
Improve Efficiency of Mapping Data between
XML and RDF with XSPARQL

Stefan Bischof1, Nuno Lopes1, and Axel Polleres1,2

1 Digital Enterprise Research Institute, NUI Galway* firstname.lastname@deri.org
2 Siemens AG Österreich, Siemensstrasse 90, 1210 Vienna, Austria

Abstract XSPARQL is a language to transform data between the tree-
based XML format and the graph-based RDF format. XML is a widely
adopted data exchange format which brings its own query language
XQuery along. RDF is the standard data format of the Semantic Web with
SPARQL being the corresponding query language. XSPARQL combines
XQuery and SPARQL to a unified query language which provides a more
intuitive and maintainable way to translate data between the two data
formats. A naive implementation of XSPARQL can be inefficient when
evaluating nested queries. However, such queries occur often in practice
when dealing with XML data. We present and compare several approaches
to optimise nested queries. By implementing these optimisations we
improve efficiency up to two orders of magnitude in a practical evaluation.

Keywords: RDF, XML, SPARQL, XQuery, XSPARQL

1 Introduction

The Extensible Markup Language (XML) [2] is a widely adopted data format
for exchanging data over the World Wide Web. To query XML data, the W3C
recommends using XQuery [3]–a functional and strongly typed query language.
XQuery features FLWOR expressions which consist of a list of ForClauses,
comparable to for loops of imperative languages, and LetClauses, to assign
values to variables. The WhereClause can be used for filtering items and the
OrderByClause for ordering. The final ReturnClause contains the “body” of
the loop and determines the format of the return values of the resulting sequence.

The Resource Description Framework (RDF) [4] is the data model used for
Semantic Web data. The query language for RDF is SPARQL [5]–also a W3C
Recommendation, with a syntax similar to SQL. The main part of a SPARQL
query is the graph pattern which specifies the desired part of an RDF graph.

XSPARQL [1] is an integrated language to transform data between XML and
RDF formats providing a more intuitive and maintainable solution than an ad-hoc
setup using multiple scripts and queries in several query languages. XSPARQL
is agnostic of concrete data serialisation syntaxes and processes data on the data

* Funded in part by Science Foundation Ireland under Grant No. SFI/08/CE/I1380
(Lion-2) and by an IRCSET scholarship.

2

XQuery Engine
XML

or RDF
SPARQL Engine

XML
or RDF

Query
Rewriter

XSPARQL
Query

XQuery
Query

Figure 1. XSPARQL implementation architecture [1]

model level, which is tree-based for XML and graph-based for RDF. XSPARQL
is built by unifying XQuery and SPARQL. Syntactically, and semantically,
XSPARQL is built on top of XQuery by introducing a new kind of ForClause
called SparqlForClause, which is syntactically similar to the SPARQL SELECT

query. By this extension XSPARQL allows one to select data from RDF graphs
using the convenient graph pattern syntax.

2 Implementation

Figure 1 shows the general architecture of our implementation. Queries are
evaluated in the two steps Rewriting and Evaluation: First the query is rewritten
to an XQuery query containing parts of SPARQL queries. In the second step the
rewritten query is evaluated by an XQuery engine calling a SPARQL engine for
the embedded graph patterns. These two engines process both XML and RDF
data and eventually produce either XML or RDF.

The two engines used are probably highly optimised. Thus one source of
inefficiency is the interface between the two engines. Stressing this interface, i.e.,
evaluating a high number of SPARQL graph patterns, would therefore lead to
inefficient query evaluation times.

Claim. XSPARQL queries yielding a high number of SPARQL graph pattern
evaluations are a source of inefficiency in a naive implementation.

3 The Problem: Evaluating Nested Graph Patterns

As stated in the last section, query evaluation can be very slow in some cases for a
given naive implementation. A query containing a SparqlForClause, also called
inner loop, nested in another ForClause, called outer loop, is said to perform
a join if outer and inner loops share any variables. Especially evaluation of
join queries is ineffective if the implementation takes no additional measures of
optimising query evaluation.

Queries consisting of such a nested structure are common for non-trivial
transformations of RDF to XML. This follows from the structure of the target

3

Listing 1. Query 9: For each person list the number of items bought in Europe [1]

1 prefix : <http :// xsparql.deri.org/data/>

2 prefix foaf: <http :// xmlns.com/foaf /0.1/>

3 for $id $name from <data.rdf >

4 where { [] foaf:name $name ; :id $id . }

5 return

6 <person name="{$name}"> {

7 for * from <data.rdf >

8 where {

9 $ca :buyer [:id $id] .

10 optional { $ca :itemRef $itemRef .

11 $itemRef :locatedIn [:name "europe"] .

12 $itemRef :name $itemname } . }

13 return <item >{ $itemname }</item >

14 } </person >

XML format where nesting and grouping of objects (elements) are natural building
blocks for which XSPARQL must cater.

When evaluating a join query, the SPARQL engine will be called 𝑁 times,
𝑁 being the number of iterations of the outer loop. If the outer loop is also a
SparqlForClause the XQuery engine will call the SPARQL engine once more.

Example 1. In the query in List. 1 (query 9 from the XMark benchmark suite [6],
adapted to XSPARQL) first the outer loop iterates over persons (starting on
line 3) while the nested (inner) loop extracts all items bought in Europe by each
person (lines 7–12). The outer and the inner loops are SparqlForClauses. For
an example dataset containing 1000 persons, the XQuery engine would call the
SPARQL engine 1001 times.

One might try to simplify the query by using one single SparqlForClause

only. Although possible, one has to take care to not unintentionally change
the semantics of the query. Especially ordering and grouping, which are solved
elegantly in XQuery, would need special attention.

As outlined in Sect. 2 the interface between the XQuery and SPARQL engines
is crucial when thinking about query evaluation performance. Evaluating queries
containing nested SparqlForClauses yields a high number SPARQL engine calls.

Claim. Nested graph patterns, i.e., nested SparqlForClauses, yield the evalu-
ation of a high number of SPARQL graph patterns therefore such queries are
evaluated inefficiently in a naive implementation.

Additionally we assume that the evaluation of a single SparqlForClause

results in a performance penalty by itself because the SPARQL engine must
parse the query and generate a query plan every time when used. For nested
SparqlForClauses the SPARQL engine has to parse, plan, optimise, and evaluate
several queries which only differ in few variable values.

4

4 The Solution: Proposed Optimisation

We aim to improve performance by minimising the number of SPARQL calls to
reduce the impact of repeated parsing, planning, optimising and evaluating of
similar queries. This includes queries containing nested SparqlForClauses.

We differentiate between optimisations which perform the join via XQuery or
via SPARQL during query evaluation.

4.1 XQuery Optimisations

The idea is to rewrite the inner loop to perform only one single SPARQL call
instead of N SPARQL calls.

Nested Loop Join (NL). The nested loop join is achieved by issuing first
an unconstrained SPARQL call and then iterating over the join candidate
sequences in XQuery in a nested loop. We implemented this specific approach
twice, once with joining in an XQuery WhereClause (NL-W) and one joining
in an XPath expression in the XQuery ForClause (NL-X).

Sort-Merge Join (SM). The sort-merge join is implemented similarly. But
instead of iterating over the join candidate sequences in a nested loop, the
actual join is performed as a standard sort-merge join. The two join candidate
sequences are first ordered and then joined by a tail-recursive merge function.

4.2 SPARQL Optimisations

The idea is to push the join to the SPARQL engine and thus reducing the number
of SPARQL calls.

Merge Graph Patterns (SR). If both, the inner and the outer loop are fea-
turing graph patterns, then both graph patterns can be merged into one and
executed at once on the SPARQL engine.

Inject Named Graph (NG). If only the inner loop contains a graph pattern
then the join candidate sequence can be encoded in RDF and inserted in a
triple store. Next the whole join is executed at once on the SPARQL engine,
similar to the Merge Graph Patterns optimisation.

5 Practical Evaluation and Results

For the practical evaluation we used the XQuery benchmark suite XMark [6]. We
adapted queries and documents/datasets to support our use case of transforming
data from RDF to XML. The naive rewriting and the optimised rewritings were
tested using datasets with sizes ranging from 1 MB to 100 MB (timeout after ten
hours). For the experiments we used Saxon 9.3 as XQuery engine and ARQ 2.8.7
as SPARQL engine.

The number of iterations of the outer loop, i.e., saved SPARQL calls, is
directly related with the dataset size. Thus we expect the evaluation runtimes
for the optimised queries to increase slower with the dataset size.

5

100

101

102

103

104

105

1 2 5 10 20 50 100

T
im

e
(s
ec
)

Dataset size (MB)

XS
NL-X
NL-W

SM
NG
SR

Figure 2. Evaluation times of query 9 [1]

We found query evaluation runtimes for 6 out of the 20 benchmark queries be-
ing very high. 5 out of those where queries containing nested SparqlForClauses.
Our optimisation approaches were applicable for 3 out of these 5 queries (XMark
queries 8, 9, and 10). In the following we describe and discuss the results for
query 9 only. The results of queries 8 and 10 are comparable and support our
conclusions.3

As an example of the results, Fig. 2 shows the query evaluation times of
XMark query 9 (see List. 1) of the naive implementation together with the 5
different optimisation methods. The naive XSPARQL (XS) evaluation times
increase polynomially with the dataset size. Although the NL implementations
are similar, the XPath variant (NL-X) of the nested loop join was evaluated much
faster than the variant joining in the WhereClause (NL-W). The differences
between NL-X and the Sort-Merge join (SM) seem negligible; we assume that
Saxon optimises nested loops similarly to our Sort-Merge join implementation.
When applicable the SPARQL optimisations (NG and SR) show an even better

3 For the concrete rewritings of the different optimisation approaches for the different
queries and evaluation results refer to the recently published Technical Report [1].

6

performance than the XQuery optimisations. One possible explanation for the
difference between NG and SR could be the time the SPARQL engine needs to
inject the named graph into the RDF store.

All tested optimisations have a bigger performance gain the bigger the dataset
is. Thus the performance gain is directly related to the number of SPARQL calls
of the unoptimised query, i.e., the number of saved SPARQL calls.

6 Conclusions and Future Work

Query Evaluation Efficiency. Performance of XSPARQL is drastically re-
duced when evaluating queries containing nested SparqlForClauses.

Performance Improvement. Performance of XSPARQL queries containing
such nested SparqlForClauses can be improved by different kinds of optim-
isations. This performance improvement increase with dataset size.

XSPARQL Usage. While the XSPARQL language can provide a more intuitive
and maintainable solution to transforming data between RDF and XML, an
XSPARQL engine can also provide a better performance for such tasks than
ad-hoc setups.

In the future we will concentrate on finding new optimisation approaches in
a more systematic way, by isolating fragments of the XSPARQL language which
are easier to evaluate.

Furthermore we aim at broadening the scope of XSPARQL by allowing access
to relational data and the increasingly popular JSON format. We also plan to
provide measures to update data within XML or RDF databases.

References

1. Bischof, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between RDF
and XML with XSPARQL. Tech. rep., DERI Galway (April 2011), available at
http://www.deri.ie/fileadmin/documents/DERI-TR-2011-04-04.pdf

2. Bray, T., Paoli, J., Sperberg-Mcqueen, C.M., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation, W3C (Nov
2008), available at http://www.w3.org/TR/2008/REC-xml-20081126/

3. Chamberlin, D., Robie, J., Boag, S., Fernández, M.F., Siméon, J., Florescu, D.:
XQuery 1.0: An XML Query Language (Second Edition). W3C Recommendation,
W3C (Dec 2010), available at http://www.w3.org/TR/2010/REC-xquery-20101214/

4. Manola, F., Miller, E.: RDF Primer. W3C Recommendation, W3C (Feb 2004),
available at http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

5. Prud’hommeaux, E., (eds.), A.S.: SPARQL Query Language for RDF. W3C
Recommendation, W3C (Jan 2008), available at http://www.w3.org/TR/2008/

REC-rdf-sparql-query-20080115/

6. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark:
A Benchmark for XML Data Management. In: Proceedings of the 28th international
conference on Very Large Data Bases. pp. 974–985 (2002)

http://www.deri.ie/fileadmin/documents/DERI-TR-2011-04-04.pdf
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

	Improve Efficiency of Mapping Data between XML and RDF with XSPARQL

