ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and I1OS Press.

1007

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-1007

Planning with Ensembles of Classifiers

Alberto Garbajosa and Tomads de la Rosa and Raquel Fuentetaja !

Abstract. Learning search control for forward state planning has
been previously addressed as a relational classification task, where
predictions are used to generate action policies. In this paper, we
describe a new bagging approach to learn and apply ensembles of
relational decision trees to generate more robust policies for plan-
ning. Preliminary experimental results demonstrate that new policies
produce on average plans of better quality.

1 INTRODUCTION

In automated planning, machine learning techniques have been used
to discover and exploit knowledge about the structure of the planning
task that is not explicitly encoded in the domain model. The acquired
knowledge can be used to modify the execution of a search algorithm
by pruning, sorting or selecting actions. Specifically, one alternative
for building learning-based planners is to learn generalized action
policies [7, 3]. A generalized policy is a mapping of planning con-
texts into the preferred actions to apply. The learning of this mapping
can be modelled as a relational classification task and solved by in-
ductive learning algorithms. Finding an accurate action policy for a
domain is a hard task since there can be a wide range of problem dis-
tributions and it is difficult to encode all conceivable action selection
strategies in a single policy. In the machine learning community it is
well-known that ensemble methods improve the accuracy of single
models [4]. The idea of ensemble-based classifiers is to build predic-
tive models by integrating multiple single classifiers. The key to the
success of a classifier ensemble is that the base components should
be accurate and diverse. Regarding policies for planning, we con-
sider that two policies are diverse if they achieve different plans for
the same task. In this paper we describe a bagging approach for learn-
ing ensembles of relational decision trees, and then we propose two
ways of exploiting the control knowledge provided by these models.

2 DECISION TREE LEARNING IN PLANNING

ROLLER [3] is a system that learns relational decision trees for plan-
ning. These decision trees contain control knowledge useful to sort
the successors of a given node for state space search planners. Roller
receives as inputs a domain in PDDL and a set of training problems.
Then, it extracts training instances from the search trees generated to
solve the training problems. These training instances are used to train
TILDE [1], an off-the-shelf relational classification tool. ROLLER
generates two types of decision trees: operator trees and binding
trees. There is one operator tree per domain. The leaves of operator
trees provide an order to sort applicable operators at a given state.
Binding trees are used to sort the instantiations of each operator.
There is one binding tree for each domain operator. Leaves of bind-
ing trees suggest to select or reject an instantiation. Given a search

1 Universidad Carlos III de Madrid, Spain, email: trosa,rfuentet @inf.uc3m.es

node, ROLLER assigns a priority to each successor, calculated con-
sidering the operator tree and the corresponding binding tree. This
priority is used to sort successors.

3 BAGGING FOR PLANNING

Bagging is a machine learning technique for building ensembles of
classifiers through the manipulation of the training set [2]. The base
learning algorithm is trained k times to obtain k different models.
The training set of each of these models consists of m training in-
stances randomly sampled with replacement from the original train-
ing set of m examples. Thus, the training set of each iteration contains
on average 63.2% of the instances in the original training set, with
some of them repeated several times. The standard way of aggregat-
ing the prediction of the ensemble of classifiers is by simple voting.
Bagging can be applied almost directly to obtain an ensemble
of ROLLER models. However, there are two decision points that
should be solved: how to select training instances and how to com-
bine recommendations. Regarding the selection of training instances,
ROLLER receives as input a set training problems rather than a set of
training instances. Thus, there are several alternatives for building
the bootstrap replicates (i.e., training sets generated for each indi-
vidual classifier). In our case, we consider all instances generated
from each training problem as a whole, therefore the random se-
lection is done at problem level. Instead of selecting instances, the
bootstrap problems are built by selecting problems randomly with
replacement from the original set of problems. Then, the training in-
stances to learn each individual model are generated from the solu-
tions of the bootstrap problems assigned to it. Intuitively, it seems
interesting to maintain the notion of problem to generate different
ROLLER models more specialized in particular types of problems. A
training phase that applies bagging to ROLLER will end with an en-
semble of ROLLER models, each composed by one operator tree and
several binding trees, one per operator. We have developed two new
strategies to consider these ensembles in the planning phase, namely
Aggregated bagging policy and Multiple-Queue bagging policy.

3.1 Aggregated Bagging Policy

The Aggregated Bagging Policy (ABP) algorithm combines the do-
main control knowledge (DCK) from an ensemble of decision trees
by aggregating their policies into a single generalized policy. ABP
uses exactly the same search algorithm as single ROLLER, the H-
context Policy algorithm, but now the computation of action priority
considers all available ROLLER models (ROLLER bags). H-context
Policy performs depth-first search sorting successors by their pri-
ority, assigned from ROLLER decision trees. For a single ROLLER
model the priority of each successor is computed in the following
way. The context of the current state determines a path to a leaf node

1008 A. Garbajosa et al. / Planning with Ensembles of Classifiers

in the operator tree. This leaf node associates to each (ungrounded)
action an operator priority representing the number of covered train-
ing examples. Given an instantiation of an operator, the current con-
text also determines a path to a leaf node in the corresponding bind-
ing tree. This leaf node provides the selection ratio, i.e. the ratio of
successful bindings covered by that leaf. The priority of a successor
is computed as the sum of its operator priority and selection ratio.
We have adapted the scheme for computing the priority of single
ROLLER to deal with multiple models. A simple voting might not
be a good option since the number of voters is quite small compared
to the number of alternatives. Also, we wanted to maintain, as in
ROLLER, the scheme where operator trees participate in recommen-
dations with a higher weight than binding trees. Thus, for multiple
models, we define the operator priority as the sum of operator pri-
orities for all models. The selection ratio is defined as the overall
ratio of successful bindings considering all models, i.e. the sum of
the number of selected bindings for all models, divided by the total
number of examples matching the corresponding leaf of the corre-
sponding binding tree. The algorithm for sorting successors receives
the set of applicable actions, the context of the current state and the
ensemble of trees. Then, it returns a sorted list of applicable actions.

3.2 Multiple-Queue Bagging Policy

The Multiple Queue Bagging Policy (MQBP) algorithm exploits
DCK from different ROLLER bags separately. Each bag is used to
sort successors in independent open lists, rather than aggregate them
into a single value. For this strategy we were inspired by recent
search algorithms exploiting several open lists [5, 6], which have
shown to be effective for exploring different regions of the search
space. The MQBP algorithm performs depth-first search as the H-
context Policy algorithm, but it extracts nodes alternatively from dif-
ferent open lists. Each open list is associated to a ROLLER bag. When
a node is expanded its successors replace the extracted node in all
open lists, but in a different order determined by the priority of sin-
gle ROLLER for the corresponding bag. Successors are not included
in open lists not containing the expanded parent node. As a result,
the different open lists contains a fairly similar set of states, but struc-
tured in different search trees, providing diversity to the search. If the
algorithm does not backtrack, the plan found with MQBP is guaran-
teed to be the shortest one of those found when using just one bag.
However, any sort of backtracking will lead to a “parallel” explo-
ration of different state space regions sorted by different ROLLER
bags, which provide diversity to the search.

4 EXPERIMENTAL EVALUATION

We have evaluated the performance of the two bagging approaches
considering training and testing phases with 2, 3, 5 and 8 bags. The
benchmarks for the evaluation were the domains from the Learning
Track of IPC-2011 (International Planning Competition). Experi-
ments were run on a 2.93Ghz machine CPU with 7.5Gb of RAM.

Training: For each domain we have generated a set of 50 training
problems with the random generators provided by the IPC-2011 or-
ganizers. These problems were solved with a time bound of 120 sec-
onds. The random selection of problems for bagging only distributes
training problems on different bags. Therefore, it is not necessary to
solve them again for different distributions. With this regard, it makes
no sense to measure learning times because the remaining time af-
ter solving training problems is consumed by the learning algorithm
(TILDE) and it is proportional to the number of bags.

Table 1. Quality scores obtained by different policies.

HP ABP MQBP
b2 b3 b5 b8 b2 b3 b5 b8
blocks | 10.0 1.6 | 18.1 | 20.8 | 27.8 09 | 19.7 | 164 | 228
depots 7.7 2.0 0.3 1.6 2.9 33 1.8 | 10.6 4.1
gripper | 29.4 | 29.8 | 29.8 | 29.9 | 294 | 294 | 29.2 | 294 | 27.6
parking | 26.1 | 24.4 | 26.2 | 23.8 | 23.9 | 245 | 259 | 260 | 274
satellite | 27.2 | 27.8 | 23.5 4.0 29 1205 | 115 2.6 2.7
rovers 48 | 253 | 21.7 | 23.7 | 25.4 | 247 | 244 | 246 | 223
spanner | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 20.0 | 15.0
tpp 163 | 183 | 21.9 | 13.2 | 10.6 | 20.1 | 229 | 243 | 17.2
Total 151 158 | 172 | 147 | 153 | 153 | 165 154 | 139

Testing: For the evaluation we compared the H-context Policy
(HP) algorithm with the Aggregated Bagging Policy (ABP) and the
Multiple Queue Bagging Policy (MQBP) algorithms, each one con-
figured with the different number of bags. Each domain has a test set
of 30 problems. The time bound to solve a problem was set to 900
seconds. The generation of the ensembles of classifiers implies ran-
domness in the evaluation process, therefore we have executed each
configuration for 5 times. For each problem we have considered the
median of the plan length and its associated CPU time.

Table 1 shows the quality scores of each configuration following
the same scoring of IPC-2011. The barman domain is omitted since
no problems were solved by any configuration. For the rest of do-
mains, always one or more bagging configurations improve the qual-
ity score of HP. However, there is no clear dominance between ABP
or MQBP, not even between the number of bags. Our results support
empirically the idea that these ensembles of relational classifiers im-
prove the behavior of single classifiers. But to some extend, the right
number of bags depends on the domain and problem structure, since
here we are facing the utility problem. For instance, the spanner do-
main has a simple key knowledge (e.g., pick all spanners on the way),
so there is no classifier diversity. Adding more bags only increases
the tree matching time and then it degrades the overall performance,
as shown for MQBP (b5 and b8). On the other hand, blocksworld
problems have multiple tower layouts, therefore single classifiers are
only accurate in some problems. Diversity is important for this do-
main, and higher numbers of bags tend to improve the performance.

On average, MQBP wastes more time than ABP in solving the
same problems. This is not surprising due to the overload of handling
multiple lists. Also, as for HP, the heuristic evaluation for computing
ROLLER contexts has a great impact in the total time. The tree match-
ing extra time is worth when additional bags provide more diversity
to the current knowledge.

Acknowledgment: This work has been partially supported by the
Spanish project TIN2011-27652-C03-02.

REFERENCES

[11 Hendrik Blockeel and Luc De Raedt, ‘“Top-down induction of first-order
logical decision trees’, Al Journal, 101(1-2), 285-297, (1998).

[2] Leo Breiman, ‘Bagging predictors’, Machine Learning, 24, 123-140,
(1996).

[3] Tomas De la Rosa, Sergio Jiménez, Raquel Fuentetaja, and Daniel Bor-
rajo, ‘Scaling up heuristic planning with relational decision trees’, JAIR,
40, 767-813, (2011).

[4] Thomas Dietterich, ‘Ensemble methods in machine learning’, in 7st. In-
ternational Workshop in Multiple Classifier Systems, (2000).

[5] Malte Helmert, “The fast downward planning system’, JAIR, 26, 191—
246, (2006).

[6] Gabriele Roger and Malte Helmert, ‘The more, the merrier: Combining
heuristic estimators for satisficing planning’, in /CAPS, (2010).

[7] Sungwook Yoon, Alan Fern, and Robert Givan, ‘Learning control knowl-
edge for forward search planning’, JMLR., 9, 683-718, (2008).

