function. Recall that the proof made use of a recursive real number
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E(x) such that E(x) > 0 if {x}(x) halts and E(x) = 0 if {x}(x) does not
halt. The same example shows that we cannot test computably for incidence
of a point on a line; the number E(x) lies on the y-axis if and only if Turing
machine x does not halt at x.

In the recursive model, we cannot decide in a finite number of steps whether
a circle and a line intersect or whether two circles intersect; if they intersect
transversally we will find that out after computing them to a sufficient accuracy,
but if they are tangential, we won’t know that at any finite approximation.
Technically, the circle of center (0, 1) and radius 1− E(x) will meet the x-axis
if and only if the x-th Turing machine does not halt at x.

Readers familiar with recursion theory may realize that there are several
ways to define computable functions of real numbers. The model we have just
described is essentially the plane version of the “effective operations”. It is
a well-known theorem of Tseitin, Kreisel, LaCombe, and Shoenfield, known
traditionally as KLS (and easily adapted to the plane) that effective operations
are continuous. Of course, in the case at hand we can check the continuity of
the elementary constructions directly.

4.3 The algebraic model

The algebraic plane consists of points in the plane whose coordinates are al-
gebraic. Since intersection points of circles and lines are given by solutions of
algebraic equations, the algebraic plane is also closed under these constructions.
Note that the elements of this plane are “given” all at once. We assume alge-
braic numbers are given by means of a rational interval (a, b) and a square-free
polynomial f ∈ Q[x] such that f has only one root in (a, b).

In the algebraic plane, there is a computable test-for-equality function D.
To determine if (a, b) and f determine the same or a different real number than
(p, q) and g, first check if the two rational intervals overlap. If not, the two reals
are different. If so, let (r, s) be the intersection. Now we have to determine if f
and g have a common zero on (r, s). There is a simple recursive algorithm to do
that: Say g has degree greater than or equal to that of f . Then write f = gh+r
with r of lower degree than g. Then f and g have a common zero on (r, s) if and
only if f and r have a common zero. Recurse until both polynomials are linear,
when the decision is very easy to make. Similarly, we can compute whether two
circles or a circle and a line intersect.

Since algebraic numbers can be computed, the algebraic model is isomorphic
to a submodel of the recursive plane.

4.4 The Tarski model

The Tarksi model is K ×K, where K = Q(
√

) is the least subfield of the reals
containing the rationals and closed under taking the square root of positive
elements. This is a submodel of the algebraic plane. Its points are the points
constructible with ruler and compass. Here α, β, and γ are interpreted as three
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fixed rational points. That the intersection points of circles can be computed
using only the solution of quadratic equations is checked in detail in section 9.2.

5 Development of constructive geometry

In this section we sketch some important ideas of constructive geometry, with
emphasis on where it differs from classical geometry. These developments lay the
foundations for the geometric definitions of addition and multiplication, which
are the culmination of the theory, as they show that Euclidean field theory can
be interpreted in geometry.

5.1 Pasch

In 1882, Moritz Pasch axiomatized geometry using betweenness, and pointed
out the necessity for a new axiom that would guarantee the existence of the
intersection points of certain lines. This new axiom has several common versions,
so sometimes, if one version is taken as an axiom, other versions are theorems.
The most traditional version is this:

Theorem 5.1 [Pasch 1882] Let line L meet side ab of triangle abc, and let L
not meet side bc or any vertex. If L lies in the plane of triangle abc, then L
meets side ac.

Without the codicil that L lie in the plane of the triangle, this theorem
fails in more than two dimensions. In that form it says something about the
dimensionality of space as well as something about betweenness. But the form
we have given requires the concept of “plane.” Therefore two other versions,
which hold without considerations of dimension, are also often considered:

b

a x
b q

b
c

b b

b
p

b
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b

p
b c

b
q

b b

x

Figure 5: Left: inner Pasch. Right: Outer Pasch.
Open circles indicate the point asserted to exist.

Either one of inner Pasch or outer Pasch implies the other, but not easily;
and either implies Pasch’s theorem; and these implications are also valid in
constructive geometry. See [28], [6], [29] for further discussion. We will freely
use any of these principles in this paper.
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5.2 Some Euclidean lemmas

In this section we collect some lemmas, whose constructive proofs are in Euclid
or follow easily from Euclid with a bit of attention to constructivity. They will
be cited in this paper and hence are summarized here without proofs, except
for a few remarks about the constructive issues. They are provable in neutral
constructive geometry. By “neutral constructive geometry” we mean geometry
with no parallel postulate, but with line-circle continuity and circle-circle conti-
nuity.16 Formal proofs of these theorems can be given from the axioms listed in
[6]. The existence of constructive proofs of many, but not all, of these lemmas
follows from the double-negation interpretation, as shown in [6], so it is not
really necessary to write out constructive proofs of those lemmas directly. In
this paper, we are not interested in the minimal axiom set required to deduce
such theorems; any correct axiomatization of constructive geometry should be
able to prove these lemmas. The only reason to cite [6] here is to indicate that
the details have been checked for at least one formal axiomatization. The fact
that all these theorems can be proved even without line-circle or circle-circle
continuity (due to Gupta, presented in [28], and constructive according to [6])
is amazing, but irrelevant here, since for our purpose of studying constructive
geometry versus classical geometry, we are perfectly willing to use circles.

Lemma 5.2 Every segment ab with a 6= b has a midpoint (a point m between
a and b with ma = mb) and a perpendicular bisector (a line perpendicular
to Line (a, b) at m). Both m and a perpendicular bisector can be constructed
(defined) by terms of ECG.

Note the hypothesis a 6= b; if a and b approach each other, the perpendicular
bisector of ab is not continuous as a becomes equal to b. See Lemma 5.44 for a
proof that if a and b are restricted to a fixed line L, then one can construct a
point x on L such that ax = xb, without assuming a 6= b.

Lemma 5.3 If B(a, b, c) then ab is not congruent to ac.

Lemma 5.4 If line L contains a point strictly inside circle C, then L meets C
in exactly two points.

It will be shown in Lemma 7.4 that a point can be reflected in a line, without
a case distinction whether the point lies on the line or not. The following much
simpler lemma assumes the existence of the reflected point.

Lemma 5.5 (Reflection in a diameter) Let line L pass through the center
of circle C and let p lie on C. Suppose q is the reflection of p in L. Then q lies
on C.

16The terminology is by no means consistent in the literature; geometers do not even agree
over whether “absolute geometry” means the same thing as “neutral geometry”, or whether
line-circle continuity is included or not. Our usage is consistent, for example, with [15].
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Definition 5.6 Line K is perpendicular to line L at m if m is on both L
and K, and there is a point a on K and points b and c on L with B(b,m, c)
such that ab = ac and bm = mc. K is perpendicular to L if there is a point m
such that K is perpendicular to L at m.

One can show that if the condition in the definition is true for one point a,
then it is true for any point a on K not equal to m. It is worth noting that
perpendicularity, and hence “right angle”, can be defined without discussing
angles in general.

Lemma 5.7 (Stability of perpendicularity) If two lines are distinct and
have a point m in common, and are not not perpendicular at m, then they
are perpendicular at m.

Proof. Let L and K be two lines that are not not perpendicular at m, meeting
at point m. Let a be a point on K different from m and let b be a point on L
different fromm, and construct c such that B(b,m, c) and bm = mc. Then since
L and K are not not perpendicular, we have ¬¬ (ab = ac). By the stability of
equality we have ab = ac. Hence K is perpendicular to L.

Lemma 5.8 If L and K are perpendicular, then K and L are perpendicular.

Lemma 5.9 If p is not on L and a and b are on L and pa ⊥ L and pb ⊥ L,
then a = b.

Lemma 5.10 All right angles are congruent. In other words, if abc and ABC
are right angles with ab = AB and bc = BC then ac = AC.

This is a particularly interesting lemma, since Euclid took it as a postulate;
but in Hilbert’s treatment, and in Tarski’s, it is a theorem, namely Satz 10.12
in [28]. A constructive proof from Tarski’s axioms is given in [6].

The following lemma requires some axiom that implies all the points lie in
the same plane, since it fails in three-dimensional space. This lemma might
even be assumed as the upper dimension axiom; Tarki’s geometry has an upper
dimension axiom for each n, stating that space is at most n-dimensional. (Only
one of these axioms is used at a time.) This lemma is equivalent to Tarski’s
dimension axiom (A9) for the case n = 2. We use the phrase “in plane geometry”
to mean that some such axiom is assumed.

Lemma 5.11 (Uniqueness of erected perpendicular) Suppose K and M
are lines perpendicular to another line L at m. Then, in plane geometry, K and
M coincide (have the same points).

Definition 5.12 Line L is tangent to circle C at x if L meets C at x and
only at x.

Remark. Some books take the property in the following lemma as the definition
of tangent instead.
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Lemma 5.13 (i) If circle C with center e is tangent to L at x then ex ⊥ L.

(ii) Given line L, point x on L, and two points a and e not on L, with ex ⊥ L
and e lying on a perpendicular bisector of xa, then Circle (e, a) is tangent to L
at x.

Lemma 5.14 Lines perpendicular to the same line are parallel.

Definition 5.15 (Reflection in a point) The reflection of p in a is the
(unique) point t such that T(p, a, t) and pa = at.

We shall only use reflection in a point when the two points are distinct.
In that case it is completely unproblematic. (However, see Corollary 9.6 for a
construction that works without a case distinction.) The following lemma says
that reflection is an isometry:

Lemma 5.16 Reflection in a point preserves betweenness and congruence.

Corollary 5.17 Let ab be a chord of circle C. Then the center of C lies on the
perpendicular bisector of ab.

Remark. This is essentially Euclid III.1.

Proof. Let m be the midpoint of ab and p the center of C. Then pa = pb and
ma = mb and pm = pm, so triangle pam is congruent to triangle pbm. Hence
mp is perpendicular to ab at m. But also the perpendicular bisector of ab is
perpendicular to ab at m; so by Lemma 5.11, p is on the perpendicular bisector.
That completes the proof.

Lemma 5.18 (Additivity of congruence) Suppose B(a, b, c) and B(A,B,C)
and ab = AB and bc = BC. Then ac = AC.

Lemma 5.19 (Transitivity of parallel) Suppose line L is parallel to both
line K and line M , and suppose M and K do not coincide. Then, assuming
Playfair’s axiom, M and K are parallel.

Definition 5.20 A rectangle is a quadrilateral lying in a plane with four right
angles.

There are related notions, equivalent in Euclidean geometry, but not in neu-
tral geometry.

Definition 5.21 A Saccheri quadrilateral is a quadrilateral (lying in a plane)
with two adjacent right angles and the opposite sides adjacent to those angles
equal. For example, quadrilateral abcd is a Saccheri quadrilateral if the angles
at b and c are right angles and ab = cd.

Definition 5.22 A rhomboid is a quadrilateral in which opposite sides are
congruent. (Traditionally also not all sides are equal, but we do not require
that.) A parallelogram is a quadrilateral with each pair of opposite sides
parallel.
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Lemma 5.23 In neutral geometry, a Saccheri quadrilateral is a parallelogram.
Playfair’s axiom implies that a Saccheri quadrilateral is a rectangle.

Proof. Suppose abcd is a Saccheri quadrilateral. Let m be the midpoint of the
summit ad. It is well known (see e.g. [15],pp. 177-178, and the proof there is
constructive) that the line K joining the midpoint of bc to m is perpendicular to
both the base bc and the summit ad. Hence ad is parallel to bc. That completes
the proof of the first assertion.

To prove the second claim, we drop a perpendicular J from m to ab. Then
J is parallel to bc, since both are perpendicular to K. By Playfair, J coincides
with ad, since both are parallel to bc through m. But by construction, J is
perpendicular to ab; since it meets ab at a, the angle bad is a right angle.
Similarly, angle abd is a right angle. That completes the proof.

Lemma 5.24 Playfair’s axiom implies that if a quadrilateral in a plane has
three right angles, then it is a rectangle.

Lemma 5.25 Playfair’s axiom implies that orthogonal projection preserves mid-
points. Here the “orthogonal projection” of p onto a line L is the foot of the
perpendicular from p to L.

Assuming the parallel postulate and that space is two-dimensional (for ex-
ample that an upper dimension axiom such as Lemma 5.11 holds), a rhomboid
is a parallelogram and vice versa. Without an upper dimension axiom, a rhom-
boid need not lie in a plane, but because “parallel” is defined to require that
the lines lie in a plane, a parallelogram must lie in a plane. Without the paral-
lel postulate, and indeed without an upper dimension axiom, we can prove the
following lemma.

Lemma 5.26 If the diagonals of a rhomboid meet, then the point of intersection
bisects both diagonals. The diagonals of a parallelogram always meet.

The hypothesis that a rectangle exists implies Playfair’s postulate, so the
following lemma is still provable in neutral geometry.

Lemma 5.27 The diagonals of a rectangle meet and bisect each other.

5.3 Sides of a line

The plane separation theorem says that a line separates a plane into two “sides”
and every point not on the line is in one side or the other. This is too strong
constructively; it is essentially the principle x 6= 0 → x < 0 ∨ x > 0. But we
can prove some versions of the theorem constructively.

Two points a and b not on line L are on opposite sides of L if a 6= b and
there is a point of L between a and b, i.e., the segment ab meets L.

Definition 5.28

OppositeSide (a, b, L) := B(a, IntersectLines (Line (a, b), L), b)
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The definition of being on the same side is less straightforward. One obvious
definition of SameSide (a, b, L) would be that segment ab does not meet L. That
was Hilbert’s definition. Formally that would be

∀x¬(B(a, x, b) ∧ on(x, L)).

This proposed definition has two problems. First, Hilbert’s definition works
only in the presence of some “dimension axiom” that assures that all points lie
in a plane. The second problem with this definition is the universal quantifier.
In classical geometry we could eliminate it by writing

a = b ∨ ¬B(a, IntersectLines (Line (a, b), L), b)).

But constructively, that implies a case distinction whether a = b or not, which
is not possible. When a = b, the term Line (a, b) is undefined, so we would not
be able to prove a is on the same side of L as itself. The problem arises only
when we try to eliminate the quantifier; the quantified version is constructively
okay.

Tarski gave a definition that avoids these difficulties: a and b are on the
same side of L if there is some c such that both a and b are on the opposite side
of L from c. This version has existential instead of universal quantifiers. Two
of those quantifiers can be replaced by terms, but the third remains.

Definition 5.29

SameSide (a, b, L) := ∃c (B(a, IntersectLines (Line (a, c), L, c) ∧
B(b, IntersectLines (Line (b, c), L), c))

The point c serves as a “witness” that a and b are on the same side of L. We
would need c anyway to use Hilbert’s definition in 3-space, where c and the two
intersection points in Tarski’s definition would be needed as a witness that a
and b are in the same plane with L. The definitions are not so different, after all,
and of course they turn out to be equivalent, as the following theorems show.

Lemma 5.30 (Plane separation theorem) If a and b are not on L and no
point of L is between a and b then SameSide (a, b, L). Indeed a specific point c,
namely the reflection of a in L, is constructible (i.e., given by a term t(a, L))
such that c is on the opposite side of L from both a and b.

Remark. This lemma obviously fails in three-space, since if a and b are on the
same side of L then they are coplanar with L, but it may be that segment ab
does not meet L even though they are not coplanar.

Proof. Fig. 6 illustrates the proof; the point illustrated by an open circle must
be proved to exist. Drop a perpendicular from b to ac; its foot is w. Let m be
the midpoint of wx. Reflect b in point m to obtain r. We do not know yet that
r lies on L, but we can show triangles bwm and rxm are congruent, so rx ⊥ ac.
Then, by Lemma 5.11, r must lie on L. Line L enters triangle bmc at x; hence
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Figure 6: If ab does not meet L then a and b are on the same side of L because
bc meets L. (Lemma 5.30).

by Pasch (Theorem 5.1) it must exit the triangle. By hypothesis it does not
meet side ab. Hence point z, indicated by the diagram in the open circle, exists.
Technically, the version of Pasch required here is “outer Pasch”, as discussed in
§5.1. Hence, the theorem can be proved in any axiomatization of constructive
geometry, as soon as Lemma 5.11 and outer Pasch are proved.

Lemma 5.31 (Plane separation theorem, part 2)
If SameSide (a, b, L) and OppositeSide (a, c, L) then OppositeSide (b, c, L).

Proof. This is just a restatement of Pasch’s theorem. (We say “theorem” instead
of “axiom” because Pasch’s theorem can be derived from special cases, such as
“inner Pasch” or “outer Pasch”, as explained in [6] or [28].)

Hilbert took planes as a primitive concept. He did not attempt geometry in
n dimensions. Tarski instead defined planes; the plane determined by a line L
and a point p not on L is the set of points that are either on L, or on the same
side of L as p, or on the opposite side. Constructively, that case distinction
is unacceptable, and the quantifier involved in “same side” is also annoying.
Instead we make the following definition:

Definition 5.32 Given line L and point p not on L, let p̄ be the reflection of
p in L. Then a point x lies in the plane determined by p and L if not not
xp meets L or xp̄ meets L.

Tarski had an “upper dimension axiom” (A9), which can be used to specify
that space is at most n-dimensional. The case n = 2 says that if three points
are each equidistant from two fixed points a and b then the three points are
collinear. In view of the definition of “perpendicular” and theorems about the
existence of perpendiculars and midpoints, this is equivalent to saying that any
two lines perpendicular to a given line L coincide.

Here is an application of the plane separation theorem that we need later
on:
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Lemma 5.33 (Middle Parallel) Let J , K, and N be three weakly parallel
lines, all perpendicular to the same line L, and meeting L in points j, k, and
n, in that order (that is, T(j, k, n)); and suppose that j 6= n. Let M be another
line, meeting J and N in e and f respectively. Then M also meets the middle
parallel K, in a point (non-strictly) between e and f .

L

J K N

M

b

j
b

k
b

n

b
e

b
f

Figure 7: The middle parallel meets M if the outer two do

Proof. Let M meet J and N at points e and f , respectively. Extend segment
fe (by any amount) to a point e′. By the uniform perpendicular construction,
there exists a line J ′ through e′ perpendicular to L. Replacing J by J ′, we can
assume without loss of generality that J and K do not coincide (or in other
words, j 6= k). Similarly we may assume k 6= n, i.e., all three parallels are
distinct.

Now fn does not meet K, so by Lemma 5.30, f and n are on the same side
of K. Similarly, e and j are on the same side of K. Since B(j, k, n), j and n
are on opposite sides of K. Then by Lemma 5.31, e and f are on opposite sides
of K. Hence ef meets K, in a point r strictly between e and f . We get strict
betweenness because we have have assumed B(j, k, n); when we allow non-strict
betweenness as in the first paragraph, we get only T(e, r, f), as stated in the
conclusion. That completes the proof of the lemma.

5.4 Angles

Euclid took angles as a primitive concept, and assumed that angles can be com-
pared. That is, he assumes an angle ordering relation abc < uvw. (There is
no need to use the notation ∠abc < ∠uvw since abc < uvw could not have any
other meaning.) Often Euclid proves two angles are equal by an argument be-
ginning, “if not, then one of them is greater” and proceeding to a contradiction.
If angles could be compared by comparing segments, this would be justifiable
in the same way that we justify proving equality of betweenness of points by
contradiction, i.e., by stability of equality, congruence, and betweeness.

Hilbert, following Euclid, treated angles as a primitive concept. Tarski
treated angles as triples of points. In [6], we follow Tarski in treating angles
as triples of points. In this paper, in order not to commit to a specific formal
treatment, and especially to avoid a long development of the properties of angle
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ordering, we just avoid angles entirely in the formal statements of the various
versions of the parallel axioms. However, we indicate how the theory of angles
can be developed if angles are taken as a defined concept, following [28]. In
order to verify the constructivity of Euclid, we need to justify

Definition 5.34 (Ordering of angles) Point p is in angle abc if p 6= b and
there exists a point x on Line (b, p) such that T(a, x, c). If instead of T(a, x, c) we
use B(a, x, c), then p is said to be in the interior of angle abc. Angle abc < ABD
if there is a point C in the interior of angle ABD such that angle abc is congruent
to angle ABC. Similarly, abc ≤ ABD if there is a point C in angle ABD such
that angle abc is congruent to angle ABC.

The theory of angle congruence and angle ordering is developed in [28],
Chapter 11. To get an idea of what is involved, you can try the following
exercise: prove that if p is in the interior of abc, and B(b, a, A) then p is also
in the interior of Abc. In making the cited development constructive, there are
some technical problems, turning on the exact version of Pasch’s axiom that is
needed. These problems are discussed and solved in [6]. The following theorem
justifies the constructivity of Euclid’s use of angle ordering:

Theorem 5.35 [Stability of angle ordering]

¬¬ abc < def → abc < def

and similarly with ≤ in place of <.

Remark. The proof is given in [6].

It is often instructive to see what a theorem about angles “really states”
when angles are eliminated. The following famous proposition I.16 of Euclid is
a good example.

Lemma 5.36 (Exterior angle theorem, Euclid I.16) Suppose B(b, c, d) and
a does not lie on Line (b, c). Then acd > bac.

b

a

b
c

b

d

b
e

bx

b

f

b

b

Figure 8: Construct L parallel to ab. Then e and x exist by Pasch.

Proof. Euclid’s diagram is given by the solid lines in Fig. 8. We show how to
complete Euclid’s proof. To prove acd > bac, we must construct a point f in the
interior of acd such that acf = bac. Euclid knew what angle ordering means:
he constructs f . But he does not prove that f lies in the interior of acd. We
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supply the proof: By inner Pasch, applied to the five-point configuration becdc,
there is a point x such that both B(c, x, f) and B(e, x, d). Hence f is in the
interior of angle ecd. But ecd is the same angle as acd, so f is in the interior of
angle acd as well, according to the exercise mentioned above. That completes
the proof.

The immediate corollary (Euclid I.17) is that any two angles of a triangle,
taken together, are less than two right angles. In particular, no triangle contains
two right angles, although in neutral geometry, nothing prevents the angle sum
of (all three angles of) a triangle from being more than two right angles.

Lemma 5.37 In a right triangle, the hypotenuse is greater than either leg.

Proof. First prove Euclid I.18 and I.19. Then apply them as indicated in
Exercise 22, p. 198 of [15].

Euclid’s Prop. I.18 says that “In any triangle the greater side subtends the
greater angle.” Euclid’s proof from I.16 is perfectly constructive. The following
lemma then follows quickly from his Postulate 4 (all right angles are equal);

Lemma 5.38 An angle contained in a right angle is not a right angle. That is,
if abc is a right angle, and p and q both lie between a and c, then pbq is not a
right angle.

Proof. By Euclid I.18, abc is greater than abq, which in turn is greater than
pbq. We need the transitivity of angle ordering to conclude abc > pbq, and by
Lemma 5.10 (which is Euclid 4), if pbq is a right angle, then abc = pbq, contra-
diction. That completes the proof of the lemma, modulo the basic properties
of angle ordering, which are developed in [28], Chapter 11, with attention to
constructivity in [6].

5.5 Uniform perpendicular

In this section we show that some fundamental constructions needed to define
(signed) arithmetic can be defined from the elementary constructions.

A very fundamental fact in constructive geometry is the existence of a uni-
form perpendicular Perp(x, L), which is a line perpendicular to line L passing
through x, constructed without a case distinction as to whether x lies on L or
not. In classical treatments of geometry, this case distinction is made and a
different construction is used for each case.

There are several ways to construct a uniform perpendicular. In this paper
we give a construction that does not require the parallel postulate, but it does
use circles (and line-circle continuity). In [6], we give a different construction
that avoids the use of circles entirely, but it does require the parallel axiom.
At present it is an open problem whether a uniform perpendicular can be con-
structed without using either circles or the parallel axiom.

Here is the construction that uses circles:
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Definition 5.39 The term Perp(x, L), or expressed in terms of points only,
Perp(x, a, b), is given by the following construction script, where L = Line (a, b).
(See Fig. 9.)

Line Perp(Point x, Point a, Point b)

{ Q = Circle3(b,x,a)

c = IntersectLineCircle2(L,Q)

C = Circle3(x,a,c)

p = IntersectLineCircle1(L,C)

q = IntersectLineCircle2(L,C)

K = Circle(p,q)

R = Circle(q,p)

d = IntersectCircles1(K,R)

e = IntersectCircles2(K,R)

return Line(d,e)

}

Lemma 5.40 (Uniform construction of perpendiculars) Let Perp(x, L) be
defined as in Definition 5.39. For every point x and line L, Perp(x, L) is defined,
and Perp(x, L) is perpendicular to L, and x lies on Perp(x, L).

Remark. The important point here is that no case distinction is required as to
whether x is or is not on L; that is, there is no distinction in this construction
between dropped perpendiculars and erected perpendiculars. That is good,
since constructively we cannot decide if a given point x is or is not on a given
line, yet we still need to be able to project x onto the line.

Proof. We plan to construct two points p and q on line L such that the perpen-
dicular bisector of pq will be the desired line; thus we must have p 6= q even if
x is on L, and whether or not x = a or x = b. We can get such points p and q
if we can draw a circle with center x, whose radius r is “large enough.” It will
suffice if we take r to be the length of ax plus the length of ab. Since a 6= b,
that will be a nonzero radius, and since it is more than ax, the circle with that
radius will meet L twice, in points p and q. Then we just bisect segment pq
by an ordinary method, drawing circles with centers p and q that pass through
each other’s centers.

Formally, we go through the script defining Perp(x, L) and show that the
term on the right of each line is defined. In line 1, Circle3 (b, x, a) is defined
because Circle3 is everywhere defined. Since the center of that circle is b and b
lies on L, b is inside that circle, so by the line-circle continuity axiom, c in line 4
is defined. Circle C in line 5 is defined since Circle3 is everywhere defined. To
show that p and q in lines 5 and 6 are defined and distinct, we must show that
L has a point strictly inside C. That point is a, as we shall prove. According to
the definition of IntersectLineCircle2 , the intersection points of L and Q occur
in the same order on L = Line (a, b) as a and b. That implies that c occurs on
the opposite side of b from a, or in other words, B(a, b, c). By the definition of
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Figure 9: M = Perp(x, L)) is constructed perpendicular to L without a case
distinction whether x is on L or not. Note bc = xa so the radius ac of C is long
enough to meet L twice.

< we then have bc < ac. Since c lies on Q by construction, we have bc = ax.
Hence ax < ac. Then since the radius of C is ac, and its center is x, a is strictly
inside C, as claimed.

Hence points p and q in lines 4 and 5 of the script are defined. By Lemma 5.4,
p 6= q. ThenK and R in the next lines of the script are distinct circles, so d and e
are defined. Line (d, e) is the perpendicular bisector of segment pq, which exists
by Lemma 5.2; the proof of that lemma provides the explicit term mentioned in
the script for constructing Line (d, e). That completes the proof of the lemma.

5.6 Uniform projection and parallel

The construction Project(p, L) takes a point p and line L and produces a point q
on L such that p lies on the perpendicular to L at q. The well-known Euclidean
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construction for the projection applies only if p is known not to be on L. To
define Project using that construction, we would require a test-for-incidence that
allows us to test whether point p is on line L or not. However, we can define
uniform projection using the uniform perpendicular. Namely, the projection of
p on L is given by a ruler-and-compass construction term Project(p, L), giving
the foot of the uniform perpendicular.

Lemma 5.41 We can define a construction Para such that, for any line L and
any point p (which may or may not be on L), Para(p, L) passes through p, and if
p is not on L then Para(p, L) is parallel to L, while if p is on L, then Para(p, L)
has the same points as L.

Proof. The definition of Para is

Para(p, L) = Perp(p,Perp(p, L)).

In words: First find the perpendicular to L passing through P . Then erect
the perpendicular to that line at P . It is a theorem of neutral geometry that
two lines with a common perpendicular are parallel. Since Perp is everywhere
defined, regardless of whether p is or is not on L, the same is true of Para. That
completes the proof of the lemma.

The following gives an explicit construction for extending a non-null segment
on a given end by a (possibly null) segment:

Definition 5.42

Extend (a, b, c, d) = IntersectLineCircle2 (Line (a, b),Circle3 (b, c, d))

Lemma 5.43 (Segment extension) Let x = Extend (a, b, c, d). Then

B(a, b, x) and bx = cd.

Proof. Let y be the other intersection point, namely

y = IntersectLineCircle1 (Line (a, b),Circle3 (b, d, c).

Then b is between the two intersection points x and y. Since the two intersection
points occur on Line (a, b) in the same order as a and b, y is on the same side of
b as a. Then x is on the other side of b from a, that is, B(a, b, x), which was to
be shown. The congruence bx = cd is part of the line-circle continuity axiom.
That completes the proof.

Remark. In Tarski’s axiom system, there is an axiom guaranteeing segment
extension. Line-circle continuity is regarded as a more complex axiom, only to
be added when absolutely needed.
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5.7 Midpoints

By definition, m is the midpoint of ab if T(a,m, b) and am = mb. The
case a = b is allowed in the definition. The question arises whether for ev-
ery a, b there exists a midpoint m of a, b. When a 6= b, we can use the Eu-
clidean construction (repairing Euclid’s proof using Pasch’s axiom); and when
a = b we can take m = a; but constructively, we are not allowed to con-
clude that for every a, b there exists a midpoint of ab. Indeed, the theorem
is not constructively valid, as we will now show. Let p and q be two fixed
distinct points. Suppose m(a, b) gives the midpoint of a, b for a 6= b. Then,
for a 6= b, we can erect the perpendicular L(a, b) to ab at m(a, b), and define
v(a, b) = IntersectLineCircle1 (L(a, b),Circle3 (m(a, b), p, q). Then when a ap-
proaches b by spiraling in to b, the point v(a, b) does not converge to a limit.
Hence m cannot be extended to a continuous function defined when a = b. But
any ruler-and-compass construction is continuous. Hence there is no uniform
construction of the midpoint of ab, defined whether or not a = b.

We can avoid the problem of the spiraling approach by restricting a and b
to lie on a fixed line L. Given a and b on L, we wish to construct the midpoint
of ab. Our plan is to enlarge the (possibly null) “segment” ab by extending
it the same amount in both directions on L, and then use the usual midpoint
construction to bisect the resulting non-null segment. The problem is that we
do not know the order of a and b on line L. The solution to this problem is,
intuitively, to move b to the right by ab plus one, and move a to the left the
same amount; after that, ab is a non-null segment with the same midpoint as
the original ab.

Lemma 5.44 [Uniform midpoint] There is a construction m(a, b, L) such that
for all a and b on line L, m(a, b, L) is a point x on L such that ax = xb.

Remark. Then Perp(x, L) is the perpendicular bisector of ab when a 6= b, and
is perpendicular to L in any case.

Proof. Since every line is given by two points, we have L = Line (p, q) for some
points p and q with p 6= q. Think of p as left of q, and think of the length of pq
as “one”.

Here is a construction script for the midpoint of ab, given that a and b are
on Line (p, q):

Point m(Point a,Point b, Point p, Point q){

L = Line(p,q)

u = IntersectLineCircle2(L,Circle3(b,p,q))

B = IntersectLineCircle2(L,Circle3(u,a,b))

v = IntersectLineCircle1(L,Circle3(a,p,q))

A = IntersectLineCircle1(L,Circle3(v,a,b))

x = Midpoint(A,B)

return x

}
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Recall the predicate SameOrder (p, q, s, t) from Section 3.1, which says that
p, q occur on line L in the same order as s, t do. Let us say “s is left of t” to
mean SameOrder (p, q, s, t). Let us say “s is to the left of t by more than ef” to
mean that s is to the left of t and there is a proper subsegment of st congruent
to ef . Because of the rules for distinguishing the two intersection points of a
line and circle, u is to the right of b and ub = pq and B is to the right of and
Bu = ab, so B is to the right of b by more than ab. Similarly, v is to the left
of a and av = pq and A is to the left of v and Av = ab, so A is to the left of a
by more than ab. We claim A 6= B. Suppose A = B. Then a is to the right of
B by more than ab, and since B is to the right of b by more than ab, it follows
that a is to the right of b by more than twice ab, which is impossible. Hence, as
claimed, A 6= B. Then the Euclidean construction of the midpoint x of AB in
the last line is defined.

We must show ax = bx. By the stability of betweenness and equality, we
may argue by cases according as a = b, or a is to the left of b or to the right.
We omit the details. That completes the proof.

6 The parallel postulate

We will introduce three versions of the parallel postulate: Euclid’s own version
(Euclid 5), which says that under certain conditions, two lines will meet in a
point; a version we call the strong parallel postulate, which weakens Euclid’s
conditions for the two lines to meet; and Playfair’s version, which says two
parallels to the same line through the same point must coincide (and makes no
assertion at all about the existence of an intersection point). We then start to
consider the relations of implication between these versions (relative to neutral
constructive geometry) and finally draw some consequences of the strong parallel
postulate. Since our independence results will be obtained using the theory of
Euclidean fields, the exact axiomatization of neutral constructive geometry will
not be important in this paper; but a specific axiomatization is given in [6].

6.1 Alternate interior angles

In connection with parallel lines, the following terminology is traditional: If L
and K are two lines, and p lies on L and q lies on K but not on L, then pq
is a transversal of L and K. Then Line (p, q) makes four angles with L and
four angles with K; certain pairs of them are called alternate interior angles or
interior angles on the same side of the transversal. In the formal theories of
constructive geometry given in [3, 6], there is no primitive concept of “angle”;
angles are treated as triples of points, and angle congruence is a defined concept;
that is also true of Tarski’s classical theories of geometry. In this paper, we use
angles informally, but we avoid them in the statements of theorems. In the next
section we will discuss Euclid’s parallel postulate, and we will need to express it
without mentioning angles directly. We therefore discuss how to do that now.
Angle congruence is defined in terms of triangle congruence, which is in turned
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defined by the SSS criterion: the three sides are pairwise congruent.
We will now unwind these definitions to express the concept of alternate

interior angles being equal, without mentioning angles. The following definition
is illustrated in Fig. 10.
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Figure 10: Transversal pq makes alternate interior angles equal with L and K,
if pt = tq and rt = st.

Definition 6.1 “pq makes alternate interior angles equal with K and
L”, written AIE(p, q, L,K), means

on (p,K) ∧ on (q, L) ∧ ¬on (q,K) ∧ p 6= q

∧ ∃r, s, t (on(r,K) ∧ on (s, L) ∧B(r, t, s) ∧B(p, t, q) ∧ r 6= p ∧ q 6= s

∧ pt = qt ∧ rt = st)

This can also be expressed as “K and L make alternate interior angles
equal with pq”.

The reason for requiring B(r, t, s) is that r and s need to be on opposite
sides of Line (p, q) in order that the angles rpt and sqt are alternate interior
angles. At the cost of introducing two more points into the definition, we could
have made it easier to verify; any two congruent triangles with those angles as a
vertex could replace rpt and sqt, as illustrated in Fig. 11. As the theory of angle
congruence in [28] (Chapter 11) shows (and one can easily check informally),
if we can produce x and y so that Fig. 11 is correct, then AIE(p, q, L,K) will
hold.

A careful reader might have noticed that we omitted the congruence rp = qs
in the definition, which would be required to express the congruence of the
shaded triangles according to the definition of triangle congruence. This was
not an accident. In case the lines K and L do not coincide (as shown in the
diagram), the triangles are congruent anyway by SAS, since the angles at t are
vertical angles. The condition is meant to be used only when lines K and L do
not coincide, and the condition ¬on(q, L) guarantees that it fails when they do
coincide.

On the other hand, instead of introducing more points using ∃, we can get
rid of ∃ entirely by constructing specific points r, s, and t, at least when the
two lines do not coincide.

r = IntersectLineCircle2 (K,Circle (p, α, β))
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Figure 11: Another way to say that transversal pq makes alternate interior
angles equal with L and K. The shaded triangles are congruent.

t = Midpoint (p, q)

s = IntersectLineCircle2 (Line (r, t),Circle (t, r))

These points will do for r, t, and s in AIE(p, q, L,K) if any points will do.
Midpoint (p, q) is defined in the script because L and K do not coincide. In this
way AIE(p, q, L,K) can be expressed by a quantifier-free formula.

That alternate interior angles have something to do with Euclid’s parallel
postulate is hinted at by the following lemma:

Lemma 6.2 Let K and L be two lines, with point p on K but not on L, and let
traversal pq make equal alternate interior angles with K and L. Then K and L
are parallel.

Proof. Refer to Fig. 10 for an illustration; let points p, r, s, q, and t be as
shown in the figure with triangle prt congruent to triangle qst. Suppose, for
proof by contradiction, that K and L meet in point x. (Since Parallel is defined
as not meeting, a constructive proof of it consists in deriving a contradiction.)
Consider triangle pqx. If x is on Ray (p, r), then the angles of triangle pqx are
pxq, qpx, and pqx. The two interior angles on the same side of pq make two
right angles together, but in neutral geometry one can prove that two angles
of a triangle are less than two right angles. (This is Euclid I.17, proved in two
lines from Euclid I.16, which is Lemma 5.36.) This contradiction shows that K
and L cannot meet in a point x on Ray (p, r). Similarly, they cannot meet in a
point x on Ray (r, p). But, if they meet in a point x at all, then

¬¬ (B(x, p, r) ∨ x = p ∨B(p, x, r) ∨ x = r ∨B(p, r, x)).

In each of those cases, x lies on Ray (r, p) or on Ray (p, r); so we have a contra-
diction, and K cannot meet L at all. Hence K is parallel to L as claimed. That
completes the proof of the lemma.

6.2 Euclid’s parallel postulate

Euclid’s postulate 5 is
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If a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if
produced indefinitely, meet on that side on which are the angles less
than the two right angles.

We consider the formal expression of Euclid’s parallel axiom. Let L and M
be two straight lines, and let pq be the “straight line falling on” L and M , with
p on M and q on L. We think that what Euclid meant by “makes the interior
angles on the same side less than two right angles” was that, if K is another line
K through p, making the interior angles with pq equal to two right angles, then
M would lie in the interior of one of those interior angles (see Fig. 12). For K
to make the interior angles on the same side of pq equal to two right angles, is
the same as for K to make the alternate interior angles equal. In the previous
section we discussed the formal expression of that concept. Once we use this
criterion to express that L and K make interior angles on the same side equal
to two right angles, we can then use three more points to “witness” that one
ray of line M emanating from p lies in the interior of one of the interior angles
made by M . Fig. 12 illustrates the situation.
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Figure 12: Euclid 5: M and L must meet on the right side, provided B(q, a, r)
and pq makes alternate interior angles equal with K and L.

Here is a formal version of Euclid’s parallel axiom, using the formula AIE
from the previous section to express that pq makes alternate interior angles
equal with K and L:

on(p,K) ∧ on(p,M) ∧ on(a,M) ∧ on(r,K) ∧ on(q, L) ∧B(q, a, r)
∧¬on(p, L) ∧ AIE(p, q,K, L) → B(p, a, IntersectLines (L,M))

The logical axioms of LPT make it superfluous to state in the conclusion that
IntersectLines (L,M) is defined. That follows automatically.

We now write out Euclid 5 in a more primitive syntax, eliminating the
defined concept AIE. The result, illustrated in Fig. 13, is the official version of
Euclid 5; that is, when we refer to Euclid 5 in subsequent sections, this is what
we mean.

B(q, a, r) ∧B(p, t, q) ∧B(s, t, r) ∧ pt = qt ∧ p 6= r (Euclid 5)
∧ rt = st ∧ L = Line (s, q) ∧M = Line (p, a) ∧ ¬ on (p, L)
→ B(p, a, IntersectLines (L,M)) ∧B(s, q, IntersectLines (Line (L,M)))
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Figure 13: Euclid 5: M and L must meet on the right side, provided B(q, a, r)
and pt = qt and rt = st.

6.3 The rigorous use of Euclid 5

Each of Hilbert and Tarski replaced Euclid’s parallel postulate with some dif-
ferent parallel postulate. Why did they do that? We can only guess at the
motivations of Hilbert and Tarski, but one reason may have been the impre-
cision of Euclid’s version. Euclid mentions angles “on the same side” of the
transversal, without ever defining “side”.

We choose to adhere to Euclid’s formulation (after improving its precision),
in order to investigate the constructive relations between the various forms of
the parallel postulate. Our version of Euclid 5 is valid in 3-space, since the
“witnessing points” it requires will ensure that the three lines lie in the same
plane. Euclid’s own formulation either fails or is ambiguous in 3-space. Two
skew lines can make interior angles equal, so unless “same side” implies “in the
same plane”, Euclid 5 will fail. In addition to this problem, it can be surprisingly
tricky to use Euclid 5 rigorously. In this section we illustrate how that is done.

The following lemma furnishes an example of the use of our version of Eu-
clid 5. The statement of the lemma is simple and fundamental; its proof is
surprisingly intricate and technical. Part of the point of exhibiting this proof
is to show how much Euclid left unsaid; these difficulties will arise with any
attempt to formalize Euclid using modern logical languages. It is worth noting
that neither Hilbert nor Tarski in published work discussed the propositions of
Euclid (as opposed to the fundamental notions and postulates): congruence of
angles comes only in chapter 11 (out of 16) of [28], Part I, and circles are never
mentioned. In particular the difficulties in this section have nothing to do with
constructivity; they arise from making precise the many things Euclid left out.

Lemma 6.3 Let M and L be lines in the same plane, and let point p be on M
but not on L. Suppose ap ⊥ M and pf ⊥ L, with a and f on L and a 6= f .
Then there exists a point e on M with B(e, f, a).

Remarks. The rest of the hypotheses do not guarantee that M and L lie in the
same plane, and if they are not, then the lemma is false. So the hypothesis that
mentions “plane” is really necessary. We first give a proof in Euclid’s style, and
then give a more rigorous proof. We would like to emphasize that the difficulties
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Figure 14: Given p, f , a, M , and L, with M ⊥ pa, to construct e by Euclid 5.

in making this proof rigorous have absolutely nothing to do with constructivity.
It is simpler: Euclid is not rigorous, and neither Hilbert nor Tarski has explicitly
shown how to work rigorously with Euclid 5. Each of them replaced Euclid’s
parallel postulate with a different parallel postulate instead.

“Proof” in Euclid’s style. The interior angles made by traversal pa of M and L
are together less than two right angles, because the angle at p is a right angle,
and the angle at a is less than a right angle, since pfa is a triangle with a right
angle at p. Therefore M meets L at a point e “on the side of pq on which
angle fap lies”. Presumably that means B(e, f, a), although since Euclid did
not define “side”, so we have to say “presumably.” That completes the “proof.”
We never used the hypothesis that M and L lie in the same plane, but the
theorem fails without it, so probably it is an unstated hypothesis of Euclid 5.
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Figure 15: Given p, f , a, M , and L, to construct e by Euclid 5, first construct
m and c. Then we need to construct point z using the hypotheses that M lies
in a plane with L and p and M ⊥ pa.

Proof. Now, we give a rigorous proof from our version of Euclid 5. Let m be
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the midpoint of pf , and let c be the reflection of a in m, so B(c,m, a) and
cm = am, as shown in Fig. 15. To apply Euclid 5, we need a point z in that
figure; indeed as soon as we have a point z on M between c and a, Euclid 5
gives us the existence of the desired intersection point e of M and L. Clearly
the existence of point z relies on the hypothesis that M and L lie in the same
plane. All that remains to fix the Euclidean proof is to prove the existence of z.
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Figure 16: Construct m, c, and q. Then pqaf is a rectangle, whose diagonals
intersect in x. Then b exists by inner Pasch, and z by Pasch’s theorem applied
to triangle cbq.

To construct z turns out to be not quite trivial; please refer to Fig. 16. Let q be
the reflection of c in p. Then qpfa has right angles at p and f , and pq = fa since
both are equal to cp. We claim it is a Saccheri quadrilateral; it only remains
to prove that it lies in a plane. L and p lie in the plane pfa, and the points
c and q constructed by reflection then lie in that same plane. Then qpfa is a
Saccheri quadrilateral, as claimed. By Lemma 5.23, qpfa is a parallelogram.
Hence, by Lemma 5.26, the diagonals intersect. Let the intersection point be x.
ThenB(f, x, q) andB(p, x, a). Apply inner Pasch to the five-point configuration
axpfm; we obtain point b such that B(f, b, x) and B(m, b, a).

Now we claim that M does not meet bq. Suppose that M does meet bq in
a point r. Then angle xpr is a right angle, since x lies on pa and r lies on M ,
and pa ⊥ M . But this right angle is properly contained in the right angle fpq,
since both x and r lie between f and q. That contradicts Lemma 5.38. Hence
(as claimed) M does not meet bq.

M meets side cq of triangle cqb at p, and does not meet side bq. Moreover c
does not lie on M , since if it did, pa and pf would both be perpendicular to M
at p, contradicting Lemma 5.11. Also a does not lie on M , since ap ⊥M . Now
we finally use the hypothesis that M and L lie in the same plane: we want to
apply Pasch’s theorem to line M and triangle cqb. We can do that because M
lies in the plane of that triangle. By Pasch’s theorem (Theorem 5.1), M meets
cb in a point z. That is the point we were trying to construct.

Now the hypotheses of Euclid 5 are fulfilled, with z and a substituted for
a and q in Euclid 5. Hence the intersection point e of M and L exists, and
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satisfies B(e, f, a) as claimed. That completes the proof of the lemma.

The following lemma furnishes another example of the rigorous use of Euclid
5. This lemma will be used in the proof that Euclid 5 implies a form of triangle
circumscription, which is crucial for verifying the definability of multiplication.
The proof of the lemma is more difficult than it at first appears, and illustrates
once again the necessity of constructing auxiliary points to justify statements
about angles that Euclid would have taken for granted. These difficulties have
nothing to do with constructivity but simply arise from treating Euclid with
modern rigor.

Lemma 6.4 Let points a and x lie on line L, and let point p not lie on line L.
Let K be perpendicular to L at x and M perpendicular to ap at p. Let J be the
perpendicular to L through p, meeting L at f . Suppose f and x lie on the same
ray of L emanating from f ; that is, ¬B(a, f, x) and for some point ℓ on L, we
have ℓ 6= f and T(ℓ, f, a) and T(ℓ, f, x). Then (assuming Euclid 5) M and K
meet.

Remark. Thus a can possibly lie on J (in which caseM is parallel to L). Nothing
is said about the order of a and x on L, except that they do not lie on opposite
sides of J . The point ℓ specifies on which side of f the points a and x lie; it is
necessary since we might have a = x = f . Fig. 17 illustrates the case when a is
to the left of x. Point ℓ is not shown; it would be to the left of f .
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Figure 17: Euclid 5 implies M meets K, whether or not x = a. Left, attempted
traditional proof. Right, rigorous proof requires point r to exist. It is found by
inner Pasch after constructing q by the plane separation theorem.

Proof. Refer to Fig. 17. The figure shows a to the left of x, but that is not
guaranteed by the hypotheses. We claim that we can assume without loss of
generality that T(f, a, x). To do so, we replace line K by another line K ′

perpendicular to L and meeting L at a point x′ to the right of both a and x.
Now, if we prove the lemma under the extra assumption that x lies to the right
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of a, we can apply it to show that M meets L′ in some point e′. Then J , K,
and K ′ are three parallel lines, all perpendicular to L, and M meets the outer
two, so according to Lemma 5.33, M and K meet, as desired. That shows that
we may assume T(f, a, x), as illustrated.

We wish to apply Euclid 5 to show that M meets K, using the transversal
px, as shown in the left part of the figure. Intuitively, angle Kxp is less than
right angle Kxa, and angle Mpx is less than or equal to right angle Mpa, so
the corresponding interior angles made by transversal px are less than two right
angles.

That “proof” is insufficiently rigorous. We must use the official, points-
only version of Euclid 5, which makes no mention of angles. That requires the
construction of a point to witness the fact that traversal pxmakes corresponding
angles with M and K less than two right angles. The construction of that point
is not accomplished in one step; we need to appeal to several theorems, including
the plane separation theorem and the exterior angle theorem. The details follow.

First, we claim M does not meet segment fx. Suppose that M meets fx in
a point y. Then y 6= p, since p does not lie on L. Moreover y 6= a, since pa ⊥M .
Therefore pay is a triangle. Triangle pay has a right angle at p, since y lies onM ,
and ap ⊥M . By Lemma 5.36, the remaining angles of pay are each less than a
right angle. Since we are trying to reach a contradiction, we can argue by cases.
If a = f then triangle pay has two right angles, contradiction. Hence a 6= f . If
B(a, y, x) then angle pay is an exterior angle of triangle pfa, and hence angle pay
is greater than the right angle pfa, contradiction. If B(f, y, a) then angle pya is
an exterior angle of triangle pfy, which has a right angle at f , so angle pya is
more than a right angle, contradiction. But ifM meets fx then, classically, one
of these cases must hold. Since all of them are contradictory, we have reached
a contradiction, even constructively, by the stability of betweenness. We have
therefore proved that M does not meet fx.

By Lemma 5.30, f and x are on the same side of M . Let b be the reflection
of f in p. Then b is on the opposite side of M from f . By Lemma 5.31, b is on
the opposite side of M from x. Hence bx meets M in a point q. Let m be the
midpoint of px, and let c be the reflection of b in m. We claim that c lies on
K. We have bm = mc and pm = mx, by construction of c and m respectively.
Angles bmp and xmc are vertical angles, so by SAS, triangles bpm and cxm are
congruent. Hence cx and J make alternate interior angles equal with traversal
px. Hence cx is parallel to J . Now cx and K are both parallel to J through x.
By Playfair (and hence by Euclid 5), Line (c, x) and K coincide. Hence c lies
on K.

Now we apply inner Pasch to the five-point configuration bqxpm. The result
is a point r such that B(b, r,m) and B(p, r, q). This point r is the required
witness that lines M and K make corresponding angles less than two right
angles with traversal px. That is, we can now apply Euclid 5 with the variables
(L, a, p, r, q, s) in Euclid 5 replaced by (K, r, p, b, x, c) here. The conclusion is
that M meets K in a point e. That completes the proof.
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6.4 Playfair’s axiom

Euclid did not give his Postulate 5 the name “parallel postulate” (or any other
name). A case can be made that it is more of a “triangle construction postulate.”
Be that as it may, we now define Parallel (L,K) for lines L and K to mean that
the lines do not meet:

Definition 6.5 In plane geometry:

Parallel (L,K) ↔ ∀x¬ (on(x, L) ∧ on(x,K)).

This definition assumes we are working in plane geometry; in an axiomatic
setting there should be some “dimension axiom” present, or else the definition
needs to require as well that L and K lie in the same plane. That is, skew lines
in space are not considered parallel.

To express that two lines do not meet requires a universal quantifier over
points. Compare the given definition to the formula

¬ IntersectLines (K,L) ↓ .

If L and K are parallel, then IntersectLines (K,L) is undefined; but it will also
be undefined if L andK coincide. The relation defined by ¬IntersectLines (L,K) ↓
can be referred to informally as “weakly parallel”; classically it means “parallel
or coincident”, but constructively, we generally cannot make the decision of two
weakly parallel lines whether they are coincident or parallel. Instead, weakly
parallel means “not not (parallel or coincident).” (Consider, for example, the
x-axis and the line y = a; these lines are parallel if a 6= 0 and coincident if
y = 0, so if we could decide whether two weakly parallel lines are coincident or
parallel, we could decide y = 0 ∨ y 6= 0.) The concept “weakly parallel” also
requires a universal quantifier if expressed in a language that does not use the
logic of partial terms.

Most modern treatments of geometry formulate the parallel axiom in a dif-
ferent way:

If two lines K and M are parallel to L through point p, then K =M .

We call this the “Playfair’s axiom”, or for short just “Playfair”, after John
Playfair, who published it in 1795, although (according to Greenberg [15], p.
19) it was referred to by Proclus. It is also known as “Hilbert’s parallel axiom”,
since Hilbert used it in his axiomatization of geometry [20]. Since we can always
construct one parallel, it would be equivalent to assert that, given a line L and
a point p not on L, there exists exactly one parallel to L through p.

The formal expression of Playfair’s postulate is as follows:

Parallel (K,L) ∧ Parallel (M,L) (Playfair)
∧on(p,K) ∧ on(p,M) → on(q,K)↔on(q,M)

There is an ambiguity in this formulation, concerning Parallel. If we intend
to use this axiom only in the presence of an upper dimension axiom, then we
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Figure 18: Playfair: M and L can’t fail to meet.

can take Parallel to mean “not meeting”. But if we wish to use Playfair in the
absence of a dimension axiom, then Parallel must mean “not meeting, and lying
in the same plane.” In that case, Parallel becomes an existential statement,
requiring the existence of five witnessing points to the coplanarity of the lines.
But since Parallel occurs only on the left of Playfair’s axiom, Playfair’s axiom
itself is universal, which for an axiom is the same as quantifier-free. In particular,
Playfair’s axiom makes no existential assertion at all. It is an empirical fact
(and formally, a consequence of the double-negation interpretation in [6]) that
Playfair’s axiom suffices to prove all the consequences of the parallel postulate
that do not themselves make existential assertions.

Lemma 6.6 Playfair’s axiom implies (in neutral constructive geometry) that
parallel lines make equal alternate interior angles with any transversal, and equal
corresponding angles.

Proof. Let L and K be parallel lines, and let pq be a transversal, with p on K
and q on L and p 6= q. Let s be any point on L not equal to q. Let t be the
midpoint of pq, and extend segment st to point r with B(s, t, r) and tr = ts.
Let M = Line (p, r). Then by Definition 6.1, pq makes equal alternate interior
angles with L and M .

If p does not lie on L, then by Lemma 6.2, M and L are parallel. But then
M and K are two lines parallel to L passing through p. Hence by Playfair’s
axiom, they coincide. Hence pq makes alternate interior angles with L and K.
On the other hand, if p does lie on L, then M and K coincide and we are
finished in that case too. But by the stability of the incidence relation, we have
¬¬ (on (p, L) ∨ ¬on (p, L)), so it is constructively legal to argue by these two
cases. The equality of corresponding angles follows from the equality of vertical
angles. That completes the proof.

Lemma 6.7 Let M and K be weakly parallel lines, and let L be perpendicular
to M and meet K. Assuming Playfair’s axiom, L is also perpendicular to K.

Proof. By the stability of “perpendicular” (Lemma 5.7), we may argue by cases
according asM andK coincide or not. If they coincide there is nothing to prove.
If M and K do not coincide, then they are parallel. Let L be perpendicular to
M at p and meet K at q. The perpendicular to L at q is parallel to M , so by

57



Playfair’s axiom, it coincides with K. Therefore K is perpendicular to L. That
completes the proof.

Lemma 6.8 Assuming Playfair’s axiom, weak parallelism is transitive. That
is, if L and M are weakly parallel and M and K are weakly parallel, then L and
K are weakly parallel.

Proof. Suppose L and M are weakly parallel and M and K are weakly parallel,
and suppose that IntersectLines (L,K) ↓. We must derive a contradiction to
conclude that L and K are weakly parallel. Let p be the intersection point of
L and K. By Lemma 2.5, we may argue by cases to prove a contradiction.

Case 1, p lies on M . Then M and L coincide, since M and L are weakly
parallel; in that case L and K are weakly parallel since by hypothesis M and
K are weakly parallel. That disposes of Case 1.

Case 2, p does not lie on M . Then M and L are two parallels to K through
p, so by Playfair, M and L coincide. Then L and K are weakly parallel, since
by hypothesis M and K are weakly parallel. That completes the proof.

Lemma 6.9 Let lines M and K be weakly parallel, and let point p be given. Let
lines U and V containing p be perpendicular to M and K respectively. Then,
assuming Playfair, lines U and V coincide.

Proof. Suppose first that U meets K. Then by Lemma 6.7, U ⊥ K, and hence
U and V coincide, as both are perpendiculars to K through p. Similarly, if V
meets M , U and V coincide.

Now we will prove that U and V coincide. Let q be a point on U ; we must
show q is on V . By Lemma 2.5, we may prove that by contradiction. Suppose,
for proof by contradiction, that q is not on V . Then, as shown in the previous
paragraph, U does not meet K.

That U does not meet K means that U is parallel to K; since K is weakly
parallel to M by hypothesis, Lemma 6.8 lets us conclude (using Playfair) that
U is weakly parallel to M . But U meetsM and does not coincide with M , since
U ⊥M . That contradiction completes the proof.

Lemma 6.10 (Euclid I.32) Playfair’s axiom implies that an exterior angle of
a triangle is equal to the sum of the interior and opposite angles.

Remark. The theorem asserts that the exterior angle can be decomposed into
two angles, each congruent to one of the opposite interior angles. Addition of
angles has not been defined (either here or in Euclid).

Proof. We have already discussed the closely related Euclid I.16 in Lemma 5.36.
Please refer to Fig. 8. Euclid’s construction provides that ae = ec and be = ef ,
so triangles abe and cfe are congruent, making bac and acf alternate interior
angles, and cf parallel to ba.

Playfair’s axiom implies that parallel lines make equal corresponding angles
with any transversal, by Lemma 6.6. Hence angle abc is congruent to angle
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fcd. But now, the exterior angle bcd is seen to be composed of two angles, each
congruent to one of the interior and opposite angles. That completes the proof.

Remark. Euclid III.20, that an angle inscribed in a semicircle is a right angle,
follows from I.32 in ECG just as it does in Euclid.

6.5 Euclid 5 implies Playfair’s axiom

Theorem 6.11 Euclid’s Postulate 5 implies Playfair’s axiom in neutral con-
structive geometry.

Proof. Let M and K be two parallels to L passing through p; we must show
that M and K coincide. Without loss of generality we can assume that K is
perpendicular to the perpendicular H to L passing through p. Then H makes
right angles with K and with L. Since M does not meet L, then by Euclid 5,
M does not make less than a right angle on either side of H . Thus we have two
angles, together equal to two right angles, and neither is less than a right angle.
Therefore neither is greater than a right angle; hence each is a right angle, and
M is perpendicular to H at p. By the uniqueness of the erected perpendicular
(Lemma 5.11), M coincides with K as desired.

Remark. We defined lines to be parallel if they lie in the same plane and do
not meet. Without the coplanar part of the definition of “parallel”, Playfair’s
axiom would fail in 3-space, while Euclid 5 would hold. The proof at hand all
points lie in the same plane; that enters through the application of Lemma 5.11
(uniqueness of the erected perpendicular), which is essentially an upper dimen-
sion axiom.

6.6 The strong parallel postulate

We make two changes in Euclid 5 to get what we call the strong parallel postu-
late:

• We change the hypothesis B(q, a, r) in Euclid’s axiom to ¬on(a,K). In
other words, we require that the two interior angles on the same side of
the transversal do not make exactly two right angles, instead of requiring
that they make less than two right angles.

• We change the conclusion to state only thatM meets L, without specifying
on which side of the transversal pq the intersection lies.
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Figure 19: Strong Parallel Postulate: M and Lmust meet (somewhere) provided
a is not on K and pt = qt and rt = st.

Here is the strong parallel postulate.

B(p, t, q) ∧B(s, t, r) (Strong Parallel Postulate, SPP)

∧¬on(p, L) ∧ ¬ on (a,K) ∧ pt = qt ∧ rt = st ∧ p 6= r
∧L = Line (s, q) ∧ M = Line (p, a) ∧K = Line (p, r)

→ on(IntersectLines (L,M), L) ∧ on(IntersectLines (L,M),M)

The strong parallel postulate differs from Euclid’s version in that we are not
required to know in what direction M passes through P ; but also the conclusion
is weaker, in that it does not specify where M must meet L. In other words,
the betweenness hypothesis of Euclid 5 is removed, and so is the betweenness
conclusion. Since both the hypothesis and conclusion have been changed, it is
not immediate whether this new postulate is stronger the Euclid 5, or equivalent,
or possibly even weaker, but it turns out to be stronger–hence the name.

The strong parallel postulate fails in 3-space, because a might not even lie in
the same plane with K and L. Hence, the axiom should be used (in this form)
only in the presence of other axioms guaranteeing that space is two-dimensional.
We could, of course, also require that a lie on some line passing through both
K and L, but since we are only concerned with plane geometry in this paper,
we have avoided this complication.

The following lemma separates the strong parallel postulate into two parts:
Playfair, which is a negative statement about parallelism, together with an
assertion that two lines that can’t fail to meet, must in fact meet:

Lemma 6.12 [Stability of line intersection] The strong parallel postulate is
equivalent to Playfair’s axiom together with “if L and M are non-coincident,
non-parallel lines, then M meets L.”

Remark. The name of the lemma arises from the fact that, expressed in symbols,
the lemma says ¬¬t ↓ → t ↓, where t = IntersectLines (L,M).

Proof. Assume the strong parallel postulate, and assume that L and M are
non-coincident, non-parallel lines. Our first goal is to prove the existence of a
point p on M but not on L. Since each line is given by two points, we can find
two points s and t on M . By the uniform perpendicular construction, we can
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construct line J through s perpendicular to L. Let u be the point of intersection
of J with L. Let ab be a segment long than any of su for example obtained by
extending the non-null segment st by su. Construct a point q on J such that
qs = ab, and a line L′ through q parallel to L. Then s lies on M but not on
L′, and M is not perpendicular to J . Applying the strong parallel postulate,
we can find a point p where M meets L′. That point lies on M , but not on L,
since L′ is parallel to L.

Let J be the perpendicular from p to L, and let K be the perpendicular to
J at p. Let M be a line through p that does not coincide with K. Let a be a
point on M different from p. Then a does not lie on K, since if it did, M would
coincide with K and hence be parallel to L. By the strong parallel postulate,
M meets L as claimed. That proves both Playfair and the quoted assertion in
the theorem.

Conversely, assume Playfair and the quoted assertion, and assume the hy-
potheses of the strong parallel axiom. Then by Playfair, M is not parallel to L,
and by the quoted assertion, M meets L, which is the conclusion of the strong
parallel axiom. That completes the proof.

6.7 The strong parallel postulate proves Euclid 5

The strong parallel postulate has a weaker conclusion than Euclid 5, because it
does not specify on which side of P the intersection point will lie. On the other
hand, it also has a weaker hypothesis than Euclid 5, so its exact relationship
to Euclid 5 is not immediately clear. One direction is settled by the following
theorem:

Theorem 6.13 The strong parallel postulate implies Euclid’s Postulate 5 in
neutral constructive geometry.

Proof. Suppose the hypotheses of Euclid 5 hold, as shown in Fig. 12. Specifically,
let L be a line, p a point not on L, K parallel to L through p, M another line
through P , q a point on L, a a point on M not on pq, and r the intersection of
qa with K. Suppose that the interior angles made by L, M , and pq make less
than two right angles, which formally means that a is between q and r. By the
strong parallel postulate,M does meet L at some point e (indicated by the open
circle in Fig. 12). It remains to show that a is between p and e. By Markov’s
principle for betweenness, it suffices to prove that p is not between e and a, and
e is not between p and a. Suppose first that p is between e and a. Then e is
on the opposite side of line K from a. Segment eq lies on line L, and line L
does not meet K, so segment eq does not meet K. Hence by Lemma 5.30, e
and q are on the same side of line K. Since e is on the opposite side of K from
a, it follows that a and q are on opposite sides of line K. Hence point r, the
intersection of aq with K, must be between a and q. But that contradicts the
fact that a is between q and r. Hence the assumption that p is between e and
a has led to a contradiction. Now suppose instead that e is between p and a.
Then a and p are on opposite sides of L.
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But rp does not meet L, since rp lies on K, and K does not meet L. Hence
by Lemma 5.30, r and p are on the same side of line L. Hence a and r are on
opposite sides of L. But then the intersection point of ar and L, which is q, lies
between a and e, contradicting the fact that a lies between q and r. Hence the
assumption that e is between p and a has also led to a contradiction. Hence,
as noted already, by Markov’s principle for betweenness, a is between p and
e. That completes the proof of Euclid’s Postulate 5 from the strong parallel
postulate.

6.8 Triangle circumscription

The triangle circumscription principle says, classically, that any three non-
collinear points lie on a circle. It is classically equivalent to the parallel postulate.
In this section we show that it is constructively equivalent to the strong parallel
postulate, so we could have taken it as an axiom in place of the strong parallel
postulate. The name is appropriate, since one can prove (even constructively)
that a line intersects a circle in at most two points, and from that it is not dif-
ficult to prove Euclid III.1, that a chord of a circle lies inside the circle. Hence,
once a circle passes through the vertices of a triangle, the whole triangle lies
inside the circle.

The triangle circumscription principle is a convenient form of the parallel
postulate for use in a theory with only point variables, since it can be naturally
stated without mentioning circles or lines: given three non-collinear points, there
is a fourth point equidistant from all three. According to [29], p. 190, Szmielew
took it for her parallel axiom in her influential manuscript that formed the basis
for Part I of [28], but Schwabhäuser adopted another form of the parallel axiom
for publication.

The triangle circumscription principle makes sense constructively, but con-
structively there are several versions of it to consider. One of them is non-
constructive, but the others turn out to be equivalent, though that is not a
priori clear. These principles are not just a curiosity: we must study them be-
cause of their intimate connection to the geometric definition of multiplication.

First, the non-constructive version is this: Given three points a, b, and c,
there is a circle passing through all three, unless they are distinct and collinear.
The problem with this is that if b and c are close together, and about unit
distance from a, the circle through the three points does not depend continuously
on b and c as c approaches b. Hence this version is not constructively valid.

That problem can be fixed drastically by requiring a, b, and c to be three
distinct points. That we call the triangle circumscription principle; but that
version is insufficient to define multiplication. To formulate a stronger version,
we drop the requirement that a 6= b, but we require instead that a and b lie on
a fixed line L.

The strong triangle circumscription principle says that if a and b lie on L,
and c does not lie on L, then there is a point e equidistant from a, b, and c,
and if a = b then no other point of L is on the circle with center e through a,
i.e., that circle is tangent to L at a. To prove this principle constructively, the
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point e should be constructed uniformly, that is, without a case distinction as
to whether a = b or a 6= b.

The one-sided triangle circumscription principle is similar to the strong tri-
angle circumscription principle, but with an additional hypothesis about the
positions of the three points: a and b do not lie on opposite sides of the per-
pendicular W from c to L. (This corresponds to multiplication of nonnegative
numbers.)

L
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b
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b
p

b
b
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x

Figure 20: The strong parallel postulate implies strong triangle circumscription.
The center e is where non-parallel lines M and K meet.

Lemma 6.14 In neutral constructive geometry, the strong parallel postulate
implies the strong triangle circumscription principle.

Proof. Assume the strong parallel axiom; we will derive the strong triangle
circumscription principle. Suppose c is not on line L, but a and b are on line
L, as shown in Fig. 20. By Lemma 5.44, we find (by a uniform construction) a
perpendicular K to L, that bisects ab when a 6= b, and passes through a when
a = b. Let M be the perpendicular bisector of segment ac. Then M and K are
not coincident, since if they were, then ac and L would both be perpendicular
to K through a, so by Lemma 5.11, c would lie on L, contradiction. Similarly,
M and K are not parallel, since if they were parallel, then ac and L would be
perpendicular to parallel lines, and both contain a, so by Lemma 6.9, lines L and
ac would coincide, contradiction. (Lemma 6.9 requires Playfair’s axiom, but the
strong parallel postulate implies Playfair, so the lemma is applicable.) Therefore
M and K are not parallel. By the strong parallel postulate and Lemma 6.12,
lines M and K meet in a point e. That completes the proof of the lemma. Note
that the proof does not assume anything about the order of a and b on L.
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Lemma 6.15 In neutral constructive geometry, Euclid 5 implies the one-sided
triangle circumscription principle.

As in Fig. 20, we have a line L containing points a and b, and a third point
c that does not lie on L. The hypothesis of one-sided triangle circumscription
tells us that the perpendicular from c to L does not meet the closed segment
ab, and hence does not meet ax, where as shown x is the midpoint of ab, and
K is perpendicular to L at x. K and x are constructed by Lemma 5.44, so they
are defined even if a = b. As in the previous proof, let M be the perpendicular
bisector of ac. Now let J be the perpendicular to L passing through p. Let f
be the foot of J on L. We claim J does not meet the open segment ax (even
though we do not know anything about the order of a and x on L). Under
the hypothesis of the one-sided triangle circumscription principle, the relative
positions of K and M are as shown in Fig. 20, even though we do not know
whether B(f, a, b) or B(f, b, a) or a = b.

Intuitively, what is going on here is this: the x-coordinate of J is a/2, and
the x-coordinate of K is (a + b)/2, and a/2 ≤ (a + b)/2. But we cannot argue
that way, since we need this lemma in order to define multiplication, which
comes before introducing coordinates. We must argue geometrically.

Let t be the foot of the perpendicular from c to L. By Lemma 5.25, f is the
midpoint of ta. (That lemma applies since we are allowed here to use Euclid
5, which implies Playfair.) Hence T(t, f, a). We have to prove ¬B(a, f, x).
Suppose B(a, f, x). If T(t, a, b), i.e., a is left of b in the diagram, then by the
transitivity of betweenness we have T(f, a, b), so f does not lie between a and
b, and hence not between a and x. Hence ¬T(t, a, b). Hence T(t, b, a). That is,
b is to the non-strict left of a on L, rather than as shown in the diagram. Now
we can apply Lemma 2.4: if x is the midpoint of ab, and f is the midpoint of
at, and T(t, b, a), then ¬B(a, f, x). We conclude ¬B(a, f, x), contradicting our
assumption that B(a, f, x); that contradiction proves without assumptions that
¬B(a, f, x).

That verifies the hypothesis that J does not meet ax. By Lemma 6.4, Euclid
5 implies that M and K meet. That completes the proof.

Lemma 6.16 The triangle circumscription principle implies Playfair’s axiom.

Remark. In the next lemma, we will prove that triangle circumscription proves
the strong parallel postulate, which is stronger than this lemma; but we need
this lemma to prove that one. The figure and argument used for this proof
will not work constructively to prove the stronger theorem, because this proof
requires a case distinction. The construction (see Fig. 21) assumes M is not
perpendicular to K, so the construction given does not extend continuously to
that case.

Proof. Since Playfair’s axiom contains no existential quantifiers or disjunctions,
we can argue classically. Assume the triangle circumscription principle; we will
prove Playfair. See Fig. 21 for an illustration. Suppose L is a line and p is a
point not on L. Drop a perpendicular J from p to L; let w be the foot of this
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Figure 21: Triangle circumscription classically implies Playfair. Given lines L
and M , to construct their intersection point as the center e of an appropriate
circle.

perpendicular, so pw ⊥ L at w. Let K be perpendicular to pw at p. Then K
is parallel to L. Let M be a line through p parallel to L that does not coincide
with K, as witnessed by a point r on M but not on K. We intend to show that
M meets L. (Playfair’s axiom mentions two lines through p parallel to L, and
says they must coincide; without loss of generality we can assume one of the
lines is K.) Our proof is not constructive, because it requires a case distinction
as to whether r is collinear with pw or not. If r is collinear with pw then w lies
on M and hence M meets L, so we are finished. Therefore (classically) we can
assume r is not collinear with pw. Let m be the midpoint of pw. Since p does
not lie on L, but w does lie on L, we have p 6= w and hence m 6= p. Then m
does not lie on M , since if it did, M would contain two distinct points m and p
of pw. Let t be the reflection of m in M ; since m does not lie on M , t 6= m. Let
z be the reflection of p in L; since pw ⊥ L, z lies on the the line J containing
pw. Since m 6= w, we have m 6= z.

We claim that t, m, and z are not collinear. Suppose that they are collinear.
Then t lies on J . Since t is the reflection of m in M , tm ⊥ M . Since t lies on
J , we have J ⊥ M . Then K and M are both perpendicular to J at point p.
Hence (by Lemma 5.11) K and M coincide. Then point r (which lies on M)
lies on K, contradicting the hypothesis that r is not on K. This contradiction
proves that t, m, and z are not collinear.

Since t, m, and z are not collinear, we can apply the triangle circumscription
axiom to obtain a circle containing all three; let e be the center of that circle.
Technically the axiom tells us ey = ex = ez. Let x be the midpoint of tm
(so x lies on M). Then by the definition of perpendicular, since et = em we
have pe ⊥ tm at x. But by construction of t, we have tm ⊥ rp at x. By the
uniqueness of the perpendicular to tm at x, the lines pe and rp coincide. But
Line (r, p) is M . Hence e lies on M . Similarly, we ⊥ J at w because me = ze,
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but also L ⊥ J at w by construction of J . therefore L coincides with Line (w, e),
so e lies on L. Now we have proved that e lies on both L and M , which was to
be shown. That completes the proof of the lemma.

Lemma 6.17 The triangle circumscription principle implies the strong parallel
postulate.
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Figure 22: Triangle circumscription implies the strong parallel postulate. Given
lines L and M , to construct their intersection point as the center e of an appro-
priate circle. y and z are reflections of x in M and L.

Proof. Assume the triangle circumscription principle; we will prove the strong
parallel postulate. See Fig. 22. Suppose L is a line and p is a point not on L.
Let pw be perpendicular to L at point w on L and let K ⊥ pw at p. Then K
is parallel to L. Let M be a line through p that does not coincide with K. We
intend to show that M meets L.

Let J be perpendicular to M at p. We need to construct a point x on J but
not on M or L. One way to do this is as follows: Let m be the midpoint of pw,
and choose x on J such that px = pm. Since p does not lie on L, m 6= p. Then
x 6= p. Since x lies on J and J ⊥M , x does not lie on M . We claim x does not
lie on L either: if x lies on L, then pwx is a right triangle, whose hypotenuse px
is equal to half the leg pw. Now we have a right triangle with hypotenuse less
than a leg, contradicting Lemma 5.37. That completes the proof that x does
not lie on L.

Let y be the reflection of x in M . Then x 6= y since x 6= p. The dotted
circle in Fig. 22 illustrates the fact that px = pm = py. Let z be the reflection
of x in L; since x is not on L, z 6= x. We claim that x, y, and z are not
collinear. Once we prove that claim, we can finish the proof as follows: By the
triangle circumscription principle, there is a circle C through x, y, and z. Let its
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center be e. Then since xy is a chord of C, its perpendicular bisector M passes
through e. Since xz is a chord of C, its perpendicular bisector L passes through
C. Hence L and M meet in point e. This contradicts the assumption that M
is parallel to L. Hence we (will have) have proved that every line M parallel to
p through L coincides with K. In particular any two such lines coincide with
each other.

It remains to prove that x, y, and z are not collinear. Suppose that they are
collinear. Then x and z lie on J , which is then perpendicular to both L and M .
Since J is perpendicular to L and K is parallel to L, J is perpendicular to K, by
Lemma 6.7; that lemma assumes Playfair, but by Lemma 6.16, Playfair holds
here. HenceM andK are both perpendicular to J at p. By the uniqueness of the
perpendicular (Lemma 5.11), M and K coincide, contradicting our assumption
thatM andK do not coincide. That proves that x, y, and z are not all collinear.
That completes the proof.

Theorem 6.18 The strong triangle circumscription principle, the triangle cir-
cumscription principle, and the strong parallel postulate are all equivalent in
neutral constructive geometry.

Proof. The strong triangle circumscription principle implies the triangle cir-
cumscription principle, so the previous lemmas establish a circle of implications
between the three propositions. Specifically, the triangle circumscription princi-
ple implies the strong parallel postulate by Lemma 6.17, and the strong parallel
postulate implies the strong triangle circumscription principle by Lemma 6.14.
That completes the proof.

7 Rotation and reflection

In the introduction, we remarked on the meaning of a “uniform reflection”
construction, which must construct the reflection of a point p in line L, without
making a case distinction according to whether p is on L or not. In this section,
we take up this construction in detail. We begin with the definition.

Definition 7.1 Point z is the reflection of a in line L provided (i) there is a
line K perpendicular to L passing through both z and a, and (ii) if f is the
intersection point of K and L then af = zf , and (iii) T(a, f, z).

Thus, if a lies on L, it is its own reflection in L, and if it does not lie on
L, we can drop a perpendicular from a to L, meeting L at f , and extend the
non-null segment af by af to construct z. But to construct z without making
a case distinction is more difficult.

Once we have a uniform perpendicular construction, the problem of reflection
in a line reduces to the problem of reflection in a point. That is, to reflect a in
line L, construct a perpendicular K to L passing through a; let f be the point
where K meets L, and reflect a in the point f . The result will be the reflection
of a in L.
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But reflection in a point, instead of in a line, is also problematic construc-
tively, even if the two points are known to lie on a fixed line. Of course if a 6= p,
we can reflect a in p just by extending ap by ap. And if a = p, then the reflection
of a in p is just a. But this construction cannot be made uniform (that is, free of
a case distinction), since only non-null segments can be extended constructively.
Another failed attempt would be to find a point b a fixed distance from a with
B(b, a, p) and then extend the segment bp by ap. But, if we do not know on
which side of p lies, we cannot construct such a point b, even if we assume both
a and p lie on a known line L.

Since attempts to construct the uniform reflection directly appear blocked,
we turn to another approach. We use the fact that reflection of p in point a
can be obtained by two successive rotations of p about a, each rotation through
a right angle. It will therefore suffice to define rotation of point p through a
given angle about point a in such a way that no case distinction is required
as to whether p = a or not. We call that “uniform rotation.” Of course, one
way to define rotation is to use reflection; so if we had uniform reflection, we
could get uniform rotation, and vice-versa. We get off the ground by proving
the existence of uniform rotation another way, then deriving the existence of
uniform reflection.

7.1 Uniform rotation

In classical geometry, reflection and rotation can be defined without using the
parallel postulate. However, we were unable to define uniform reflection or
uniform rotation without using Euclid 5. In this section, we employ Euclid 5
freely.

Lemma 7.2 (Assuming Euclid 5.) Let lines L = Line (ℓ, b) and J = Line (d, b)
meet at b, and suppose that L and J do not coincide, and angle ℓbd is less than
a right angle. Suppose point p lies on J . Then there exists a point e on L such
that ep lies on a line perpendicular to J .

Remark. See Fig. 23. p could be on either side of b or equal to b. Imagine
p moving back and forth along J , passing through b. e has to be constructed
without a case distinction as to whether p = b or not, or on which side of b the
point p lies. It would be technically incorrect to say ep ⊥ J , at least if e = p,
since perpendicularity does not apply to null segments.

Proof. Extend segment bd by bp to point m. Let n be the reflection of m in
b. Then B(n, b,m) and hence B(n, p,m). Erect line M perpendicular to J at
m. Since angle ℓbm is, by hypothesis, less than a right angle, the interior angles
made by traversal J of L and M are together less than two right angles. By
Euclid 5, M and L intersect; call the intersection point r.

Before proceeding, we discuss this application of Euclid 5. We have presented
it with Euclidean (im)precision, but technically we have to use our formulation
of Euclid 5, which requires an auxiliary point to witness that angle ℓbm is less
than a right angle. The definition of “less than” for angles implies the existence
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Figure 23: The perpendicular to J at p meets L in some point e. Euclid 5 is
needed to get r.

of that point, which would lie on L somewhere to the right of b, and witness
that ℓbm is less than a right angle by being between m and a point on the
perpendicular to J at b. For simplicity this point is not shown in Fig. 23.

Let q be the reflection of r in b. Then q 6= b since ℓ 6= b. Construct R parallel
to J through q. Since we are assuming Euclid 5, and J is perpendicular to M ,
also M ⊥ R. Let f be the point of intersection of M and R. There exists a line
K through p perpendicular to R (since p is not on R, we do not even need the
uniform perpendicular construction). Let g be the intersection point of K and
R.

Now triangle bnq is the reflection of triangle bmr in point b. By Lemma 5.16,
reflection preserves congruence. Hence triangle bnq is congruent to triangle bmr.
Therefore nq ⊥ J . Therefore each of the quadrilaterals npgq, nmfq, and pmfg
is a rectangle. Therefore np = qg and nm = qf and pm = gf . We already
proved B(n, p,m); therefore B(q, g, f). That is, K meets side qf of triangle rqf
at g. K does not meet rf since K is parallel to M , which contains rf . Then
by Pasch’s theorem (Theorem 5.1) K meets qr; the point of intersection is the
desired point e, since ep lies on K, which is perpendicular to J . Hence ep ⊥ J
as desired. That completes the proof of the lemma.

Theorem 7.3 (Uniform rotation) (Assuming Euclid 5.) There is a con-
struction Rotate that rotates a point p through a given angle poq, without a
case distinction. That is, if a lies on Line (o, p), then z = Rotate (p, o, q, a) is a
point on Line (o, q) that is the reflection of a in the line that bisects angle poq.

Proof. Let L be the angle bisector of angle poq. (The method of Euclid I.9 for
bisecting an angle is constructive as it stands; though Euclid paid insufficient
attention to which of two possible triangles to select, that defect is easily reme-
died.) See Fig. 24, but note that a might also be on the other side of o, or
coincide with o. Please imagine an animation in which a moves back and forth
on the horizontal line through o.
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Figure 24: z = Rotate (p, o, q, a). a is allowed to move along Line (o, p), even
through o.

The point is that z should be defined even when a = o (in which case it is
just o, of course), and if a moves along Line (o, p) through o, then z moves along
Line (o, q), passing through a as a passes through o.

The angle at a is a right angle, and the angle at o is half of angle poq. Every
angle is less than two right angles, so half of angle poq is less than one right
angle. Let line K be the perpendicular to Line (o, p) at a. By Lemma 7.2, K
meets L at a point e. Now, by the uniform perpendicular construction, there
exists a point z on Line (o, q) such that ez ⊥ Line (o, q). This point z is the
point we had to produce, the value of Rotate (p, o, q, a). We claim oz = oa;
by the stability of equality, we can prove that by cases. If a = o then z = o,
so both oz and oa are null sequences, and hence congruent. If a 6= o, then
triangles zeo and aeo are congruent (by SAS), so oz = oa. That completes
the proof that oz = za. The perpendicular to L through z can be constructed
without a case distinction by the uniform perpendicular construction. Let f be
its intersection with L. Similarly, let g be the point of intersection with L of the
perpendicular to L through a. We claim f = g and zf = af . By the stability
of equality, we can prove that by cases. Case 1, a = o. Then f = g = a = z
and af = gf because both are null segments. Case 2, a 6= o. Then aog and aof
are triangles, and indeed they are right triangles with equal hypotenuses and
one pair of angles equal (the angles at o). Hence they are congruent triangles.
Hence of = og, so f and g coincide, and zf = zf . That completes the proof by
cases (and stability of equality) that zf = af and T(z, f, a), and a and z both
lie on a common perpendicular to L. By Lemma 5.11, we have B(z, f, a). That
is, the perpendicular from z to L also passes through a, and since zf = af , z is
the reflection of a in L. By definition of reflection, that makes z the reflection
of a in L. That completes the proof of the lemma.
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7.2 Uniform reflection

Now we will apply uniform rotation to show how to construct the reflection of
a point in a line uniformly.

Theorem 7.4 (Uniform reflection) (Assuming Euclid 5.) There is a term
Reflect (x, L) that produces the reflection of x in line L, without a case distinction
whether x is on L or not. That is, if z = Reflect (x, L) and K perpendicular to
L contains x and meets L at e, then z lies on K with ez = ex, and unless x lies
on L, B(x, e, z).

Proof. The idea is that a reflection has the same effect on a single point x as
two ninety-degree rotations. Using the uniform perpendicular construction, let
K be perpendicular to L, and let e be the intersection point of K and L; then
rotate x twice by ninety degrees about e using uniform rotation, obtaining the
answer z. Fig. 25 illustrates the construction. (The other points in the picture
are used in uniform rotation.)
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b
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b b

Figure 25: Uniform Reflection

7.3 The other intersection point

Many Euclidean constructions involve constructing one intersection point p of
a line L = Line (a, b) and a circle C, and then we say “Let q be the other
intersection point of L and C”. The question is, whether in ECG we can
give a uniform method of constructing Q from p, L, and C. Yes, we can, as
illustrated in Fig. 26. The proof is not as obvious as it may seem from the
figure, since possibly L could be a diameter of C or tangent to C, and we are
not allowed to prove an existential theorem by cases. Instead, we must give a
single construction that works for all cases. We are able to do that using uniform
perpendiculars and uniform reflection. Since uniform reflection requires Euclid
5, so does this construction.
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Figure 26: Definability of “the other intersection point”

Theorem 7.5 There is a term Other(p, L, C) such that, if point p lies on line
L and circle C, then Other(p, L, C) is defined and lies on both L and C, and
for all z 6= p, if z lies on both L and C then Other(p, L, C) = z.

Proof. Here is the construction script for Other:

Other(Point P, Line L, Circle C)

{ a = center(C)

K = Perp(a,L)

q = Reflect(p,K);

return q;

}

Since Perp is always defined, K is defined, whether or not L is a diameter of C,
and since Reflect is uniform reflection, q is defined, whether or not L is tangent
to C. But now that we have given a single construction that applies in all cases,
we may argue by cases that aq = ap, since by the stability of congruence, it
suffices to prove ¬aq 6= ap. If a does not lie on L and x 6= p then axp is a
triangle, and is congruent to axq by SAS; hence in that case ap = aq. If x = p
then q = p so in that case ap = aq. If a lies on L then a = x so ap = aq because
xp = xq. That completes the proof.

We next show that similarly, one can construct the “other intersection point”
of two circles.

Theorem 7.6 (The other intersection point of two circles) There is a term
Other2(p, C,K) such that, if point p lies on circle C and on circle K, and C
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and K are not coincident, then Other2(p, C,K) is defined and lies on both C
and K, and forall z 6= p, if z lies on both C and K then Other2(p, C,K) = z.

Proof. Here is the construction script:

Other2(Point p, Circle C, Circle K)

{ a = center(C);

b = center(K);

L = Line(a,b);

q = Reflect(p,L);

return q;

}

Here is the correctness proof of the script. We claim a 6= b. To prove that,
assume a = b. Then ap = bp, so for all z, On(z, C) if and only if za = ap if and
only if ab = bp if and only if On(z,K). That is, C and K coincide, contradicting
the hypothesis. Hence a 6= b. Therefore L in line 3 of the script is defined. Since
Reflect is always defined, by Lemma 7.4, q is defined, and by Lemma 5.5, q lies
on circles C and K. That completes the proof.

8 Geometrization of arithmetic without case dis-

tinctions

Today we usually think of analytic geometry as coordinatizing a plane and
translating geometrical relations between points and lines into algebraic equa-
tions and inequalities. But the converse is also possible: translating algebra into
geometry, and this is important for showing that the models of the geometry of
constructions are planes over Euclidean fields.

In modern geometry books (such as [8] or [16]), arithmetic is geometrized as
operations on congruence classes of segments. To give a formal definition within
geometry we must avoid sets. We operate instead on points on some fixed line
X = Line (0, 1), where 0 and 1 are two arbitrarily fixed points. We refer to X
as the x-axis. We erect a line Y perpendicular to X at 0, and call it the y-axis.
We mark off a point I on Y such that 0I = 01. Then the following are the key
steps to be carried out:

• Coordinatization. We need to assign coordinates X(p) and Y (p) (both on
the x-axis) to each point p. We need to show that every pair of points on
the x-axis arises as (X(p), Y (p)) for some point p.

• Definition of addition. Points on the x-axis can be added, without a case
distinction as to sign.

• Definition of multiplication. Points on the x-axis can be multiplied, with-
out a case distinction as to sign.

73



• Definition of square root. The geometrical definition of the square root
of x given by Descartes can be made to work without a case distinction
whether x is zero or positive.

• The laws of addition, multiplication, and square root are satisfied, except
for multiplicative inverse.

• Depending on which parallel axiom is assumed, some form of the axiom
of multiplicative inverse holds.

As far as I can tell, past work on these things has always assumed some
discontinuous constructions, such as test-for-equality or at least apartness. The
closest thing to a constructive treatment is [16]; the treatment there is discussed
further in §8.4. Since coordinatization and arithmetic themselves are patently
computable and continuous, it is unaesthetic to appeal to discontinuous and non-
computable “constructions” to achieve coordinatization and arithmetization.
Constructively, it is not only unaesthetic, it is incorrect.

8.1 Coordinatization

With the x-axis and y-axis, and the points 0,1, and I fixed, we use the uniform
perpendicular construction to project any point p onto the x-axis, obtaining its
x-coordinate X(p). We project it also onto the y-axis, obtaining a point y(p)
on the Y -axis, and then we rotate that point 90◦ clockwise, using the uniform
rotation construction defined above, to obtain Y (p) on the x-axis. That is the
y-coordinate of p. Note that y(p), with lower-case y, is on the y-axis, while
Y (p), with upper-case Y , is on the x-axis.

The first half of coordinatization (the assignment of coordinates (X(p), Y (p))
to every point) is thus accomplished without any parallel postulate. But to show
that every pair of coordinates corresponds to a point requires Euclid 5, not to
get from (x, 0) and (0, y) to (x, y), but to get from (y, 0) to (0, y), which requires
rotation.

Lemma 8.1 (Coordinatization) Assuming Euclid 5, it is possible to use uni-
form rotation and perpendiculars to define a construction MakePoint (x, y),
which produces a point p such that x = X(p) and y = Y (p) whenever x and
y are on the x-axis.

Proof. See Fig. 27. To construct the point p from x and y, first rotate y by 90◦

counter-clockwise, obtaining a point z on the y-axis. (This is the only place we
need Euclid 5.) Then erect a perpendicular U to the x-axis at x. Then let K be
perpendicular to U through z, and let p be the foot of that perpendicular on U .
Then K and L are both perpendicular to U . We claim that K is perpendicular
to the y-axis. By the stability of perpendicularity (Lemma 5.7), we can argue
by cases to prove that. If U is distinct from the y-axis and K is distinct from
L, then zpx0 is a quadrilateral with three right angles, at 0, x, and p. Hence by
Lemma 5.24, it is a rectangle. (Here we need Playfair’s axiom, as Lemma 5.24
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Figure 27: MakePoint constructs a point p with specified coordinates x and y.
K is constructed perpendicular to U but by Playfair is also perpendicular to
the y-axis.

requires it, but we do not need Euclid 5.) HenceK is perpendicular to the y-axis.
If U coincides with the y-axis, then K is perpendicular to the y-axis, since it is
perpendicular to U . IfK coincides with L, thenK is perpendicular to the y-axis,
since L is perpendicular to the y-axis. These cases are (classically) exhaustive,
so by the stability of perpendicularity, we conclude that K is perpendicular to
the y-axis. Then z is the projection of p on the y-axis. See Fig. 27. That
completes the proof.

Remark. If instead of constructing K as a perpendicular to U containing z, we
construct K as perpendicular to the y-axis at z, then we have to prove K meets
U , which can be done using the strong parallel postulate, but it is not clear how
to do it using only Euclid 5. The construction given in the proof avoids not only
the strong parallel postulate but even Euclid 5, using only Playfair, although
we still need Euclid 5 to make rotation work at the start of the proof. It is
crucial to avoid at least the strong parallel postulate, since we will eventually
(in Corollary 9.5) use this lemma to help prove the strong parallel postulate
from Euclid 5.

8.2 Addition

To perform addition geometrically we suppose given a line L = Line (R,S) and
an “origin”, a point O on L with S between R and O. We need to define a
construction Add(A,B), which also depends, of course, on S, R, and O, such
that Add(A,B) is a point C on L representing the (signed) sum of A and B,
with O considered as origin.
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Lemma 8.2 Given line L = Line(R,S), and a point 0 on L with S between R
and 0, we can construct a point Add(A,B) on L representing the signed sum of
A and B, with O considered as origin, using the elementary constructions and
Circle3.

Remark. In order to appreciate that this lemma is not trivial, consider the
following obvious, but incorrect, attempted solution:

Add(A,B) := IntersectLineCircle2 (Line (0, B), Circle3(A, 0, B)).

This works fine for B 6= 0, whatever the “sign” of A and B, and it even works
when A = 0, but when B = 0 it is undefined.

Proof. With Rotate in hand, we can give a construction for Add(A,B) (de-
pending also on R, S, and O). (The construction is illustrated in Fig. 28 and
Fig. 29) First, we replace R with a new point on L = Line (R,S), farther away
from O, so that O, A, and B are all on the same side of R, and the new R and
S are in the same order on line L as R and S were before. Such points can be
constructed using Extend , but we omit the details. Now erect the perpendicular
K to L at O, and the perpendicular H to L at B. In the process of erecting
these perpendiculars, we will have constructed a points C on K such that ROC
is a right turn. Then let D be the projection of C on H and let

U = Rotate (R,O,C,A)

V = Project(U,H)

W = Rotate (D,B,R, V )

We set Add(A,B) = W . Then Add(A,B) is defined for all A,B. Suppose
A 6= O. Then UV is perpendicular to both K and H . Then U and V are on the
same side of L, since if UV meets L at a point X , then XU and XO are both
perpendicular to K, which implies U = O, which implies A = O, contradicting
A 6= O. It then follows from the property of Rotate that B andW occur on line
L in the same order that O and A occur. Refer to Fig. 29 for an illustration
of the case when A is negative. This implies that Add(A,B) represents the
algebraic sum of A and B, since in magnitude BW = OA.

We indicate by pictures (Fig. 30 and Fig. 31) how the commutativity and
associativity of addition can be proved (without case distinctions). We note
that the definition of uniform rotation and the stability of betweenness allows
us to argue using case distinctions, because double negations can be pushed
through and eliminated by stability.
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Figure 28: Signed addition without test-for-equality.
A is rotated to U , then projected to V , then rotated to W .
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Figure 29: Signed addition when A is negative
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Figure 30: Commutativity of addition with A and B positive.
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Figure 31: Associativity of addition, positive arguments.
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8.3 Unsigned multiplication

The geometrical definitions of multiplication and square root go back (at least)
to Descartes.17 On the second page of La Geometrie [11], he gives constructions
for multiplication and square roots. We reproduce the drawings found on page
2 of his book [11] in Figures 32 and 36.

B A

C

D

E

Figure 32: La Multiplication according to Descartes

Here is Descartes’ explanation of this figure:

1. Let AB be taken as unity.

2. Let it be required to multiply BD by BC. I have only to join
the points A and C, and draw DE parallel to CA; then BE is
the product of BD and BC.

3. If it be required to divide BE by BD, I join E and D, and draw
AC parallel to DE; then BC is the result of the division.

From the point of view of constructive geometry, there is a problem with the
construction. Namely, Descartes has only told us how to multiply two segments
with non-zero lengths, and at least one of whose lengths is not 1 (the length of
unity–he needs this when constructing AC parallel to DE), while we want to
be able to multiply in general, without a test-for-equality construction.

Using the Para construction of Lemma 5.41 where Descartes calls for “draw-
ing DE parallel to CA”, we no longer have a problem multiplying numbers near
1 or 0. In [3], we gave a construction that successfully generalizes Descartes’s
multiplication method to signed arguments. That method uses Rotate . How-
ever, Hilbert ([20], p. 54) gives another construction, whose result is equivalent
to that of Descartes for positive arguments, but which directly works correctly
for signed arguments as well. It is illustrated in Fig. 33.

The construction is as follows: Start with Line (0, 1). Erect a perpendicular
to Line (0, 1) at 0, and let I be a point on it such that 0I = 01. Given points a
and b on Line (0, 1), construct a circle passing through I, a, and b. This must be
done uniformly, so that when a = b, the circle passes through I and is tangent

17Although Descartes is usually credited with this, compare Euclid VI.12, which is very
similar to Descartes’s treatment of multiplication and division, and Euclid VI.13, which is
very similar to Descartes’s construction of square roots.
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Figure 33: Multiplication according to Hilbert

to Line (0, 1) at a. Assume for the moment that such a circle exists. Then
the result of the construction is “the other point of intersection” of the circle
and Line (0, I), except that this point lies not on Line (0, 1) but on Line (0, I),
so it needs to be rotated clockwise back to Line (0, 1). This “other point of
intersection” can be defined by a term, according to Theorem 7.5.

The point at issue is, what version of the parallel postulate is required to
prove the existence of the required circle? We have already done the work: If we
restrict a and b to be nonnegative, then the one-sided triangle circumscription
principle is exactly what is needed, and Lemma 6.15 shows that Euclid 5 suffices.

Theorem 8.3 Assuming Euclid 5, Hilbert multiplication as shown in Fig. 33
can be defined for all a and b on the non-negative x-axis. That is, it is defined
by a term HilbertMultiply (a, b).

Proof. The proofs of Lemma 6.15 and Theorem 7.5 provide the required term.

Lemma 8.4 Playfair’s axiom implies the commutative ring laws, with HilbertMultiply
for multiplication and Add for addition, whenever the terms involved are defined;
that is, assuming the required circles and points of intersection exist.

Proof. The theorems in question have the form t = s, where t and s are two terms
for geometrical constructions. The formulas t ↓ and s ↓ are existential formulas,
specifying that certain “witnessing points” exist satisfying certain quantifier-
free and disjunction-free relations. Hence t ↓ ∧s ↓ → t = s is equivalent
to a universally quantified negative formula. Hence, by the double-negation
interpretation from [6], it suffices to prove this classically. But that has been
done many times, for example in [28]. Alternately one can check the proofs in
[28] directly to see that they are constructive. That completes the proof.
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8.4 An alternative approach to constructive addition

The geometrization of arithmetic in [16] can be made constructive, providing
an alternative to the definition given above. We show how this is done. Again
we fix a line L, which we also call the x-axis, and points 0 and 1 on L, and we
construct the y-axis perpendicular to L at 0. Then x+1 := ext(0, 1, 0, x) works
as the notation indicates for all x on L, and x − y := ext(x + 1, x, 0, y) works
for y ≥ 0. Unary minus, −x, is defined by uniform reflection in the y-axis. We
define |x| = ext(−1, 0, 0, x). This is better than |x| =

√

|x2|, since it does not
require square roots or multiplication (hence requires no parallel postulate.)

Then, using the binary subtraction just defined, we define the negative part
of a by

a− :=
1

2

(

a− |a|
)

.

The factor 1

2
represents a midpoint construction, not a multiplication. The mid-

point construction in question is the uniform midpoint of segment 0x assuming
that x lies on line L, as defined in Lemma 5.44. Thus there is a term with free
variable a defining a−. Then we define a+ := −((−a)−), using the unary minus
defined above. Finally we define

a+ b := (a+ + b+)− (a− + b−). (6)

Then we still have to prove the laws of addition and the distributive law. For
that, we can appeal to the double-negation interpretation in [6].18

8.5 From unsigned to signed multiplication

Hilbert’s definition of multiplication, works without case distinctions about the
signs of a and b, but it requires the strong triangle circumscription principle,
while we wish to use only Euclid 5. We were able to define Hilbert multiplication
for nonnegative arguments using Euclid 5. Now we define a new multiplication
a·b, which agrees with HilbertMultiply (a, b) for nonnegative a and b by definition.
Later we will show that it agrees for all a and b.

We make use of the positive and negative parts a+ and a− defined in (6).
Motivated by the idea that, since x = x+ − x−, we should have

a · b = (a+ − a−) · (b+ − b−),

we define
a · b := (a+b+ + a−b−)− (a−b+ + a+b−)

On the right, multiplication means HilbertMultiply , and is only applied to non-
negative elements. On the right, addition means the geometric Add , and sub-
traction means the geometrically defined binary subtraction. Hence the right

18Note that both definitions of addition require the uniform reflection construction, which in
turn requires a constructive definition of rotation. Therefore the extra work involved in making
the definition constructive is essentially the same for both approaches; it is just a matter of
taste whether one likes an approach that is explained with pictures or with equations.

81



side abbreviates a term representing a geometrical construction. That can be
taken as the definition of multiplication for arbitrary a and b on the x-axis.

Multiplication defined in this way satisfies the commutative law:

a · b = (a+b+ + a−b−)− (a−b+ + a+b−)

= b · a

using the commutativity of HilbertMultiply and the commutativity of Add on
the right. Multiplication similarly can be shown to satisfy the associative and
distributive laws. Therefore we may make algebraic calculations using a · b in
the usual way.

We need to develop a bit of analytic geometry using this multiplication. We
define the “length of segment pq”, denoted by |pq|, to be the point r on the
positive x-axis such that 0r = pq. Officially, |pq| is constructed as follows: Let
u = −1 be the reflection of −1 in the y-axis. Then |pq| = ext(u, 0, p, q). Then
two segments are congruent if and only if they have the same length; that follows
from the stability of equality and the fact that a segment cannot be congruent
to a proper subsegment.

We use the usual notation for coordinates: instead of p = MakePoint (p1, p2),
we just write p = (p1, p2), and we use subscripts to indicate the coordinates of
a point. In this setting we can formulate a version of the Pythagorean theorem:
if pqr is a right triangle, with the right angle at q, then

|pq|2 + |qr|2 = |pr|2.

where x2 means x · x. Note that here only points on the nonnegative x-axis are
multiplied. One can prove this version of the Pythagorean theorem, but it is not
trivial. It is Proposition 20.6, p. 178 of [16]. (Hartshorne defines multiplication
on equivalence classes of segments; the segments of the form 0p with p on the
non-negative x-axis can be taken as coset representatives, so Prop. 20.6 does
represent the theorem we need.) The proof is perfectly constructive, so there is
no need to repeat it here.

We do need a slight improvement: let L and K be two perpendicular lines
meeting at q, and let p and r lie on L and K respectively (but we do not assume
they are different from q). Then the equation of the Pythagorean theorem still
holds. Because of the stability of equality, we can prove this by cases. (See §2.3
if needed, to review why stability of equality permits us to argue by cases here.)

If p and r are different from q, it is the Pythagorean theorem from Prop. 20.6.
If either p = q or r = q, then one of the sides has length 0 and the other two
sides coincide, so the equation is trivially true. Hence the Pythagorean theorem
is constructively true, even for possibly degenerate right triangles.

Theorem 8.5 [Euclid 5 implies multiplication] Assume Euclid 5 and line-circle
continuity. Fix a line L for the x-axis, and points 0, 1, and I for use in coor-
dinatization. Then HilbertMultiply (a, b) is defined for all a, b on L.

Proof. By Theorem 8.3, HilbertMultiply is defined for nonnegative a and b. It
follows that a · b is defined for all a and b. We will show that, for all a and b,
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HilbertMultiply (a, b) is equal to a · b. Let d = a · b. Then d is a point on the
x-axis; let D be the rotation of d by ninety degrees counterclockwise, so D lies
on the y-axis. Using uniform rotation, we do not need a case distinction on the
sign of d. See Fig. 34. Although the picture shows a ≤ b, the proof does not
assume that.

bD

bI

b
M

b
a

b
b

b
m

b e

Figure 34: d = a · b makes eI = ea, so d = HilbertMultiply (a, b).

We must show (i) there is a circle through a, b, and I, and (ii) that circle
passes through D. While in general we cannot construct a uniform midpoint of
an arbitrary (possibly null) segment ab, Lemma 5.44 says that we can construct
a uniform midpoint of a (possibly null) segment ab if we know that a and b are
restricted to lie on a fixed line. Let L be the fixed line serving as the x-axis.
Let m be the uniform midpoint of segment ab (constructed by Lemma 5.44
using L), and let M be the uniform midpoint of segment ID (constructed by
Lemma 5.44 using the y-axis for the line). LetM ′ be the rotation ofM by ninety
degrees clockwise; using uniform rotation this can be constructed without a case
distinction about the position of M on the y-axis. Let e =MakePoint(m,M ′),
which is defined, assuming Euclid 5, by Lemma 8.1. Then eM0m is a rectangle
(unless some of its sides coincide, but by stability of equality, its opposite sides
are equal, whether or not they coincide). Then eD = eI since e lies on the
perpendicular bisector of DI (technically, by the stability of equality we can
argue by cases, whether D = I or not). Similarly ea = eb. To complete the
proof, it suffices to show that ea = eI. The point e has been constructed
uniformly, with no case distinction about the signs or relative positions of a and
b; but now, by the stability of equality, we are allowed to argue by cases for
ea = eI. That is, however, not necessary.

I do not know a direct geometrical proof that ea = eI. We use analytic geom-
etry. The following algebraic calculations, however, are officially abbreviations
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for geometrical constructions, i.e., the multiplications refer to the multiplication
x · y defined above, and the additions to Add . Divisions by 2 refer to a uniform
midpoint construction.

Let R = |eI| and r = |ae|. We make use of the Pythagorean theorem as
described above. We also make use of the distributive law, and of the properties
of addition, whose proofs have been sketched above.

e =

(

a+ b

2
,
d+ 1

2

)

r2 =

(

d+ 1

2

)2

+

(

b− a

2

)2

=
d2

4
+

1

4
+
b2

4
+
a2

4

R2 =

(

a+ b

2

)2

+

(

d− 1

2

)2

=
a2

4
+
b2

4
+
d2

4
+

1

4

= r2

Since R2 = r2 and both r and R are nonnegative, we have r = R. That
completes the proof.

8.6 Reciprocals

According to the definition of HilbertMultiply , a reciprocal of a nonzero point
a on L = Line (0, 1) is a point b on L such that there is a circle C through a,
b, and I, and C is tangent to K = Line (0, I) at I. The reciprocal of x can
be constructed by the following script. It uses the script Other for the other
intersection point of a line and circle, which was defined and proved correct in
Theorem 7.5. The script is illustrated in Fig. 35. The dashed line N is used in
the proof, but not in the construction.

Point Reciprocal(Point a)

{ K = Perp(L,0)

H = Perp(I,K)

M = Line(a,I)

m = Midpoint(a,I)

J = Perp(m,M)

e = IntersectLines(H,J)

C = Circle(e,a)

b = Other(a,L,C)

return b

}
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Figure 35: Construction of the reciprocal of a

The following lemma proves the correctness of this script. The hard part is
to show that Reciprocal (x) is defined for x 6= 0.

Lemma 8.6 (Reciprocals) Let Reciprocal be defined as in the construction
script above. The strong parallel postulate implies that for a 6= 0, Reciprocal (a)
is defined, and if b = Reciprocal (a), then HilbertMultiply (a, b) = 1. Euclid 5
implies the same conclusion under the hypothesis a > 0 instead of a 6= 0.

Proof. Assume a 6= 0. We will show Reciprocal (x) is defined, by going through
the script line by line. Since Perp is everywhere defined, K and H are defined;
since I does not lie on L, a 6= I, so M is defined. Since a 6= I, m is defined;
since Perp is everywhere defined, J is defined. Now we have to prove that
lines H and J meet in some point e. That is where we use the strong parallel
postulate. Let N = Perp(I,M). Then by Lemma 5.14, N and J are parallel,
since both are perpendicular to M . Both N and J pass through I. M is
not perpendicular to H at I, since if it were, then Ia and I0 would be two
perpendiculars to H at I, so they would coincide, and it follows that a = 0,
contrary to hypothesis. Then let x be any point on H other than I, for example,
x = IntersectLineCircle1 (H,Circle (I, 0, 1). Then x is not on N , since if it were
then H and N would coincide. Hence we can apply the strong parallel postulate
to conclude that H meets J . Then e in the script is defined. Since Circle is
always defined, C is defined. Since a lies on both L and C, b in the penultimate
line is defined. Hence Reciprocal (a) is defined.

By Lemma 5.13, C is tangent toK at I. Then by definition ofHilbertMultiply ,
we have HilbertMultiply (a, b) = 1, since circle C passes through a and b and
meets K in I, and the “fourth point of intersection” is the point I, since C is
tangent to K at I. That completes the proof.
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I do not know of a direct verification of the distributive law for Hilbert mul-
tiplication. Hilbert showed that his definition is equivalent to that of Descartes
and verified the distributive law for that definition. Once the terms for Add (a, b)
and HilbertMultiply (a, b) are defined, the laws of ring theory are quantifier-free
and disjunction-free, and we wish to use a general metamathematical tool to
“import” classical proofs of such formulas, thus avoiding the necessity of check-
ing a long proof for constructivity line-by-line. The tool to be used is Gödel’s
double-negation interpretation. We therefore need only check that there is a
classical proof, using axioms of geometry to which the double-negation inter-
pretation applies. The double-negation intepretation has been worked out for
Tarski’s axioms for geometry in [6]; using that result, we need only to check
that the laws of ring theory are classically provable in Tarski’s geometry. That
is done in [28], for Descartes’s multiplication; so it only remains to check in
Tarski’s geometry that Hilbert’s multiplication agrees with Descartes’s multi-
plication. Hilbert’s multiplication is not specifically mentioned in [28], but the
equivalence is proved directly on pp. 52–54 of [20], using the theorem of Pappus-
Pascal, which is proved in [28]; this proof can be carried out in Tarski’s geometry
since all the theorems mentioned are proved in [28]. That completes the proof.

Remarks. The construction of HilbertMultiply (a, b) works in the degenerate
cases, including a = b = 0. It is instructive to trace through what happens when
a = b = 0, and we recommend the reader to think about the case a = b = 0 and
the cases when a and b are small, but not zero, and possibly of unknown signs.
You will see why we need the uniform perpendicular bisector of ab, and why we
need uniform reflection in constructing the “other intersection point.”

While the verifications of the ring-theory laws are not trivial, the point of
the above proof is that it suffices to check them classically, since once we have
given uniform constructions for addition and multiplication, the statements of
the ring-theory laws become quantifier-free and negative. The heart of the
constructive treatment of this subject is giving uniform constructions.

8.7 Square roots

Now we take up the geometrical construction of square roots. Fig. 36 shows
Descartes’ construction for finding the square root of HG. His answer is the
length of segment IG. Here is a geometrical construction term (encoded as a
program) to carry out Descartes’ construction uniformly, as long as G is not to
the left of H in the illustration, regardless of whether G = H or not. We assume
that H in the diagram is 0 and the horizontal line is Line (0, 1). The point 1 is
not shown in the figure.

SquareRoot(Point G)

{ // H in Descartes’ diagram is 0

F = Add(0,G,0,1) // so FG has unit length

K = Midpoint(F,0)

C = Circle(K,F)
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I

Figure 36: Square roots according to Descartes

L = Perp(G,Line(0,F))

I = IntersectLineCircle1(L,C)

// next rotate unit length to line L

U = IntersectLineCircle1(L,Circle(G,F))

R = Rotate(U,G,F,I) // so now RG = IG

// but R is on Line(H,G), on the same side of G as F

// now we need N so that N0 = RG

MinusOne = IntersectLineCircle2(1,0,Circle(0,1))

N = Extend(MinusOne,0,G,R)

return N

}

Descartes stops when he has constructed I. What we have to do extra is
to construct a point N such that 0N = GI. In order to do that uniformly, we
must not assume that I 6= G. In order to get a non-degenerate angle we cannot
use IGF ; instead we lay off a unit length on the perpendicular GI, which has
been correctly constructed even if 0 = H = G = I. Thus we do not need to
assume G 6= 0 for this construction to work; we only need that 0 is not between
G and 1; loosely speaking, G ≥ 0. This works because Perp is total.

We now check the validity of Descartes’s construction of square roots. Let
SquareRoot (x) be the term defined by the construction script in Section 8.7.
Then we have

Lemma 8.7 Playfair’s parallel axiom implies that iff x lies on Ray (0, 1), and
z = SquareRoot (x), then HilbertMultiply (z, z) = x.

Proof. Since what is to be proved is quantifier-free, we can appeal to the double-
negation interpretation in [6]. But there is also a beautiful “proof by diagram”,
which we now exhibit. In the case of squaring, Hilbert multiplication has the
circle tangent to the horizontal axis, since a and b coincide, as illustrated in
Fig. 37. Replacing a by

√
x and reflecting Fig. 37 in a diagonal line from

upper left to lower right, we obtain the first diagram in Fig. 38. Relabeling
that diagram, and omitting the bottom half of the circle, we obtain Descartes’s
method of calculating the square root of x, shown in the second diagram in
Fig. 38.
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Figure 37: Hilbert multiplication in the special case of squaring.
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Figure 38: If z = SquareRoot (x), then HilbertMultiply (z, z) = x. The left circle
is Fig. 37 reflected in the diagonal line. The right circle is a relabeling that is
recognized as Descartes’s square root.
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9 The arithmetization of geometry

Our aim in this section is to lay the groundwork for a constructive version
of the classical representation theorem: the models of Euclidean geometry are
exactly planes F2 where F is a Euclidean field. Classically, a Euclidean field is an
ordered field in which positive elements have square roots. The groundwork in
question consists in developing the theory of Euclidean fields constructively, and
verifying constructively that the axioms of line-circle continuity and circle-circle
continuity hold in each plane over a Euclidean field.

9.1 Euclidean fields in constructive mathematics

We discuss the axiomatization of Euclidean fields with intuitionistic logic. We
use a language with symbols + for addition and · for multiplication, and a
unary predicate P (x) for “x is positive”. We take the usual axioms for fields,
except the axiom for multiplicative inverse, which says that positive elements
have multiplicative inverses. If positive elements have inverses, it is an easy
exercise to show that negative elements do too. We define a Euclidean field to
be a commutative ring satisfying the following additional axioms:

¬x 6= y → x = y stability of equality

0 6= 1 EF0

x 6= 0 → ∃y (x · y = 1) EF1

P (x) ∧ P (y) → P (x+ y) ∧ P (x · y) EF2

x+ y = 0 → ¬(P (x) ∧ P (y)) EF3

x+ y = 0 ∧ ¬P (x) ∧ ¬P (y) → x = 0 EF4

x+ y = 0 ∧ ¬P (y) → ∃ z(z · z = x) EF5

¬¬P (x) → P (x) EF6, or Markov’s principle

As usual, we define x < y to mean ∃z(P (z)∧x+ z = y), or informally, y−x
is positive; and x ≤ y means ¬(y < x). Then Markov’s principle is equivalent
to ¬(x ≤ 0) → 0 < x. It can also be written as ¬¬0 < x → 0 < x. One can
extend theories including EF2 and EF3 conservatively by adding symbols x < y,
x ≤ y, −x, x−y and

√
x, and then define |x| =

√
x2. Informally we make use of

these symbols, but they are eliminable if desired. We also informally abbreviate
x · x as x2.

Axiom EF5 says that non-negative elements have square roots. This is a
stronger axiom, intuitionistically, than simply specifying that positive elements
have square roots. Using the abbreviations mentioned above, EF5 can be written
¬P (−x) → ∃z (z2 = x), or as 0 ≤ x → ∃z (z2 = x), or as 0 ≤ x → (

√
x)2 = x.

We note that “all positive elements have square roots” implies “all nonzero
elements have square roots”, in view of the fact that

1

α
= α ·

(

1

α2

)
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That is, if y · α2 = 1, then (αy) · α = 1. Hence, contrary to [4], it is not a
different theory of Euclidean fields if we require only that all positive elements
have square roots.

In commutative ring theory an element x is called invertible if it has a mul-
tiplicative inverse; that is, for some y we have x · y = 1. We also say “x has
a reciprocal.” The weakest version of Euclidean field theory that we consider
replaces Axiom EF1 with the following two axioms, which say that elements
without reciprocals are zero, and that “bounded quotients exist.”

(∀y(x · y 6= 1)) → x = 0 EF7

|a| ≤ |b|y → ∃z(a = bz) EF8, bounded quotients exist

Fields that satisfy EF0, EF2–EF10 are called “Playfair rings”, because (as
shown in §10) they correspond to models of the Playfair parallel axiom. EF7
enables us to verify the Playfair axiom, and EF8 enables us to verify Pasch’s
axiom and circle-circle continuity.

To recap: In a Euclidean field, all nonzero elements have multiplicative
inverses, In a Playfair ring, elements without reciprocals are zero, and a/b exists
if it is bounded; that is, if for some y we have |a| ≤ |b|y. With classical logic,
all these concepts coincide, since EF7 is classically equivalent to EF1.

We check that some common calculations still work without EF1:

Lemma 9.1 In a Playfair ring the following hold:

(i) If x > 0 and y < 0, then xy < 0.
(ii) ¬¬x ≤ y → x ≤ y (stability of ≤).
(iii) If ab ≤ ac, and 0 < a, then b ≤ c.
(iv) If 0 < a and ab = 0 then b = 0.

Proof. Ad (i): Suppose x > 0 and y < 0. Then P (−y) and P (x), so by EF2,
P (x · (−y). But x · (−y) = −xy, so P (−xy). But that is, by definition, xy < 0.
That proves (i).

Ad (ii): Suppose ¬¬x ≤ y. That is, ¬¬(¬P (x − y)). Triple negation is the
same as negation, so ¬P (x − y). That is, x ≤ y.

Ad (iii): Suppose 0 < a and ab ≤ ac. We must prove b ≤ c. By (ii), it
suffices to derive a contradiction from the assumption ¬b ≤ c, that is, from
¬¬ c < b. For that it suffices (even without EF6) to derive a contradiction from
c < b. Suppose c < b; then c − b < 0, so by (i), a(c − b) < 0, contradicting
ab < ac.

Ad (iv): ab ≤ ab implies ab/a exists (and is b), so we can divide both sides
of ab = 0 by a, obtaining b = 0. That completes the proof.

Remark. In a Playfair ring, there might be zero divisors (ab = 0 with neither
a = 0 nor b = 0), but nevertheless by (iv) we can cancel positive factors.

9.2 Line-circle continuity over Playfair rings

Let F be an ordered field. Then “the plane over F”, denoted by F2, is a geomet-
rical structure determined by defining relations of betweenness and equidistance

90



in F2, using the given order of F. Namely, b is between a and c if it lies on the
interior of the segment ac. That relation can be expressed more formally in
various ways, for example (using the cross product) by (c− b)× (b− a) = 0 and
(b − c) · (a − b) > 0. Similarly, non-strict betweenness means that b lies on the
closed segment ac, or formally, (c− b)× (b− a) = 0 and (b− c) · (a− b) ≥ 0.

The equidistance relation E(a, b, c, d), which means that segment ab is con-
gruent to segment cd, can be defined by (b−a)2 = (d−c)2. Note that no square
roots were used, so these definitions are valid in any ordered field. Though we
have not given specific axioms for betweenness and congruence, it is reasonable
to demand that any constructive axioms for betweenness and congruence should
hold in F2. By line-circle continuity we understand this axiom: let point a be
non-strictly inside circle C, and point b be non-strictly outside circle C. Then
Line (a, b) meets circle C in a point non-strictly between a and b. By circle-circle
continuity, we mean that if circle C has a point non-strictly inside circle K, and
another point non-strictly outside circle K, then there is a point on both circle
C and circle K.

Theorem 9.2 (proved constructively) Let F be a Playfair ring; that is, an
ordered Euclidean ring in which bounded quotients exist and elements without
reciprocals are zero (EF7 and EF8 above). Then

(i) F2 satisfies circle-circle continuity.
(ii) F2 satisfies line-circle continuity.
(iii) Nonnegative elements have square roots in F.

Proof. A similar theorem (for classical Euclidean fields) is stated in [16], p. 144,
and a proof is sketched. Here we have additional issues: we must use only
intuitionistic logic, and we must get by with weaker assumptions about the
existence of reciprocals. In proving (i) implies (ii), no division is required.
In proving (ii) implies (iii), we just use Descartes’s square-root construction.
Consider proving that (iii) implies (i). We can assume (using translations and
rotations without any division) that one circle (call it C) is defined by x2+y2 =
r2 and the other (call it K) is defined by (x − c)2 + y2 = R2, with c > 0.
Subtracting, we have 2cx = r2 − R2 + c2, so we only need to be able to divide
the right side by 2c. Using EF8, it suffices to bound the quotient, that is, to
bound the x-coordinate of the intersection points. That seems quite intuitive:
x must lie between −r and c+R. But to prove it, we must use the hypotheses
of circle-circle continuity. One proves (by approximately one page of algebraic
computations, here omitted) that C has a point (non-strictly) inside K and
another (non-strictly) outside K if and only if the following two inequalities
hold:

r +R ≥ c (7)

R − c ≤ r ≤ R+ c (8)

This is the algebraic expression of the hypotheses of circle-circle continuity.
(These are the very details that are “left to the reader” in [16], p. 144.) The
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conclusion is very believable without a proof, since (7) fails when the circles
bound disjoint closed disks, and (8) fails if one lies inside the other. Inequality
(8) implies that |R − r| ≤ c; this is obvious if r ≤ R or R ≤ r, and since
¬¬ (r ≤ R ∨R ≤ r), we have ¬¬ |R − r| ≤ c, but then by the stability of ≤ we
can drop the double negation.

Returning to the proof, in order to solve the equation 2cx = r2−R2+ c2 for
x in a Playfair ring using EF8, we need to justify dividing the right side by 2c.
By EF8, it suffices to show that for some z, we have

|r2 −R2 + c2| ≤ 2cz

We take z = r +R+ c. Then the required inequality is proved as follows:

|r2 −R2 + c2| ≤ |r2 −R2|+ c2

≤ |(r −R)| (r +R) + c2

≤ (r +R)c+ c2 since |r −R| ≤ c

≤ (r +R+ c)c = zc ≤ 2zc

Hence the x-coordinate of the intersection points exists. Then we also need to
prove y =

√
r2 − x2 is defined, i.e., x2 ≤ r2. By (8), we have r ≤ R+ c. Hence

r − c ≤ R. If c ≤ r we have |r − c| ≤ R. On the other hand, if r ≤ c then (7)
implies |c− r| ≤ R. Since ¬¬ (r ≤ c∨ c ≤ r), we have ¬¬ |r− c| ≤ R, and hence
by the stability of ≤ we have |r − c| ≤ R. Hence

(r − c)2 ≤ R2

r2 − 2rc+ c2 ≤ R2

r2 −R2 + c2 ≤ 2rc

2cx ≤ 2rc since 2cx = r2 −R2 + c2

x ≤ r by Lemma 9.1 (iii), since c > 0.

Now if 0 ≤ x we can conclude x2 ≤ r2 as desired.
Next we claim |R − c| ≤ r. If c ≤ R, that follows from (8). If R ≤ c, it

follows from (7). Since ¬¬ (c ≤ R ∨ R ≤ c), the claimed inequality follows by
the stability of ≤. Hence

|R− c| ≤ r

(R − c)2 ≤ r2

R2 − 2Rc+ c2 ≤ r2

−2Rc+ 2c2 ≤ r2 −R2 + c2 = 2cx

As shown above it is legitimate to divide by 2c; we obtain

−R+ c ≤ x

R− c ≥ −x
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If x ≤ 0 then we can square both sides, obtaining x2 ≤ (R− c)2. But (R− c)2 ≤
r2; hence x2 ≤ r2 (still under the assumption x ≤ 0).

Now we have proved x2 ≤ r2 follows from 0 ≤ x, and also from x ≤ 0. Since
¬¬ 0 ≤ x ∨ x ≤ 0, we conclude by the stability of ≤ that x2 ≤ r2 holds without
assumptions. Hence y =

√
r2 − x2 is defined. That completes the proof.

Remark. We have proved that the existence of “bounded quotients” is
enough to guarantee the existence of intersection points of circles. That corre-
sponds intuitively to the fact that these intersection points are known in advance
to lie within the bounds of the two circles. By contrast, the point of intersection
of two lines asserted to exist by Euclid 5 is not bounded in advance, unless we
have a theory of similar triangles, but we need Euclid 5 to develop such a theory.
If we consider a line in F2 passing through (0, 1) with slope t, it will meet the
x-axis at (1/t, 0). But without an a priori bound on 1/t, we can’t prove that
point exists on the basis of the axioms of Playfair rings.

9.3 Pasch’s axiom in planes over Playfair rings

We first consider the use of analytic geometry to calculate the intersection point
of two lines in a plane over a Playfair ring F. In F2, if Line (u, v) and Line (s, t)
intersect (and do not coincide), the formula for the intersection point has de-
nominator given by the cross product D = (t− s)× (v − u). To prove this, let
x be the intersection point. Then x satisfies the equations of both lines:

(x− s)× (t− s) = 0

(x− u)× (v − u) = 0

Then

x× (t− s) = s× (t− s) = s× t

x× (v − u) = u× (v − u) = u× v

Writing out the cross product on the left, we obtain linear equations for the
components x1 and x2 of x. Cramer’s rule yields expressions for x1 and x2 with
D in the denominator, as claimed above; so if D is invertible, we can solve for x.
Even if D is not invertible, we can still use Cramer’s rule to give a formula for
x1 and x2 as long as we know in advance that the lines intersect in x. That is,
if Cramer’s rule gives the formula x1 = R/D, then at least we know Dx1 = R,
so R ≤ Dx1, so R/D exists by EF8.

On the other hand, suppose we do not know that the lines intersect. Then
we can still calculate the formula that Cramer’s rule would give, say x1 = R/D
and x2 = S/D. If we can show that these quotients are bounded, i.e., R ≤ Dy
for some y and S ≤ Dz for some z, then R/D and S/D are defined in F, and we
can verify that the formulas given by Cramer’s rule do provide a solution. In
essence, then, to prove two lines intersect we can proceed as follows: solve the
equations for the intersection point as if F were a Euclidean field; having arrived
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at expressions for the solutions, show they are bounded by something that we
know exists in F; then the formal quotients defining the solution actually exist.

We now turn to the verification of Pasch’s axiom in planes F2 over a Playfair
ring F. Specifically, we consider Pasch’s axiom in the form “inner Pasch”. See
Fig. 39.

b

a = (0, 0)
b
p

b
c

b
b

b q

z

Figure 39: Verification of Inner Pasch

Theorem 9.3 Let F be a Playfair ring. Then the plane F2 satisfies inner Pasch.

Proof. The hypothesis of inner Pasch is

B(a, p, c) ∧ B(b, q, c) ∧ p 6= b ∧ q 6= a

We must verify the existence in F2 of a point z such thatB(a, z, q) andB(b, z, p).
That is, we must show how to calculate the coordinates of z, without assum-
ing that all nonzero or positive elements have reciprocals. We want to simplify
the algebra by first applying an affine transformation to bring the points to
some standard position. Although affine transformations preserve betweenness
(even though they may not preserve distance), the nature of the argument re-
quires that we use invertible transformations, because we are arguing that if we
can verify Pasch in the transformed situation, then we can apply the inverse
transform to construct the point required by Pasch in the original situation.

We suppose p = (p1, p2) with p1 and p2 in F, and we use a similar notation
for the coordinates of the other points. By a translation, we can bring a to
(0, 0). All translations are invertible. Now we want to bring p to a point on
the positive x-axis. Let d = p21 + p22; then d ≥ 0 so

√
d exists. Since p 6= a and

a = (0, 0), we have p > 0 by Markov’s principle EF6. We claim that p1/d and
p2/d exist; that follows from the bounds p1/d ≤ 1 and p2/d ≤ 1; that is, p1 ≤ d
and p2 ≤ d, which in turn follow from p21 ≤ p21 + p22 and p22 ≤ p21 + p22. Then by
the transformation with the matrix

(

p1/d p2/d
p2/d −p1/d

)
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we can bring p to the point (d, 0) on the positive x-axis. This transformation
is invertible, since its determinant is 1. Because of the reduction by this trans-
formation, we can assume without loss of generality that p2 = 0. Then because
B(a, p, c), c lies on the x-axis.

Fig. 39 illustrates the situation. If F were a field, we could arrange for b
to have the same first coordinate as p using another linear transformation, but
we cannot show that the required transformation is invertible, so we proceed
without knowing anything about the position of b. We proceed as described
above, to solve for z as if F were a field. We have

z × q = 0

(z − p)× (b− p) = 0

The first equation becomes z2q1 = z1q2, and the second becomes

z × (b − p) = p× b

z1b2 − z2(b1 − p1) = p× b since p2 = 0

In order to eliminate z2 we multiply first by q1, and the replace z2q1 by z1q2:

z1(q1b2 − q2(b1 − p1)) = q1(p× b)

z1(q × (b− p)) = q1(p× b)

Now, if the divisions could be carried out, we could solve for z1 and z2:

z1 = q1
p× b

q × (b− p)

z2 = q2
p× b

q × (b− p)
since z2q1 = z1q2

In order to justify these divisions, showing that z1 and z2 exist, we must bound
the expressions on the right in the last two equations. We claim they are
bounded by |q1| and |q2|, respectively. It suffices to show that the fraction
on the right is bounded by 1; that is,

|p× b| ≤ |q × (b− p)|

We have p×b = p1b2 > 0. We have q×(b−p) = q×b+p×q and p×q = p1q2 > 0,
and q × b > 0 because B(b, q, c). Hence it suffices to show

p× b ≤ q × b+ p× q. (9)

That is “evident” from the diagram, if we knew that cross products measured
area in the usual way. But technically we have to compute it. Let α = (c−p)×
(q − p). Then 0 < α, since α = (c1 − p1)q2, and both factors are positive.

It will suffice to prove the following assertions:

c× b = p× q + q × b+ α (10)

c× b = p× b+ α+ (q − p)× (b − p) (11)

0 < (q − p)× (b− p) (12)
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for then, subtracting (10) from (11), we get

p× b ≤ p× q + q × b− (q − p)× (b − p)

and then, using (12), we obtain the desired equation (9). Again, each of these
assertions is “obvious” if we interpret the cross products as areas of triangles,
but we must give an algebraic proof.

To prove (12): We have

(q − p)× (b− p) = (q1 − p1)b2 − q2(b1 − p1)

and the right side is positive because q1 − p1 > b1 − p1 and b2 > q2, both of
which follow from B(b, q, c).

Since B(b, q, c), we have

0 = (c− b)× (q − b)

= (c1 − b1)(q2 − b2) + b2(q1 − b1)

c1b2 = c1q2 − b1q2 + b2q1

c× b = c1q2 − b1q2 + b2q1

= c1q2 + q × b

That is the left side of (10). Now we calculate the right side:

p× q + q × b+ α = p× q + q × b+ (c− p)× (q − p)

= p1q2 + q1b2 − q2b1 + c1q2 − p1q2

= q1b2 − q2b1 + c1q2

= c1q2 + q × b

which is equal to what we found for the left side. That proves (10).
It remains to prove (11). The right side of (11) is

p× b+ α+ (q − p)× (b − p)

= p× b+ (c− p)× (q − p) + (q − p)× (b− p)

= p1b2 + (c1 − p1)q2 + (q1 − p1)b2 − q2(b1 − p1)

= p1b2 + c1q2 − p1q2 + q1b2 − p1b2 − q2b1 + q2p1

= c1q2 + q × b

= c× b as shown above

That proves (11), and completes the proof that z is defined.
It remains to verify the conclusion of the axiom, namelyB(p, z, b)∧B(q, z, a).

By construction z lies on Line (p, b) and Line (a, q). Since a2 = p2 = 0, it suffices
to show 0 < z2 < b2 and 0 < z2 < q2. Recall

z2 = q2
p× b

q × (b − p)

and just before (9) we proved that the numerator and denominator are both
positive; hence 0 < z2; and we proved that the fraction is less than one, so
z2 < q2. Because B(b, q, c) we have q2 < b2. Hence z2 < b2 as well. That
completes the proof of the theorem.
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9.4 The representation theorem

In this section we will prove that every model of neutral constructive geometry
plus Euclid 5 and line-circle continuity is a plane over a Euclidean field.

Theorem 9.4 (Representation Theorem) Euclid 5 implies that the field op-
erations defined by Add and HilbertMultiply turn the x-axis into a Euclidean
field; and every point arises as MakePoint (a, b) for some a and b. Hence (con-
structively) every model of neutral constructive geometry plus Euclid 5 is iso-
morphic to a (constructive) Euclidean field. In particular, the points on a given
line are exactly the points MakePoint (x, y) where x and y satisfy a linear equa-
tion.

Proof. By Lemma 8.1, every point arises as MakePoint (a, b). By Theorem 8.5,
HilbertMultiply is defined. By Lemma 8.4, the laws of commutative rings are sat-
isfied. By Lemma 8.7, nonnegative elements have square roots. By Lemma 8.6,
positive elements have reciprocals. But this implies that all elements have
reciprocals, since 1/t = t/t2. More explicitly, if y is the reciprocal of the
positive element t2 then ty is the reciprocal of t. Hence all the laws of Eu-
clidean field theory are satisfied. Now suppose L = Line (a, b) is a line. Then
a = MakePoint (a1, a2) and b = MakePoint (b1, b2), and the points on the line
are just the points x such that the cross product (x− a)× (b− a) is zero, that
is, (x1 − a1)(b2 − a2) − (x2 − a2)(b1 − a1) = 0. By the stability of equality, we
are allowed to prove that by cases. If L is not vertical, then each vertical line
x1 = p cuts L exactly once, and since there is a point with x1 = p satisfying the
equation, we are done. If L is vertical, then b1 − a1 = 0 and b2 − a2 6= 0, so the
equation becomes x1 = a1, and indeed the points of L are exactly the solutions
of that equation. That completes the proof.

Corollary 9.5 Euclid 5 implies the strong parallel postulate in neutral con-
structive geometry.

Proof. Let line L and point p not on L be given. We may choose L as the
x-axis and p as the point I in setting up coordinates. Thus 0 is the foot of
the perpendicular from I to L, and 1 is a point on L such that 0I = 01.
Let line K be perpendicular to the y-axis at I, and let M be any other line
through I. We must prove that M meets L. According to the Representa-
tion Theorem, the points on M are exactly the points (x, y) satisfying some
linear equation dx + by = c. Here (x, y) abbreviates MakePoint(x, y). Specif-
ically, the proof of the representation theorem yields d = (a2 − 1) and c = a1,
where a = (a1, a2) is not on K, so a2 6= 1 and d 6= 0. or more officially,
Add (HilbertMultiply (d, x),HilbertMultiply (b, y)) = c. Setting y = 0 and solving
for x we find x = c/d, or officially x = HilbertMultiply (c,Reciprocal (d)). Then
x is the desired intersection point of L and M . That completes the proof.

Remark. The proof works even if M is perpendicular to L, so it provides a
continuous construction for the intersection point as M rotates through all an-
gles (except of course whenM is parallel to L). The proof provides a geometrical
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construction proceeding from the two points determining M to the coefficients
of the linear equation for M and from there to x. The construction is explicit
in the proof, and it is not difficult to see exactly what is involved, and the key
role that is played by uniform rotation. Namely, x = c/d = a1/(a2 − 1), which
is constructed by drawing a circle through I, (0, a1), and (a2−1, 0), and finding
the other intersection point with the x-axis. The points (0, a1) and (a2 − 1, 0)
have to be constructed by uniform rotation, since we are not certain whether
a1 = 0 or a2 = 1.

Corollary 9.6 Euclid 5 implies the existence of a uniform construction of the
reflection of point x in point p.

Remarks. The proof uses Euclid 5. Is there a uniform reflection construction
provable in neutral geometry?

Proof. To construct the reflection of point x in point p, set up coordinates on any
line L containing p, with p at (0, 0). Then the reflection of x in p has coordinates
(−x1,−x2). The construction in question is to use the uniform perpendicular
construction to project x on each of the two axes; then use uniform reflection
in the axes to get a = (0,−x2) and b = (−x1, 0). Then there is a point whose
projections on the axes are a and b; that is the desired point. It is not exactly
MakePoint(a, b) sinceMakePoint wants arguments on the x-axis. Technically,
we first rotate a to c = (−x2, 0). Then the desired point is MakePoint(c, b) is
the desired point. That completes the proof.

Corollary 9.7 [Stability of definedness] In elementary constructive geometry
(that is, with circles and Euclid 5), every term t for a ruler and compass con-
struction satisfies ¬¬t ↓ → t ↓.

Proof. By induction on the complexity of the term t. The problematic case is
when t has the form IntersectLines (L,M). By Lemma 6.12, this case follows
from the strong parallel axiom, and hence by Corollary 9.5, from Euclid 5. That
completes the proof.

9.5 Models and interpretations

When studying independence results relative to theories based on classical logic,
we have the completeness theorem. That enables us to replace proof theory by
model theory in some situations. For example, to transfer results about real-
closed fields to results about Tarski’s geometry (with first-order completeness)
we use the fact that the models of this geometry are all of the form F2 for F a real-
closed field. Constructively, we can often convert a model-theoretic argument to
a proof-theoretic interpretation. An interpretation is a map that associates to
each formula φ in one theory, another formula φ̄ in another theory, preserving
provability. Sometimes one has an inverse interpretation, going “the other way”.
When the two theories have different languages, the technical details are often
intimidating, or at least lengthy, and are seldom written out.
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In the case at hand, the fact is that there is an interpretation from almost
any reasonable theory of Euclidean geometry to a corresponding theory in the
language of Euclidean fields. Each “point” variable becomes a pair of variables
(x, y), and one uses the algebraic definitions of collinearity and betweenness
to interpret the predicates of incidence of a point on a line, and betweenness.
Equidistance (or segment congruence) is interpreted using the “distance for-
mula.” We write the resulting interpretation of the formula φ as φ̄. Essentially
φ̄ is nothing but ordinary analytic geometry.

There is one technical detail that should be mentioned. In an interpretation,
it is convenient if there are “enough terms” in the target theory to interpret the
terms of the source theory. For example, if we have function symbols for the
intersection points of circles and lines, since the coordinates of those points
involve square roots, it will be convenient to formulate Euclidean field theory
with a symbol for the square root. We can of course add symbols for the square
root and multiplicative inverse, conservatively over the theories as formulated
above; no matter that the square root of negative elements is not defined. Since
this paper is quite long as it is, we omit these details and just assume that the
interpretation φ 7→ φ̄ can be defined and is sound.

The reader will notice that we have not specified a precise formal theory for
Euclidean geometry. Indeed one of our points is that we have a lot of latitude
to make choices about the details of the theory. We now suppose, however,
that “neutral ECG” is a theory of Euclidean constructive geometry (with no
parallel axiom) such that the interpretation φ 7→ φ̄ is sound into the theory
of Playfair rings. This is true of the version of ECG presented in [3] and the
version mentioned in [4] and presented in detail in [6], and of many variations
on these theories.

The following theorem states the soundness of this interpretation for two
versions of the parallel postulate:

Theorem 9.8 (i) If φ is provable in ECG with Playfair’s axiom instead of the
strong parallel postulate, then φ̄ is provable in the theory of Playfair rings.

(ii) if φ is the strong parallel postulate, then φ̄ is equivalent to the statement
that nonzero elements have multiplicative inverses (using the other axioms of
Euclidean field theory).

Remark. The theorem states more than just the faithfulness of the interpre-
tation. Faithfulness would only require that φ̄ be provable from, rather than
equivalent to, the corresponding field theory axiom in (ii) and (iii).

Proof. We are assuming that φ̄ is provable in the theory of Playfair rings for
all the axioms of neutral ECG. It remains to check the interpretations of the
parallel axioms.

Ad (i). Recall that Playfair’s axiom hypothesizes a line L (which we may
interpret as the x-axis), a point p not on L (which we may interpret as (0, b)),
and two lines K and M through p, that are both parallel to L. The conclusion
is that K and M coincide. We may assume without loss of generality that one
of the lines, say K, makes a right angle with the perpendicular from p to L, so
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all points on K have the same y-coordinate b. Let (u, v) be another point on
M . We must show v = b. If v − b has a multiplicative inverse, then ordinary
analytic geometry allows us to compute the coordinates of a point that lies on
M and L, contradiction. Hence v−b has no inverse. Hence, by Playfair’s axiom
in field theory, v − b = 0. That completes the proof of (i).

Ad (ii). We coordinatize the diagram in Fig. 19. We may assume s = (0, 0)
and L is the x-axis. Let the equation of M be Ax + By = C. Setting y = 0
we find x = C/A, so M and L will meet if and only if A has a multiplicative
inverse. Since the point a on M is assumed not to lie on K, A 6= 0. Hence, the
axiom in field theory that nonzero elements have inverses is sufficient to prove
φ̄. Conversely, given a nonzero field element A, we take s = (0, 0), q = (2, 0),
t = (1, 1), p = (0, 2), r = (2, 2), and a = (2, 2− 4A). The equation of M is then
2Ax+ y = 2. Since 1 < 2, 1/2 is a bounded quotient, so 2 has a multiplicative
inverse in every Playfair ring. Assume φ̄. Then K and L meet; hence there is
an x such that 2Ax = 2. Since 2 has a multiplicative inverse, we have Ax = 1,
so x is the inverse of a. That completes the proof of the lemma.

We can also define an “inverse” interpretation φ◦ from Euclidean field theory
to geometry. The details of this interpretation and its soundness are lengthy
and technical, and the result is not needed anyway for our independence proofs,
so we omit those details (although we have in fact written them out).

10 Independence in Euclidean field theory

One might also ask what the field-theoretic version of Playfair’s axiom is. Recall
that Playfair says, if p is not on L and K is parallel to L through p, that if line
M through P does not meet L then M = K. Since ¬¬M = K → M = K,
Playfair is just the contrapositive of the strong parallel postulate, which says
that if M 6= K then M meets L. Hence it corresponds to the contrapositive of
x 6= 0 → 1/x ↓; that contrapositive says that if x has no multiplicative inverse,
then x = 0. Thus Playfair geometries correspond to ordered fields in which
elements without multiplicative inverses are zero. Of course, we need bounded
quotients to exist, to make Pasch’s axiom be satisfied in F2, but the Playfair
axiom is satisfied in F2 when elements without multiplicative inverses are zero.

Constructively, the strong parallel postulate implies Playfair; we wish to
show that the implication is not reversible. Since classically, the implication is
reversible, we cannot hope to give a counterexample. In terms of field theory,
we won’t be able to construct a Euclidean ring in which all elements without
reciprocals are zero, but not all nonzero elements have reciprocals. We must
use some tools of logic.

Among the possible techniques for proving that a constructive implication
is not reversible is the method of Kripke models. We shall not explain this
technique in its full generality, but only in the case of theories based on (ordered)
ring theory. A full explanation can be found in [31], but the presentation here
is self-contained.
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10.1 What is a Kripke model of ring theory?

It will be essential to understand the notions “term” and “formula” (of ordered
ring theory) as logicians use them. A term is, intuitively, an expression meant
to denote an element of a ring. A variable (such as x, y, etc.) is a term, and so
are the constants 0 and 1. If t and s are terms then so are (t · s) and (t+ s), as
well as (−t) and (1/t). In informal usage, many parentheses are left unwritten,
according to the usual conventions. For example, (1/((x + 1) · (y + 1))) is a
term. Note that 1/0 is technically a term; not every term necessarily denotes
something (“is defined”).

Next we explain the notion “formula”. This notion is defined recursively:
formulas are built up by combining smaller formulas using the logical connectives
∧ (and), ∨ (or), ¬ (not), and → (implies), as well as the quantifiers ∀x and
∃x, according to some rules which we will not spell out in detail. The base case
of this definition is the “atomic formula”, which is either of the form P (t) for
some term t, or of the form t = s for some terms t and s, or of the form t ↓ for
some term t. The formula t ↓ is read “t is defined.”

An (ordered) ring is a model of (ordered) ring theory; a Kripke model of
(ordered) ring theory is a more complicated thing. It is a collection of rings,
Rα, where the subscripts α come from some partial ordering (K,<). Each Rα

must have a notion of “positive”; that is, a subset of so-called positive elements
to interpret the predicate symbol P (x), but it is not required that Rα be an
ordered ring. The ordering on the index set K has nothing to do with the
ordering on the ring, which is given by a predicate P (x) defining the positive
elements. It is often required that if α ≤ β, then Rα is a subring of Rβ . It will
be convenient to generalize this requirement by allowing Rα to be embedded
in Rβ by means of a one-to-one function jαβ (which would be the identity if
Rα ⊆ Rβ). These functions must compose according to the law jαβjβγ = jαγ .
Using some abstract nonsense, we could replace each Rα by a suitable copy to
ensure that the jαβ are all the identity and Rα ⊆ Rβ , but it is convenient not
to require that. There is also a requirement of “persistence”: if x is positive in
Rα, then jαβ(x) has to be positive in Rβ. But note, there can also be positive
elements in Rβ that do not arise in that way.

The Kripke model R is technically the function α 7→ Rα with domain K,
though one often thinks of it as the collection of the Rα. Usually the index
set K has a least element, the “root”. The elements of K are called “nodes”.
Usually (and in all the models we will use) the set K is a tree, i.e., the set of
nodes less than any given α is linearly ordered. What we have defined so far
is a “Kripke structure”; to be a Kripke model of (ordered) ring theory, or of
ordered field theory, the structure must “satisfy the axioms” of the theory. We
next define that concept.

We consider valuations σ; these are functions that assign an element xσ ofRα

to each variable x. (Logicians write valuations on the right, as xσ, rather than
σ(x).) If σ is a valuation, it starts out as a function defined on variables, but is
easily extended to a function defined on terms. For example, (t+s)σ = tσ+sσ,
where the + on the right is addition in Rα, and the + on the left is just a symbol.
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This extended function is a partial function, because (1/t)σ is undefined if tσ
is 0. If t belongs to the domain of the extended valuation σ then we say t is
defined in Rα. If α < β and σ is a valuation into Rα and τ is a valuation into
Rβ then we say τ agrees with σ at x if xσ = (jαβx)τ .

We next define the notion “Rα satisfies formula A under valuation σ”, which
is written Rα |=σ A. The rules for this definition are as follows:

Rα |=σ P (x) if and only if xσ is positive in Rα

Rα |=σ t = s if and only if terms tσ and sσ are equal (equivalent) elements of Rα

Rα |=σ t ↓ if and only if tσ is defined in Rα

Rα |=σ (A ∧B) if and only if Rα |=σ A and Rα |=σ B

Rα |=σ (A ∨B) if and only if Rα |=σ A or Rα |=σ B

Rα |=σ (¬A) if and only if for all β ≥ α and valuations τ on Rβ ,

if τ agrees with σ then not Rβ |=σ A

Rα |=σ (A → B) if and only if for all β ≥ α

Rβ |=σ A implies ∃γ ≥ βRγ |=σ B

Rα |=σ (∃xA) if and only if for some τ that agrees with σ

except perhaps on x, Rα |=τ A

Rα |=σ (∀xA) if and only if for all β ≥ α, if x ∈ Rβ and

τ is a valuation on Rβ that agrees with σ

except perhaps on x, then Rβ |=τ A

A Kripke model of a theory T is one such that all the axioms of T are
satisfied at every node of the model, i.e., Rα |=σ A for every axiom A and every
valuation. The Kripke completeness theorem says that the formulas A that are
provable from T with intuitionistic logic are exactly the formulas satisfied in
all Kripke models of T . In particular, if one can construct a Kripke model of
T in which some formula B is not satisfied, then B is not a consequence of T
with intuitionistic logic.19 Such a model is called a Kripke countermodel to B.
We will apply this technique to settle the question of the reversibility of the
implications between the different forms of the parallel postulate.

10.2 A Kripke model whose points are functions

The following concepts will be used to develop Kripke models in which the
“points” are functions.

Definition 10.1 A function f from R to R is called positive definite if
f(x) > 0 for every x.

f is called positive semidefinite if f(x) ≥ 0 for all x.
f is called strongly positive semidefinite if it is positive semidefinite and

is not zero on any open interval.

19See [31] for a proof of the Kripke completeness theorem, and Exercise 4, p. 99 of [2] for
the extension to the logic of partial terms.
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Definition 10.2 A Pusieux series in t is a power series in a rational power
of t, convergent in a neighborhood of 0.

A Pusieux series at a in t is a power series in a rational power of (t− a),
convergent in a neighborhood of a.

A generalized Pusieux series in t is a Pusieux series in t or a power
series in a rational power of t, times |t|, convergent in a neighborhood of 0.

A generalized Pusieux series in t at a is a Pusieux series in (t − a)
or a power series in a rational power of (t − a), times |t − a|, convergent in a
neighborhood of a.

A Pusieux series at ∞ is a Pusieux series convergent in a neighborhood
of ∞; similarly for a generalized Pusieux series at ∞.

For example,
√
t3 = |t|

√
t has a generalized Pusieux series at 0, but not a

Pusieux series.

Theorem 10.3 In constructive Euclidean field theory, the following are not
provable:

(i) “two-sides”, namely x 6= 0 → x > 0 ∨ x < 0;
(ii) x ≤ 0 ∨ 0 ≤ x
(iii) “apartness”, namely 0 < x ∨ x < 1.

Proof. Let K be the field of “constructible numbers”, which is the least subfield
of R closed under taking square roots. Let A0 be the ring of polynomial
functions from R to R with coefficients in K. A0 is not a field, since for example
1/t does not belong to A0. For each nonnegative integer n, we define the ring
An+1 to be the least set of real-valued functions containing An together with all
sums, differences, and products of members of An, together with all square roots
of positive semidefinite members of An, and reciprocals of all strongly positive
semidefinite members of An. These square roots and reciprocals are defined on
dense subsets of R, as shown below. For example, the functions

√
1 + t2 and

1/(1 + t2) are in A1, and

√

√

1 + t2 +
√

1 + t4 +
1

1 + t2

is in A2. Also
√
x2 = |x| is in A2, and |x| − x is in A3; that function is zero on

the positive real axis. Now define A to be the union of the An. Then A is a ring
of functions from R to R. Another way of describing A is to say that it is the
least ring of functions containing K[x] and closed under taking square roots of
positive semidefinite functions and reciprocals of strongly positive semidefinite
functions. (If a function in A is positive semidefinite, but vanishes on some
interval, its square root is in A, but not its reciprocal.)

We claim that each f in An (i) is defined at all but a finite number of points
in R, and has a Pusieux series at all but a finite number of points a, and also
has a Pusieux series at ∞, and a generalized Pusieux series at the remaining
points of its domain, and (ii) f is zero on a finite number of closed intervals and
a finite number of isolated points.
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For example |x| =
√
x2 does not have a Pusieux series at 0; but such points

(of functions in An) occur only at the zeroes of functions belong to An−1, as we
will show in detail below.

We prove (i) and (ii) simultaneously by induction on n. First we show that
(i) at n follows from (ii) at n − 1. Case 1, f is a square root, f =

√
g and

g(x) ≥ 0 for all x. Then at points where g(x) > 0, f has a Pusieux series,
and at the finitely many points (by (ii) for n − 1) where g(x) = 0, f has a
generalized Pusieux series; and f is everywhere defined and has a Pusieux series
at ∞. Case 2, f is a reciprocal of a strongly positive semidefinite function g in
An−1. Then by (ii) for n − 1, g has only finitely many zeroes (since there are
no intervals of zeroes because g is strongly positive definite), so the domain of f
omits only finitely many points, and at each of those points where g is positive,
f is defined and has a Pusieux series, and at the finitely many points where g
is zero, it is undefined; so (i) for n follows from (ii) for n − 1 also when f is a
reciprocal. When f is a sum or difference, (i) for n follows from (i) for n − 1.
Now we show that (ii) at n follows from (i) at n. By (i) at n, f in An has a
Pusieux series at a for all but finitely many points a; and at the points where
f has a Pusieux series, if f(a) = 0 then the zero is isolated, or the function is
identically zero in an interval about a. The endpoints of these intervals of zeroes
will be among the finitely many points where f does not have a Pusieux series,
so there are finitely many of these intervals. Hence the zeroes of f consist of (at
most) finitely many points where f does not have a Pusieux series, plus finitely
many intervals, plus finitely many points where f does have a Pusieux series–
altogether finitely many. So (ii) for n does follows from (i) for n, as claimed.
That completes the inductive proof of (i) and (ii).

We call a zero of f “half-isolated” if it is the endpoint of one of the intervals
on which f is zero. By (i) and (ii), there is a countable set of reals that includes
all the isolated or half-isolated zeroes and all the singularities of all the functions
in A. Define Ω to be the complement of that set; thus for each f in A, if f(x)
is zero for any x in Ω, then f is identically zero on some interval about x. Note
that, since the complement of Ω is countable, Ω is dense in R.

We will exhibit a Kripke model K of Euclidean field theory. The partially
ordered set K (of nodes of K) is {0} ∪ Ω, ordered so that 0 is the root node,
and 0 < α for each α ∈ Ω, and the different elements of Ω are incomparable.
The root node of this model is the ring A, with P (x) interpreted to mean
“x is strongly positive semidefinite.” We interpret equality as “equal almost
everywhere”; that is, x = y holds in the root node if and only if x(α) = y(α)
except for a finite set of numbers α. For example, x · y = 1, where x is the
function x(t) = |t|, and y(t) = 1/|t|, and 1 is the constant function with value
1, because except for α = 0, we have x(α)y(α) = 1.

A is not even an ordered ring, because there are polynomials x such that
neither x nor −x is strongly positive semidefinite. But we can still use A as the
root of our Kripke model.

For α ∈ Ω, the structure Aα at the node α is the quotient field of A, with
P (x) interpreted to mean that x(α) > 0, and x = y interpreted to mean that
x and y are equal on some neighborhood of α. In other words, the elements
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of A(α) are equivalence classes of quotients of members of A, where f/g is
equivalent to u/v if vf and ug agree in some neighborhood of α. Since Ω does
not include any singularities or zeros of members of A, x(α) is defined for each
x in Aα.

We note thatAα is isomorphic to the least Euclidean subfield of R containing
α. The isomorphism is given by x 7→ x(α). It is an isomorphism because its
kernel is trivial, since x(α) = 0 only if x is identically zero on some neighborhood
of α. Moreover, if P (x) holds in A, then x is strongly positive semidefinite and
not identically zero; hence for α in Ω, we have x(α) > 0, since x(α) 6= 0 for α
in Ω. Hence P (x) holds in Aα.

The ring axioms are satisfied in this Kripke structure, since all these struc-
tures are rings. The ordered field axioms are satisfied at the leaf nodes Aα, since
these structures are classical ordered fields. We therefore only need to verify
the reciprocal and order and square root axioms at the root node A.

Consider Axiom EF2, which says that sums and products of positive elements
are positive. This holds at A since the sum and product of strongly positive
semidefinite functions are also strongly positive semidefinite.

Consider Axiom EF3,which says that not both x and −x are positive. Sup-
pose both x and −x are strongly positive semidefinite members of A. Then for
each α ∈ Ω we have x(α) > 0 and −x(α) > 0, since x(α) is not zero for α in Ω.
But that is a contradiction; hence Axiom EF3 holds at A.

Consider Axiom EF4, which says that if both x and −x are not positive,
then x is zero. Suppose both x and −x are satisfied at A to be not positive.
That means that for every node Aα, x and −x are not positive at Aα. That is,
x(α) ≤ 0 and −x(α) ≤ 0. Hence, x(α) = 0. But by construction, Ω excludes
the zeroes of x, contradiction. Hence A satisfies Axiom EF4.

Consider Axiom EF5, which says that if −x is not positive, then x has a
square root. If x is identically zero there is nothing to prove, so we may assume
that x is not identically zero. IfA satisfies that−x is not positive, i.e., A satisfies
¬P (−x), that means that −x is not positive in any Aα; that is, −x(α) ≤ 0 for
all α ∈ Ω. Then x(α) ≥ 0. Since this is true for every α ∈ Ω, and since Ω is
dense in R, and x is continuous, it follows that x is positive semidefinite. Hence√
x belongs to A, by construction of A. Hence A satisfies Axiom EF5.
We now consider Markov’s principle EF6. Suppose that ¬¬P (x) is satisfied

at the root node A. Then for every α in Ω, P (x) is satisfied at the leaf node
Aα; that means that x(α) > 0 for each α in Ω. As shown in the verification of
E5, this implies that x is positive semidefinite; and it is not identically zero on
a neighborhood of α, since x(α) > 0. Hence P (x) is satisfied at the root node
A.

Axioms EF2 to EF7 imply that if x 6= 0, then P (x2). We prove this as
follows: if P (x) then P (x2) by EF2. If −P (x) and x 6= 0 then ¬¬P (−x) by
EF4, so P (−x) by EF6, so P ((−x)2) by EF2, so P (x2) since (−x)2 = x2 by the
commutative ring laws. Assume x 6= 0. We have ¬¬(P (x)∨P (−x)), and either
disjunct implies P (x2). Hence ¬¬P (x2). Hence by EF6, P (x2).

Now we consider Axiom EF1, which says nonzero elements have reciprocals.
It suffices to show that positive elements have reciprocals, since if x 6= 0, then
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P (x2), and 1/x = x/x2. More explicitly, if y is a multiplicative inverse of x2

then xy is a multiplicative inverse of x.
Suppose P (x) is satisfied at the root node; then x is strongly positive semidef-

inite and not identically zero, and x belongs to some An; so 1/x belongs to
An+1. Then x · (1/x) = 1 is satisfied, since x(α) · (1/x(α)) = 1 except when
x(α) = 0, and the set of zeroes of x is a finite set, because x is strongly positive
semidefinite. Hence EF1 is satisfied.

The commutative ring axioms are satisfied, since the structure at every node
of K is a commutative ring. Thus K is a Kripke model of Euclidean field theory.

Therefore any statements that are not satisfied in K are not provable in
Euclidean field theory. For example, P (x) ∨ ¬P (x) is not satisfied, since when
x is the identity polynomial i(t) = t, P (i) fails at the root node because i is not
positive semidefinite, and ¬P (i) also fails at the root node, since i is positive
at every leaf node α with α > 0.

Ad (i), namely that “two-sides” is not satisfied: Again let i be the identity
function. Then K satisfies i 6= 0, since i = 0 is never satisfied at a leaf node α
in Ω, since 0 does not belong to Ω. By definition x < 0 means P (−x). At the
root node, neither i nor −i is positive definite, so 0 < i ∨ i < 1 is not satisfied.
Hence x 6= 0 → x > 0 ∨ x < 0 (which is “two-sides”) is not satisfied.

Ad (ii), namely that x ≤ 0 ∨ 0 ≤ x is not satisfied: y ≤ x means ¬P (y − x),
so the principle under consideration is ¬P (x)∨¬P (−x). Again we take x to be
the identity function i. Since at some nodes α we have P (i) (when α > 0) and
at other nodes we have P (−i) (when α < 0), neither disjunct is satisfied at the
root node.

Ad(iii), namely that 0 < x ∨ x < 1 is not satisfied: in primitive syntax
this principle is P (x) ∨ P (1 − x). Again taking x to be the identity function,
neither disjunct is satisfied at the root node, since neither i nor 1− i is positive
semidefinite.

That completes the proof.

Remark. In [6], we use cut-elimination to give a completely different proof of
this theorem. In some respects that proof is better, as it shows a more general
conclusion, and it exposes the “reason for” these results: namely, the axioms
are quantifier-free and disjunction-free.

The proof presented here is also interesting, because the “points” of this
model give us a better intuition into the possible interpretations of constructive
geometry. A point (i, 0) (where i is the identity function) represents a point
about which all we know is that it is on the x-axis, but we don’t know where. It
is not “located”. A point (x, 0), where |x| is a piecewise linear function, equal
to −1 for t ≤ −1 and to 1 for t ≥ 1, represents a point of which we know that it
is between −1 and 1. The model shows that there is a consistent interpretation
of this vague idea.

10.3 A Kripke model with fewer reciprocals

Recall that “Playfair ring theory” is the theory of ordered fields satisfying Ax-
ioms EF0, EF2-EF6, and EF7-EF8. That is, without the axiom of reciprocals
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(EF7), but with the axiom (EF7) that elements without reciprocals are zero,
and the axiom (EF8) that says that bounded quotients exist.

Theorem 10.4 Playfair ring theory does not imply that reciprocals of positive
elements exist.

Proof. To say that ¬∃y (y · x = 1) holds at a node A of a Kripke model is to
say that no node above A contains an inverse of x. If one of the leaf nodes
above A is a (classical) field, then x must be zero in that field, and hence in A
also. Hence the axiom that elements without reciprocals are zero will hold in
any Kripke model, all of whose leaf nodes are fields. What we need, then, is a
Kripke model in which all the leaf nodes are ordered fields, and the root node
has a positive element without a reciprocal.

Recall that x is “strongly positive semidefinite” if it is positive semidefinite,
and it is not zero on any open interval. We construct a model similar to the
one in the preceding proof, but differing as follows: When constructing A, we
throw in square roots of positive semidefinite functions as before, but instead of
throwing in reciprocals of all positive semidefinite functions, we throw in (only)
bounded quotients.

More precisely, if u and v have Pusieux series at a point α where v is zero,
and u/v is bounded in a neighborhood of α, then u/v can be extended (using the
Pusieux series) to be defined at α as well. When we write u/v in this context, we
mean the extended function. Let A0 be the ring of polynomial functions from R

to R with coefficients in K. For each nonnegative integer n, we define the ring
An+1 to be the least set of real-valued functions containing An together with
all sums and differences of members of An, together with all square roots of
positive semidefinite members of An, together with u/v for each three functions
u, v, y in An such that v has at most finitely many zeroes, and

|u| ≤ |v|y.

wherever both sides are defined.
The domains of these functions are dense subsets of R, as we will show below.

Now define A to be the union of the An. Then A is a ring of functions from R

to R. Another way of describing A is to say that it is the least ring of functions
containing K[x] and closed under taking square roots of positive semidefinite
functions, and closed under the rule that if |u/v| ≤ y and u, v, and y are in A
and v has only finitely many zeroes, then u/v (extended to the zeroes of v) is
in A.

As in the previous model, all the members of A have Pusieux series except
at finitely many points, and their zero sets have the same structure as before,
so we can again find a countable set containing all the singularities and all the
isolated and half-isolated zeroes. Let Ω be the complement of this countable
set, and define a Kripke model as before, with index set {0,Ω} and R0 = A
and for σ ∈ Ω, Rσ = Aσ, that is, A ordered by evaluation at σ. We claim that
all members of A are continuous on the real line. To prove this, we proceed by
induction on n to prove that the members of An are continuous on the whole
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real line. That is true for n = 0, since the elements of A0 are polynomials. The
square root of a positive semidefinite function continuous on R is also continuous
on R, as are sums and differences of such functions. Suppose |u/v| ≤ y and u,
v, and y are in An. Then u/v will be in An+1. By induction hypothesis, u, v,
and y are defined everywhere. Then as explained above, u/v is extended by its
Pusieux series to be defined at the zeroes of v, so it too is defined everywhere.
That completes the proof that all members of A are continuous on R.

We define P (x) to hold at the root node if and only if x is strongly positive
semidefinite. The verification of axioms E2 through E6 is the same as in the
previous proof.

EF7 holds, because if ∀y¬ (xy = 1) holds at the root node, then at every
leaf node α and for every y in A, we have x(α)y(α) 6= 1. Hence x(α) = 0 for
every α in Ω. But x is continuous and Ω is dense; hence x is identically zero;
hence the root node satisfies x = 0.

Now we verify Axiom EF8. It is automatic at the leaf nodes since there the
structures are Euclidean fields. We check the root node. Suppose |u| ≤ |v|y.
Then (the Pusieux extension of) z of u/v belongs to A, and satisfies u = zv.
Hence EF8 holds at the root node.

It only remains to show that EF1 is not satisfied at the root node. If EF1
were satisfied at A, then every nonzero element of A would have its reciprocal
in A. To refute this, take i to be the identity function. Suppose iy = 1 holds at
the root node. Then it holds at every leaf node α, so y(α) = 1/α for each α in
Ω. But y is continuous and Ω is dense, so y is everywhere defined and y(t) = 1/t
for every t, which is impossible when t = 0. That completes the proof.

10.4 Independence of Markov’s principle

Theorem 10.5 Markov’s principle is independent of the other axioms of Eu-
clidean field theory.

Proof. We construct a model similar to the ones used above, in which
Markov’s principle EF6 fails, but the other axioms hold. Let A be the same
class of functions used in the first model K above, but this time interpret P (x)
at the root A as “x is positive definite”, instead of as “x is positive semidefinite
and not identically zero.” Then the function x(t) = t2 is not satisfied to be
positive at the root node, but since 0 is not in Ω, we have x(α) > 0 for all α in
Ω, so P (x) is satisfied at every leaf node. Hence ¬¬P (x) is satisfied at the root
node. Hence ¬¬P (x) → P (x) is not satisfied at the root. Hence Markov’s
principle EF6 is not satisfied in this model.

The other axioms of Euclidean field theory are verified as in the proof of
Theorem 10.3. That completes the proof.
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11 Independence of Euclid 5

In this section we give two different proofs that Playfair’s axiom does not imply
Euclid 5. Our first proof can be given without committing to a specific axiom-
atization of constructive geometry! All we need to assume is that the axioms of
the theory (other than the parallel axioms) are soundly interpreted by ordinary
analytic geometry in the theory of Playfair rings. The second proof, on the
other hand, does not depend on the theory of Playfair rings at all, but does de-
pend on the existence of a quantifier-free axiomatization of constructive neutral
geometry. We present such an axiomatization in [6]. Given that axiomatization,
the second proof is perhaps simpler, but the first proof has the advantage of not
depending on the details of the axiomatization. It is worth giving two proofs, as
each of the models we give illustrates different aspects of constructive geometry.
The second proof, for example, shows that Playfair does not imply Euclid 5,
even with the aid of decidable equality and order, while the first shows Playfair
does not imply Euclid 5, even with the aid of the negations of decidable equality
and order.

11.1 Playfair does not imply Euclid 5

In this section, φ̄ denotes the interpretation of the geometric formula φ in (the
language of) Euclidean field theory, as discussed above. “Neutral geometry”
means geometry without any parallel postulate.

Theorem 11.1 (Playfair does not imply Euclid 5) Suppose given a the-
ory T of neutral constructive geometry such that the analytic-geometry inter-
pretation φ 7→ φ̄ is sound from T to the theory of Playfair rings. Then in T ,
the strong parallel postulate implies Playfair’s postulate, but not conversely.

Corollary 11.2 Playfair’s postulate does not imply Euclid 5, or any of the
triangle circumscription principles.

Proof. The corollary follows from the theorem, since we have proved in Corol-
lary 9.5 that Euclid 5 is equivalent to the strong parallel postulate, and in
Theorem 6.18 that the strong parallel postulate is equivalent to the triangle
circumscription principles.

In Theorem 6.11, we proved that Euclid 5 implies Playfair’s axiom. It there-
fore suffices to show that Playfair’s axiom does not imply the strong parallel
postulate. Let φ be Playfair’s axiom, and ψ be the strong parallel postulate.
Suppose T prove φ → ψ. According to Theorem 9.8, part (i), the theory of
Playfair fields proves φ̄ → ψ̄, and also φ̄. Hence ψ̄ is provable in Playfair ring
theory. But, according to Theorem 9.8, part (ii), ψ̄ is equivalent to EF1, the ax-
iom that nonzero elements have reciprocals. Hence the theory of Playfair rings
proves EF1. But that contradicts Theorem 10.4. That completes the proof of
the theorem.
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11.2 Another proof that Playfair does not imply Euclid 5

In this section, we give a different Kripke model, providing a second proof of this
independence result. Although technically we have defined Kripke models in this
paper only for ordered ring theory, the definition of Kripke models for geometry
is similar; only the atomic sentences are different. The model in question we
call D, after Max Dehn. It has only two nodes. Let F be a non-Archimedean
Euclidean field. A member x of F is infinitesimal if 1/x is greater than every
integer. A member x of F is finitely bounded, or just finite, if |x| < n for some
integer n. Let D be the set of finitely bounded elements of F. Let the root node
of D be D2, and the leaf node be F2.

Theorem 11.3 The Kripke model D satisfies Playfair’s axiom and neutral con-
structive geometry, including line-circle and circle-circle continuity, but does not
satisfy Euclid 5. Moreover, it also satisfies the trichotomy law

x < y ∨ x = y ∨ x = y,

when expressed in geometric language.

Proof. We start by pointing out that F2 is a model of classical Euclidean ge-
ometry. Next we observe that D2 is a model of classical neutral geometry. (See
Example 18.4.3 and Exercise 18.6 of [16].) Specifically, the points asserted to
exist by Pasch’s axiom and by line-circle and circle-circle continuity have finite
coordinates, if the points given in the axioms have finite coordinates. Euclid 5,
however, fails in D2, since if t is infinitesimal, there is a line passing through
(0, 1) with slope t, whose intersection point with the x-axis is at (1/t, 0), which
does not belong to D.

Next we observe that it is possible to axiomatize neutral constructive ge-
ometry so that all the axioms are quantifier-free. For an example of such an
axiomatization, see [6]. Then all the formulas in the axioms (with parameters
from D2) hold at node D if and only if they hold at node F2, since that is true
of equality, betweenness, and equidistance statements. Hence the Kripke model
D satisfies constructive neutral geometry. Since Euclid 5 fails classically in D2,
it also fails in the Kripke model D.

Lines in this model are specified by two points. If a 6= b then the points on
Line (a, b) are the points satisfying (x − a) × (b − a) = 0. Thus if a and b are
finite, there are points in F2 that are satisfied to be on Line (a, b) that are not
in D2. The interpretation of Line (a, b) is the extension of that line in F2.

We next show that Playfair’s axiom holds in D. Let line L be given in D2,
and let point p in D2 not lie on L. Suppose D2 satisfies that line M is parallel
to L. That is, ¬∃x (on(x, L) ∧ on(x,M). Then F2, as a node above D2 in D,
does not satisfy ∃x (on(x, L) ∧ on(x,M). That is, M and L do not meet, even
in F2. Since F2 satisfies Euclid 5, there is only one such line in F2. Hence there
is only one parallel to L through p in D, though there are many parallels to L
through p in D2. Hence Playfair’s axiom holds in D.

We now show that equality, equidistance, and betweenness are stable in D.
Let A be an atomic statement (equality, betweenness, or equidistance) with
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parameters from D and suppose that D satisfies ¬¬A. Then F2 satisfies A. But
then D2 satisfies A, since D2 is a submodel of F2.

Finally, we observe that trichotomy holds in D since betweenness relations
hold in D2 if and only if they hold in F2. That completes the proof of the
theorem.

Remarks. Similarly, the Kripke model with nodes F and D satisfies the
axioms of Playfair rings, but not the Euclidean field axioms. So we could have
used that model, together with the interpretation of geometry in Playfair rings,
to prove the theorem, instead of relying on rings of functions. The two models
cast different lights on constructive geometry: in the Dehn model, Euclid 5 is
unprovable because there are different lines whose intersection point cannot be
bounded in advance, because it’s “too far away”. On the other hand, in the
model whose “points” are functions, the “point” given by the identity function
represents a point of which we do not know anything at all about its position: in
the future, it might turn out to be anywhere on the line L, so if we use it as the
slope of a line through (0, 1), of course we can’t compute the intersection point
of that line with the x-axis. In the Dehn model, there is no such “uncertainty”
about the location of a point; points are located just as they are classically.
What is uncertain is the extent of lines–just how far away is “infinity”? The
two models illustrate two different reasons why Euclid 5 is not constructively
valid.

12 Conclusion

We have made the following main points in this paper:

• It is possible, indeed elegant, to do Euclidean geometry with intuition-
istic logic, i.e., without arguments by cases. One is permitted to prove
statements about betweenness and congruence by contradiction, using the
stability axioms, as long as only atomic statements are proved that way.
It is not necessary to introduce new, purely intuitionistic concepts, such
as apartness.

• In constructive geometry with Euclid 5, all of Euclid’s results are still
provable. Moreover, the geometric definitions of addition, multiplication,
and square root can be given constructively, i.e., without case distinctions,
so the models of constructive geometry are all planes over Euclidean fields.
This is the “representation theorem”.

• Euclid 5 turns out to imply the strong parallel postulate. This is proved
by verifying that Euclid 5 suffices for coordinatization and for geometric
definitions of addition and multiplication.

• There is a representation theorem for models of Playfair’s axiom: they
are all planes F2 over Playfair rings, which are like Euclidean fields except
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instead of reciprocals of nonzero elements, we only have the existence of
bounded quotients.

• Playfair’s axiom, which Hilbert and most modern authors use in place
of Euclid’s parallel postulate, is constructively weaker: It does not imply
Euclid 5 using the other axioms of constructive geometry. This result is
not sensitive to the exact choice of language or of the axioms of neutral
geometry; all one needs is that the axiomatization should be quantifier-
free and disjunction-free, or alternatively, that the representation theorem
holds.

These results complement our other work on constructive geometry: In [3]
and [6] we have given formal theories in the styles of Hilbert and Tarski, re-
spectively. Since these axiomatizations are quantifier-free and disjunction-free
theory, we obtain from cut-elimination and Gödel’s double-negation interpreta-
tion that

• Points, lines, and circles that one can prove to exist constructively are
constructible with ruler and compass, uniformly (and hence continuously)
in parameters.

• For quantifier-free theorems (with Skolem functions corresponding to exis-
tential axioms), non-constructive proofs can be converted to constructive
proofs. Hence we can import may of the theorems from [28] into construc-
tive geometry.
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