Improving relaxed planning graph heuristics for metric optimization

*

Raquel Fuentetaja and Daniel Borrajo and Carlos Linares
Departamento de Informatica, Universidad Carlos IIT de Madrid
Avda. de la Universidad, 30. 28911 Leganés(Madrid). Spain
rfuentet@inf.uc3m.es, dborrajo@ia.uc3m.es, clinares @inf.uc3m.es

Abstract

Currently a standard technique to compute the heuris-
tic in heuristic planning is to expand a planning graph
on the relaxed problem. This paper presents a new ap-
proach to expand the planning graph, such that heuris-
tic estimations are more accurate when an optimiza-
tion metric criteria is given. Additionally, a new kind
of Hill-Climbing search that combines two heuristics is
proposed to deal with metrics. Results show that the
quality of the resulting plans with respect to the metric
optimization criteria is improved.

Introduction

One of the most successful techniques in STRIPS planning
is to guide the search through the state space by a heuris-
tic function derived from the specification of the planning
domain and problem. One general approach for deriving
heuristics is to formulate a simplified (or relaxed) version of
the problem. Solving this simplified problem is, in general,
easier than solving the original problem. Thus, the solution
of the relaxed problem is used to estimate the distance to
the goal. The most common relaxation used by the plan-
ning community, first proposed by McDermott (McDert-
mott 1996) and used in a big number of planners is to ig-
nore the delete actions of the domain operators. Exam-
ples of these planners are HSP (Bonet & Geffner 2001),
FF (Hoffmann & Nebel 2001), GRT (Refanidis & Vlahavas
2001), and SAPA (Do & Kambhampati 2003). A usual
technique to generate the relaxed plan is the application of
GRAPHPLAN (Blum & Furst 1995) to the relaxation. The
GRAPHPLAN’s planning graph can be generated in poli-
nomial complexity (both in time and space) under such a
representation where propositions have binary domains.
Nowadays, some heuristic search planners have been ex-
tended to deal with representations that express more faith-
fully features of real-world problems, like temporal actions
and numerical resource requirements. The most widely ac-
cepted language to model these features is PDDL2.1 (Fox
& Long 2003), which was used as the input language for the

*This work has been partially supported by the Spanish MCyT
project TIC2002-04146-C05-05, MEC project TIN2005-08945-
C06-05 and regional CAM-UC3M project UC3M-INF-05-016.
Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

3rd International Planning Competition (Long & Fox 2003).
Among other features, PDDL2.1 incorporates the possibility
to define numerical constraints and effects on a finite set of
numerical state variables. These numerical state variables
have been typically used to represent fuel consumption, dis-
tances, data capacities, etc. Also, PDDL2.1 allows defining
problems with quality metrics. A quality metric is usually
a numerical expression defined in terms of numerical state
variables to be either maximized or minimized. Therefore,
a solution plan is said to be optimal if the sum of operators
costs is maximal or minimal with respect to a given quality
metric.

When dealing with domains with numerical state vari-
ables, where the domains of these variables are usually real
numbers, the following items shall be carefully observed:

1. the pre-conditions of actions may impose complex con-
straints (inequalities) on these variables, such as (fuel
plane)>100.

2. the effects of actions may modify the values of the
variables in several ways, such as increase (fuel
plane) in 10, decrease (fuel plane) by
10, etc.

3. the objective of the planner is not just to find a short plan
in terms of number of operators in it, but to find an optimal
(or near optimal) plan with respect to the metric expres-
sion.

In general, the way a numerical heuristic planner solves
these issues determines the values of the heuristic estima-
tion and, therefore, the search tree and the quality of the
generated plans. The idea presented in this paper attempts
to improve Metric-FF (Hoffmann 2003) operation in item
(3). Metric-FF is an extension of the FF (Hoffmann &
Nebel 2001) planner to numerical state variables. Metric-
FF considers the numeric conditions of the actions (1) in
the heuristic estimation, but ignores the decreasing effects
(2). Regarding to (3), Metric-FF expands the same planning
graph (the traditional one, in which a level of propositions
is followed by a level with all applicable actions given these
propositions) whether when a metric expression is defined or
not. In the former, the heuristic cost of a state is the summed
up cost of the actions in the respective relaxed plan. In the
latter, the heuristic cost of a state is the number of actions in
the relaxed plan.

In this paper, we propose a technique to expand the plan-
ning graph when a metric expression is defined. The aim
is to improve the heuristic estimation extending the plan-
ning graph by levels of costs instead by levels of operators.
The claim is that using more accurate heuristic estimations
potentially leads to solutions with better quality, even if, as
in the case of Metric-FF, the heuristics are non-admissible.
Additionally, we propose to apply a new scheme of Hill-
Climbing search to deal with metric optimization in numer-
ical domains.

Relaxed graphplan as a heuristic estimator

The idea of relaxing a planning task consists of solving, in
any search state, a relaxed task, and take the length of the
relaxed solution as an estimate of how long the solution from
the state at hand is. This section describes the generation of
the relaxed planning graph applied by Metric-FF. The basic
algorithm is shown in Figure 1 (for the sake of simplicity the
algorithm shown does not include the handling of numerical
features).

t=0;

Py = so;

while G € P; do
Ay ={a € A|prec(a) C P}
P11 = P, Uadd(a),Va € At
if Piy1 = P, thenfailendif
t=t+1

endwhile

final_layer= t, succeed

Figure 1: Classical graphplan expansion for relaxed plan-
ning tasks.

The planning graph in the relaxed case is simply repre-
sented as a sequence Py, Ay, ...,P._1, A;_1, P; of proposi-
tion sets and action sets. These are built incrementally start-
ing with Py = s¢ as the initial layer, and iteratively inserting
the add effects of all applicable actions. The algorithm fails
if at some point before reaching the goals no new proposi-
tions were inserted. This happens when the relaxed task is
unsolvable.

States where the relaxed planning graph does not reach
the goals have an infinity heuristic value. Otherwise, once
the graphplan is expanded, Metric-FF starts a relaxed plan
extraction mechanism to extract a sequential relaxed plan.
This mechanism is heuristically guided to obtain short solu-
tions. The length of the optimal sequential relaxed plan is
an admissible heuristic for STRIPS tasks. Actually, the re-
laxed planning graph contains this optimal relaxed solution,
but it cannot be synthesized efficiently (Hoffmann & Nebel
2001). Instead, the algorithm extracts a provably subopti-
mal relaxed plan so that the heuristic estimation obtained is
non-admissible.

When this algorithm is used to estimate heuristics in nu-
meric domains, the metric expression is always transformed
into a minimizing expression. Metric-FF uses the same plan-
ning graph expansion, but the heuristic measure of each state
is the summed up cost of all actions in the relaxed plan. As in

the previous case, this heuristic estimation is provably non-
admissible.

Relaxed graphplan levelled by costs

This section introduces our proposal for expanding the plan-
ning graph with metrics. The rationale is to include informa-
tion about the action costs according to the metric. The re-
laxed planning graph expansion outlined in the previous sec-
tion together with the plan extraction mechanism provides
an estimation of the length of the shortest solution from the
state at hand. Therefore its application seems adequate when
one prefers to find a solution minimizing the number of ac-
tions in it. But, when a metric expression is given, previ-
ous algorithm provides as heuristic estimation the summed
up costs of all actions in a relaxed solution obtained from a
planning graph built to minimize plan length. This heuris-
tic could be very far of the real cost of the optimal solution
with respect the given metric. This happens when the opti-
mal solution regarding the metric has more actions than the
optimal solution regarding the plan length.

The method we propose tries to achieve a more informa-
tive (though non-admissible) heuristic for problems with a
quality metric. The idea is to expand the planning graph
in an order such that a sequential relaxed solution near the
optimal regarding the metric can be extracted from it. There-
fore, our proposal is to modify the graph plan expansion al-
gorithm, but to maintain the same relaxed plan extraction
mechanism as Metric-FF. Thus, our heuristic estimation will
be the summed up cost of the actions in the sequential re-
laxed plan extracted too. As in the case of Metric-FF this
heuristic is non admissible.

As in the traditional case, the levels of propositions and
actions are built incrementally. But, the action levels in the
graph are labelled with a cost indicating the maximum cost
that can be spent until each level. Thus, we delay in each
action level all applicable actions whose costs will lead to
a situation in which the corresponding level cost limit is ex-
ceeded. Therefore, a set of the delayed actions is maintained
in each action level. Figure 2 shows the algorithm.

In this algorithm:

e Acost; represents the cost increment between action level
t and the previous action level (t — 1)

e cost_limit, represents the maximum cost spent until level
t. Tt is computed as the sum of all Acost until level ¢, and

e D, is a set containing the delayed actions at level ¢

From the initial layer Py = sg, the algorithm iteratively
adds the effects of all applicable actions that hold a) or b)
are inserted:

a) The action does not belong to any delayed set and its cost
is equal or smaller than the cost increment in the actual
level.

b) The action has been previously delayed, and its cost is
equal or smaller than the cost limit in the actual level mi-
nus the cost limit where the action was delayed.

If a non-delayed action, applicable in level ¢, does not
hold a), it is included in the delayed actions set of level t.

t=0;
Py = S0,
Dy = 0;
cost_limit_; = 0;
while G € P, do
Acosts = compute_cost_increment();
cost_limity = cost_limiti—1 + Acosty;
Ay = {a € A | prec(a) C P A [(-F,a €
Dy A cost(a) < Acosty) V (3t',a € Dy A
cost(a) < costlimit, — cost_limity)]
D: = {a € A | precfa) C P A (—FH,a €
Dy A cost(a) > Acosty)}
Dy = Dy — A, VY
Pt+1 = Pt U add(a),Va S At
if Piy1 = Py A Dy = 0,Vt' then fail endif
t=t+1
endwhile
final_layer=t, succeed

Figure 2: Proposed graphplan expansion for relaxed plan-
ning tasks for metric optimization.

When an action delayed at level ¢’ holds b), it is removed of
the delayed actions set of level ¢'.

The Acost in each level is computed by the function
compute_cost_increment(). We have implemented three
versions of this computation:

vl: Acost, is fixed in all the planning graph and it is the cost
of the cheapest action in the problem instance with cost
greater than zero.

v2: Acosty is computed as the minimum cost of all applicable
actions in level ¢ with cost strictly greater than zero.

v3: Acost; is computed as minimum cost of all applicable
actions in level ¢ with cost equal or greater than zero.

Now, the algorithm fails if at some point before reaching
the goals no new propositions come in, and there are not de-
layed actions. As in the classical case, when the algorithm
fails the relaxed task is unsolvable, and therefore the heuris-
tic takes an infinity value.

A similar approach to build a planning graph levelled by
costs has been used by (Sapena & Onaindia 2004). The
main difference between their work and ours is that they
propagate in the graph costs of actions as the sum of the
costs of their preconditions, and costs of propositions as the
cost to reach the action that achieves each proposition plus
the cost of the action. We think that this kind of propaga-
tion is not needed because the cost to reach each action and
proposition can be estimated using the cost_limit of the cor-
responding level.

Search algorithms

This section introduces the search algorithms used by
Metric-FF, together with our own proposal about what al-
gorithm to use and how it could be adapted to deal with op-
timization metrics.

Metric-FF uses the heuristic estimation in a forward state
search. When an optimization criteria is given, Metric-FF
uses a standard weighted A*. However, the search scheme

used by Metric-FF for solving problems without an opti-
mization criteria is a kind of Hill-Climbling search called
Enforced Hill Climbing (EHC). EHC starts in the initial state
and performs a number of search iterations trying to improve
the heuristic value, until a state with zero value is reached.
EHC uses a complete breadth first search to find a strictly
better, possibly indirect, successor. The search prunes states
that have been seen earlier during the same iteration, and
does not expand states that the heuristic function recognizes
as dead ends. Besides, EHC uses a pruning technique: se-
lecting a set of the most promising successors to each state.
The unpromising successors can then be ignored (thus, it is
not a complete algorithm). A promising successor is a state
generated by a helpful action, where helpful means that it
achieves at least one of the goals needed to build the relaxed
plan (in the relaxed plan extraction algorithm) in the second
level of propositions of the planning graph (the first level is
the initial state). Therefore, if the level goals to build the
relaxed plan are Go, G1, . . ., G final_layer, the set of helpful
actions, H(s), in state s are:

H(s)={a € Alefft(a) NG, #£ 0}

For a complete explanation of the EHC algorithm see (Hoff-
mann & Nebel 2001).

The heuristic estimation applied by Metric-FF, as it only
uses this scheme in problems without an optimization met-
ric, is the number of actions in the relaxed plan (hops). We
think that the same search scheme could be used in numeri-
cal problems with an optimization criteria using the heuristic
measure proposed by this paper (h.os¢). The justification is
that using a weighted A* algorithm is too expensive in time
and memory, and as will be seen in the experiments sec-
tion, only few problems of some competition domains can
be solved. For this reason, we have adapted the EHC al-
gorithm to work with metrics. The resulting algorithm is
shown in Figure 3. The only difference between this algo-
rithm and the original one is that the latter performs breadth
first search until a state s” with hiops(s") < hops(s) is found,
while we introduce here a condition combining our heuris-
tic, hcost, With the previous one, h,ps. This combination
assumes that when the cost is the same, shorter solutions
regarding the number of actions are preferred (even when
this was not included in the metric expression). Initially, we
tried just replacing hops by heost, but the results were not
good enough

Regarding the helpful actions we follow the same philos-
ophy than Metric-FF, but the set of helpful actions is ordered
by increasing costs. Thus, the first helpful action chosen is
always the cheapest one. In our framework, to compute the
set of helpful actions in the proposed algorithm for plan-
ning graph expansion, we have to take into account that ac-
tions delayed in the first level of the graph can achieve goals
needed to build the relaxed plan in some level goal different
of GG . Thus, the new set of helpful actions is defined as:

H(s)={ac A| (efft(a) NGy # D)V
(Fi,eff " (a) NGD; # 0)}

where
GD; C G; such thatVg € GD;, g € efft(a’') and o’ € Dy

initialize the current plan to the empty plan

s:=1

while h(s) # 0do
starting from s, perform breadth first search for a state s’
with heost (8") < heost(s) or
(hcost (5/) = hcost (5) and hops(sl) < hops(s))
avoiding repeated states using a hash table,
not expanding states s” where hcost(s”) = co
if no such state can be found then fail endif
add the actions on the path to s’ at the end of the current plan
si=4s

endwhile

output current plan, succeed

Figure 3: Adapted EHC algorithm for metric optimization
problems.

In others words, an action is considered helpful if it
achieves at least one of the lowest level goals in the relaxed
plan, or it achieves at least one goal in some level 7 of the
subset of goals of this level (represented as GD;) achieved
by actions delayed in the first level.

Experimental results

We have modified Metric-FF to behave according to out pro-
posal. In this paper we only compare with the Metric-FF
planner. It would be interesting to compare with other nu-
merical planners, but the best way to see the performance
of our approach is to change only the plan graph expansion
algorithm and not other characteristics of the planner. We
have performed the following experiments:

e Experiments using A* search. By means of these experi-
ments we compare the performance between our proposed
heuristic and the one used by Metric-FF.

e Experiments using the EHC algorithm, where we com-
pare between the performance of Metric-FF and our im-
plementation of EHC for problems with optimization cri-
teria using the new heuristic.

The domains and problems used in the comparison for
both types of experiments are some numeric domains from
the 3rd International Planning Competition!. We ran the ex-
periments on a Linux machine with 500 M Byte of memory
running at 2 GHz. The maximum time allowed for the plan-
ner to find a solution was set to 300 seconds.

It is rather difficult to evaluate the performance of non-
optimal planners when trying to achieve good solutions in
terms of a quality metric, given that they have not guar-
antee on the optimality of the returned solutions. For this
reason, to get a better understanding, we report the results
showing the number of problems in which our approach
performs strictly better, and separately the number of prob-
lems in which our approach performs better or equal than
the Metric-FF planner.

Results using A*

Table 1 shows the number of problems solved in various do-
mains, Zenotravel, Driverlog, Satellite and Depots, using

"http://planning cis.strath.ac.uk/competition/

the A* search algorithm. The number aside each domain
name refers to the number of test problems.

Table 1: Problems solved with A*

Domain Metric-FF | vl v2 v3
Zenotravel(20) 11 7 7 7
Driverlog(20) 2 3 5 4
Satellite(20) 1 1 2 2
Depots(22) 6 3 8 7

As it can be observed, the A* algorithm fails on a large
number of problems. In most cases, the planner failed to
find a solution within the time bound. Also, v2 and v3 solve
more problems than Metric-FF in three domains, though the
difference is not very significant.

Tables 2 and 3 show the accumulated plan cost according
to the problem metric defined, and the accumulated running
times for Zenotravel and Driverlog domains respectively us-
ing A*. The first column refers to problems solved by all
planners. The next columns refer to planners Metric-FF, and
the three versions explained in previous section of our pro-
posed algorithm to estimate the heuristic values. The results
in the Satellite domain are not reported because the num-
ber of problems solved by any planner is very small. The
results in the Depots domain are not reported because they
performed exactly the same in quality and very similar in
terms of time. This is due to the fact that in almost all the
problems solved, the quality metric defined is plan length.

Table 2: Cost/Time in the Zenotravel domain using A*

Problem Metric-FF vl v2 v3

pfilel 13564/0.01 13564/0.01 13564/0.00 13564/0.01
pfile2 6785/0.01 6785/0.01 6785/0.01 6785/0.01
pfile3 4507/0.02 4507/0.01 4507/0.01 4507/0.02
pfile4 20534/6.06 16972/3.22 16972/3.54 16972/0.53
pfile5 7424/0.07 3978/0.13 3978/0.16 3978/0.22
pfile6 20601/0.12 15434/0.23 15434/0.21 15434/0.28
pfile7 9538/4.7 8287/9.23 8287/10.4 8287/9.67
TOTAL 82953/10.99 | 69527/12.84 | 69527/14.33 | 69527/10.73

Table 3: Cost/Time in the Driverlog domain using A*

Problem Metric-FF vl v2 v3

pfilel 1103/0.01 777/0.01 777/0.01 777/0.01
pfile3 883/254.57 657/102.66 657/104.33 657/45.64
TOTAL 1986/254.58 1434/102.67 1434/104.34 1434/45.65

In both domains, the costs obtained to v1l, v2 and v3 is
the same, and always better or equal the one obtained by
Metric-FF. In the Zenotravel, the total quantitative gain is
16.19%, while all versions obtain strictly better results in
57.14% of solved problems. In terms of time, v1, v2 and
v3 were 1.17 times slower, 1.30 times slower and 1.02 times

zenotravel
908008

Hetric-FF ——
helpful sort ——

vl —%—
Gogeae -

vz —5—
vi

700008 -

Goeoee -

Seeoee -

Cost

488688 -

368808 -

268888 -

1006808 -

Problens

Figure 4: Cost in the Zenotravel domain using EHC.

satellite
1888

Hetric-FF —+—
helpful sort ——
wlo—k—
va —H8—
vi

1688 [

1488

1288

16888

Cost

Froblens

Figure 5: Cost in the Satellite domain using EHC.

faster respectively. In the Driverlog domain, where only two
problems were solved, the total quantitative gain is 27.79%.
In both problems, the three versions perform strictly better
than Metric-FF. In terms of time, v1, v2 and v3 were 2.48,
2.44 and 5.58 times faster respectively.

Results using EHC

Table 4 shows the number of problems solved in each case
using the EHC search scheme. The second column shows
the results obtained with Metric-FF applying EHC without
having into account any optimization criteria, the third col-
umn refers to the same configuration just sorting the helpful
actions, and the next three columns refer to the three ver-
sions of our approach using the EHC algorithm explained in
this paper and sorting the helpful actions in increasing order

Cost

Cost

driverlog

35000 - T
Hetric-FF ——
helpful sort ——
vl —%—
v2 —8— //}
36008 - e i
256808 -
28808 -
156008 -
18008 ~
neea -
a
a 2 4 6 8 18 12 14

Problens

Figure 6: Cost in the Driverlog domain using EHC.

depots
1488

Hetric-FF —+—
helpful sort —+—
vl —F—

ve —8—

1288 w3

1808

8ol

600 -

400 -

288

Problens

Figure 7: Cost in the Depots domain using EHC.

of costs.
Table 4: Problems solved with EHC
Domain Metric-FF | helpful-sort | vI v2 | v3
Zenotravel(20) 20 20 20 16 20
Driverlog(20) 16 16 | 15 | 16 | 15
Satellite(20) 13 16 9 13 9
Depots(22) 19 19 | 10 | 20 | 20

Regarding the cost of the obtained plans Figures 4, 6, 5
and 7 show the accumulated cost of the problems solved by
all configuration in the aforementioned domains. As can be
observed, all of our proposed approaches v1, v2 and v3, out-
perform Metric-FF in terms of quality metric. In fact, the

heuristic obtained just sorting the helpful actions improve
plan costs in almost all the domains except in the Depots.
This can be well observed in Table 5 that sumarizes the
quantitative gain in terms of cost in each case. The best
improvements are achieved by v3 in the Zenotravel domain,
helpful-sort in the Driverlog domain, vI in the Satellite do-
main, and v3 in Depots domain. Table 6 shows the percent-
age of problems with better and, in the row below, with bet-
ter or equal performance comparing each approach first with
Metric-FF (M-FF column in the table) and then (the both
column) with both Metric-FF and the Metric-FF version just
sorting the helpful actions (hs in the table). As it can be ob-
served, the percentage of problems solved with smaller or
equal cost than both is at least 53.3%.

Table 5: Total quantitative gain in terms of total cost.

Domain helpful-sort vl v2 v3
Zenotravel 13.05% 47.35% 40.01% 47.68%
Driverlog 18.65% 5.18% 8.14% | 11.31%
Satellite 34.86% 53.52% 44.11% 28.18%
Depots —3.65% 27.33% 29.82% 31.40%

Table 6: Percentage of problems with better, and with better
or equal performance in terms of the quality metric.

Domain hs vl v2 v3
M-FF | M-FF | both | M-FF | both | M-FF | both
Zenotravel 55 75 55 62.5 50 85 65
65 80 60 75 62.5 90 70
Driverlog 56.2 53.3 40 68.7 50 80 | 533
87.5 66.6 | 53.3 81.2 | 625 80 | 533
Satellite 75 100 | 62.5 100 | 63.6 88.8 | 55.5
91.6 100 | 62.5 100 | 63.6 88.8 | 55.5
Depots 10.5 717 | 66.6 42.1 36.8 42.1 36.8
84.2 100 | 88.8 100 | 94.7 100 | 94.7

These results support our initial intuition about the ac-
curacy of non-admissible heuristics (even using a Hill-
Climbing algorithm). In most cases the quality of the plans
is improved because the heuristic estimation used, though
non-admissible, is closer to the real optimal value.

We do not report in this paper all the results with re-
spect the average number of operators in solution plans, but
in the Zenotravel, the Driverlog and the Satellite domains,
the plans obtained using our heuristics are in general larger
than the obtained by Metric-FF. As we have commented pre-
viously, this is a consequence of having a more accurate
heuristic in terms of cost because a plan with a small num-
ber of operators can suppose a great cost with respect the
quality metric and viceversa. For instance, in the Zenotravel
domain, the average number of operators per plan is 26.8
for Metric-FF and 26.7 for helpful-sort, while for the ver-
sions using our heuristics are 34.2 for v1, 34.3 for v2 and 37
for v3.

One would expect that improving the quality of the result-

ing plans would get worse the time to achieve these plans.
It seems reasonable because to find a better solution means
usually more searching, and therefore to build more relaxed
planning graphs, thus spending more time. However, the re-
sults in the Depots domain show that this is not always true.
Figures 8, 10, 9 and 11 show the accumulated CPU time in
seconds.

The results regarding Zenotravel, Driverlog and Satellite
domains show that the differences in time are not relevant for
easy problems, but when the problems are harder (this hap-
pens with the last problems of each domain in the planning
competition) they are rather significant. For example, in the
Zenotravel domain the differences until problem 12 are not
relevant, as the time used by all planners is smaller than one
second. But due to the last 3 problems, v3 was 4.49 times
slower, as Table 7 shows. The same happens in Driverlog
using v3 with problem 13. In this case, the time consumed
was especially high. The worst time was obtained for v1 in
Satellite. In all cases in which the time is worse than Metric-
FF, the quality of solutions is better. However, in the Depots
domain the heuristics proposed in this paper perform espe-
cially well in terms of time. In this case, problems were
solved 21.38 and 17.26 times faster than Metric-FF, using
vl and v3 respectively. We have not yet clear explanation
for this phenomenon, but the quality metric of all the prob-
lems which contribute more to the differences is defined as
fuel-used and not in terms of plan length. On the other hand,
for all these problems, all the other parameters that could be
considered (as search time, number of explored states, time
of building the relaxed planning graphs, and even number of
actions in solution plans) are quite smaller than for Metric-
FF. Furthermore, the quality of the plans obtained for these
problems was improved.

Table 7: Time summary

Domain helpful-sort vl v2 v3
Zenotravel 1.11 slower 2.41 slower | 3.11 slower 4.49 slower
Driverlog 1.21 faster 0.67 faster 0.87 faster 9.04 slower
Satellite 0.26 faster 27.23 slower 8.81 slower 21.60 slower
Depots 1.59 slower 21.38 faster 7.18 faster 17.26 faster

Conclusions and future work

This paper presents how an existing method to compute
heuristics in heuristic planning, the relaxed planning graph,
can be improved to deal with problems where a metric op-
timization criteria is defined. The aim was to achieve good,
though provably suboptimal, plans regarding this metric.
The possible definition of a metric optimization criteria is
a feature of numeric domains. In this paper we do not deal
with the other features of these domains, but we have im-
plemented our algorithm on the Metric-FF planner, which
implements methods to deal with it.

The proposed improvements allow to compute more ac-
curate, though non-admissible, heuristics. As traditional
relaxed planning graph, the algorithm we propose is inde-
pendent of the planner as well as the domain used and the

zenotravel

20 — .
Hetric-FF ——
helpful sort ——
vl —k—
w2 —8—

v3

18 -

16

14 |

12 -

10

CPU tine {in seconds}

s il P
a 2 4 6 8 18 12
Problens

14 16

Figure 8: Time in the Zenotravel domain using EHC.

satellite

Hetric-FF ——
helpful sort ——
NLi—#—
V2 ==

vi

128
188 -

CPU time (in seconds}

68

48

28

Problens

Figure 9: Time in the Satellite domain using EHC.

problem to solve. Therefore, other heuristic planners with a
management of characteristics of numerical domains could
benefit of it.

Additionally, we propose an adaptation of the Hill-
Climbing algorithm used by Metric-FF (called Enforced Hill
Climbing) that can use heuristics representing costs relative
to a quality metric. Usually, heuristic planners whose objec-
tive is not only to find plans but good ones, use some kind
of A* search algorithm. This is the case of Metric-FF.

We performed experiments using both, an A* algorithm
and the proposed Hill-Climbing algorithm. Results show
that the quality of resulting plans is improved always with
the A* algorithm and in a high percentage of cases with
EHC. The number of solved problems is always bigger using
the latter as the comsuption of resources (especially time) is

CPU tine {in seconds}

CPU time {in seconds}

48

35 -

38 -

25 -

28

15 -

18 -

driverlog

Hetric-FF ——
helpful sort ——
vl —%—
vz —5—

vi

s

18 12 14

a 2 4 6 8
Problens

Figure 10: Time in the Driverlog domain using EHC.

788

688

488 -

388

208

180 -

depots

Hetric-FF ——
helpful sort ——
vili—k—
VA ==

v3

Froblens

Figure 11: Time in the Depots domain using EHC.

smaller. Therefore, we think this is a good alternative even
when the objective of planning is to optimize a metric crite-
ria.

As future work we think it would be interesting to perform
experiments using the weighted A* algorithm with different
values of w, or use the proposed heuristics in different plan-
ners.

In this paper we focused mainly in comparisons with the
Metric-FF planner, but it would be interesting also to study
the behaviour of the three non-admissible heuristics we pro-
pose more deeply. This could help to explain better some of
the results presented.

References

Blum, A. L., and Furst, M. L. 1995. Fast planning through
planning graph analysis. In Mellish, C. S., ed., Proceed-
ings of the 14th International Joint Conference on Artificial
Intelligence, IJCAI-95, volume 2, 1636-1642. Montréal,
Canada: Morgan Kaufmann.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5-33.

Do, M. B., and Kambhampati, S. 2003. Sapa: A scalable
multi-objective heuristic metric temporal planner. Journal
of Artificial Intelligence Research 20:155-194.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61-124.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253-302.

Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-
ables. Journal of Artificial Intelligence Research 20:291—
341.

Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artifi-
cial Intelligence Research 20:1-59.

McDertmott, D. 1996. A heuristic estimator for means-
ends analysis in planning. In Proceedings of the 3rd In-
ternational Conference on Artificial Intelligence Planning
Systems (AIPS-96), 142—-149. AAAI Press.

Refanidis, 1., and Vlahavas, I. 2001. The GRT planning
system: Backward heuristic construction in forward state-
space planning. Journal of Artificial Intelligence Research
15:115-161.

Sapena, O., and Onaindia, E. 2004. Handling numeric cri-
teria in relaxed planning graphs. In Advances in Artificial
Intelligence. IBERAMIA, LNAI 3315, 114-123. Springer
Verlag.

