
Context Dependent Reasoning for Semantic
Documents in Sindice?

Renaud Delbru and Axel Polleres and Giovanni Tummarello and Stefan Decker

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland

Abstract. The Sindice Semantic Web index provides search capabilities
over today more than 30 million documents. A scalable reasoning mecha-
nism for real-world web data is important in order to increase the precision
and recall of the Sindice index by inferring useful information (e.g. RDF
Schema features, equality, property characteristic such as inverse func-
tional properties or annotation properties from OWL). In this paper, we
introduce our notion of context dependent reasoning for RDF documents
published on the Web according to the linked data principle. We then il-
lustrate an efficient methodology to perform context dependent RDFS and
partial OWL inference based on a persistent TBox composed of a network
of web ontologies. Finally we report preliminary evaluation results of our
implementation underlying the Sindice web data index.

1 Introduction

Reasoning over semantically structured documents enables to make explicit what
would otherwise be implicit knowledge: it adds value to the information and en-
ables an entity-centric search engine to ultimately be much more competitive in
terms of precision and recall [13]. The drawback is that inference can be compu-
tationally expensive, and therefore drastically slow down the process of indexing
large amounts of semantic documents.

Our work, implemented within the Sindice project [16], is specifically con-
cerned on how to efficiently reason over very large collections of semantic doc-
uments which have been published on the Web. To reason on such documents,
we assume that the ontologies that these documents refer to are either included
explicitly with owl:imports declarations or implicitly by using property and class
URIs that link directly to the data describing the ontology itself. This later case
should be the standard if the W3C best practices [15] for publishing ontologies
and the Linked Data principles [2] are followed by ontology creators. As ontologies
might refer to other ontologies, the import process then needs to be recursively
iterated (see Section 2.2 for a detailed formalisation).

? This material is based upon works supported by the European FP7 project Okkam
- Enabling a Web of Entities (contract no. ICT-215032), and by Science Foundation
Ireland under Grant No. SFI/02/CE1/I131. We thank Jérôme Euzenat for the useful
discussions on the paper.

A naive approach would be to execute such recursive fetching for each har-
vested document and create a single model composed by the original document
plus the ontologies. At this point the deductive closure (see Sect. 2.3 for a detailed
formalisation) of the document can be computed and the document – including
ontologically inferred information – can be indexed.

Such a naive procedure is however obviously inefficient since a lot of processing
time will be used to recalculate deductions which, as we will see, could be instead
reused for possibly large classes of other documents during the indexing procedure.

To reuse previous inference results, a simple strategy has been traditionally to
put several (if not all) the ontologies together compute and reuse their deductive
closures across all the documents to be indexed. While this simple approach is
computationally convenient, it turns out to be sometimes inappropriate, since
data publishers can reuse or extend ontology terms with divergent points of view.

For example, if an ontology other than the FOAF vocabulary itself extends
foaf:name as an inverse functional property, an inferencing agent should not con-
sider this axiom outside the scope of the document that references this particular
ontology. Doing so would severely decrease the precision of semantic querying, by
diluting the results with many false positives.

For this reason, a fundamental requirement of the procedure that we developed
has been to confine ontological assertions and reasoning tasks into contexts in
order to track provenance of inference results. By tracking provenance of each
single assertion, we are able to prevent one ontology to alter the semantics of
other ontologies on a global scale.

The main contribution of this paper is to provide an efficient methodology
for web-scale reasoning over Semantic Web documents. Our reasoning strategy
is context-dependent and incomplete by design in order to preserve the original
meaning of a document. Other contributions of this paper are 1. an adaptation
application of the context mechanism of [11] for linked data; 2. a conceptual model
of a contextualised reasoning engine.

In the following Section 2, we introduce the basic concepts and settings of our
approach. Section 3 describes the context dependent reasoning procedure based
on a persistent TBox, called ontology base. The conceptual model of the ontology
base is detailed and our query and update strategies are discussed. Section 4
presents the distributed prototype implementation and preliminary results of an
empirical evaluation before reviewing related work in Section 5 and concluding in
Section 6.

2 Preliminaries

It would be practically impossible, and certainly incorrect, to apply reasoning over
a single RDF model composed of all RDF documents found on the Semantic Web.
Letting alone the sheer computational complexity, the problem here is clearly the
integration of information from different contexts: each document is published in
a particular context, and a naive integration of documents coming from different
contexts can result in undesirable inferred assertions.

We therefore strive to ensure that the context is maximally preserved when
aggregating documents in a Semantic Web indexing engine such as Sindice. We
proceed in a way that we consider to be a form of divide, compose and conquer
approach to Web scale reasoning (also referred to as contextual reasoning [3]). The
ABox and TBox1 of the Web of Data is partitioned into smaller “context boxes”
(on a per-document basis). Then, based on dependencies between these “boxes”,
we are able to combine multiples boxes together in an aggregated context that
preserves us from inferring undesirable assertions.

2.1 Contexts on the Semantic Web

For an RDF model published on the web the URI at which the RDF document is
retrievable provides a natural way to define its context. By resolving the URI, an
agent is able to retrieve an RDF graph. It is common practice to name this graph
with that context URI, i.e. associate the context URI with each statement of the
graph. Naming an RDF graph has multiple benefits. It helps tracking the prove-
nance of each statement. In addition, since named graphs are treated as first class
objects, it enables the description and manipulation of a set of statements just as
for any other resource. A formal description of the Named Graph framework can
be found in [5]. For our purposes, it is sufficient to understand that by context we
identify a set of statements of a (finite set of) file(s) on the Web.

Guha [11] proposed a context mechanism for the Semantic Web which provides
a formal basis to specify the aggregation of contexts. Within his framework, a
context denotes the scope of validity of a statement. This scope is defined by
the symbol ist (“is true in context”), introduced by Guha in [10]. The notation
ist(c, ϕ) states that a proposition ϕ is true in the context c.

The notion of context presented in this paper is based on Guha’s context
mechanism. Its aim is to enable the control of integration of ontologies on the
granularity level of documents, and ultimately avoid the aggregation of ontologies
that may result in undesirable inferred assertions.

Aggregate Context An Aggregate Context is a subclass of Context. Its content
is composed by the content retrieved by resolving its URI, and by the contents
lifted from other contexts. An aggregate context must contain the full specification
of what it imports. In our case, each RDF document is considered an Aggregate
Context, since an RDF document always contains the specification of what it
imports through explicit or implicit import declarations, described next.

Lifting Rules Since contexts are first class objects, it becomes possible to define
expressive formulae whose domains and ranges are contexts. An example are so
called Lifting Rules that enable to lift axioms from one context to another. In
Guha’s context mechanism, a lifting rule is a property type whose domain is an
Aggregate Context and range a Context. A lifting rule can simply import all of the
1 as which we refer to the assertional and structural knowledge in RDF(S) and OWL

documents, slightly abusing Description logics terminology.

statements from a context to another, but can also be defined to select precisely
which statements have to be imported.

2.2 Import Closure of Semantic Documents

On the Semantic Web, ontologies are meant to be published so to be easily reused
by third parties. OWL provides the owl:imports primitive to indicate the inclu-
sion of a target ontology inside an RDF document. Conceptually, importing an
ontology brings the content of that ontology into another document.

The owl:imports primitive is transitive. That is, an import declaration states
that, when reasoning with an ontology O, one should consider not only the axioms
of O, but the entire import closure of O. The imports closure of an ontology O is
the smallest set containing the axioms of O and of all the axioms of the ontologies
that O imports. For example, if ontology OA imports OB , and OB imports OC ,
then OA imports both OB and OC .

Implicit Import Declaration The declaration of owl:imports primitives is
a not a common practice in Web documents, most published documents do not
contain explicit owl:imports declarations. For example, among the 30 million of
documents in Sindice, only 5.56 thousand are declaring at least one owl:imports.

Instead, documents generally refer to classes and properties of existing ontolo-
gies by their URIs. For example, most FOAF profile documents don’t explicitly
import the FOAF ontology, but instead just refer to classes and properties of the
FOAF vocabulary. Following the W3C best practices [15] and Linked Data prin-
ciples [2], the URIs of the classes and properties defined in an ontology should be
resolvable and provide the machine-processable content of the vocabulary.

In the presence of such dereferenceable class or property URIs, we perform
what we call an implicit import. By dereferencing the URI, we attempt to retrieve
a document containing the ontological description of the entity and to include its
content inside the source document.

Also implicit import is considered transitive. For example, if a document refers
to an entity EA from an ontology OA, and if OA refers to an entity EB in an
ontology OB , then the document imports two ontologies OA and OB .

Import Lifting Rules Guha’s context mechanism defines the importsFrom lift-
ing rule. It is the simplest form of lifting and correspond to the inclusion of one
context into another. The owl:imports primitive or the implicit import declaration
is easily mapped to such a lifting rule.

Definition 1 ([11]). Let c2 be a context with a set of propositions ϕ(x), and c1
a context with an owl:imports declaration referencing c2. Then the set of propo-
sitions ϕ(x) is also true in the context c1:

ist(c2, ϕ(x)) ∧ ist(c1, importsFrom(c1, c2))→ ist(c1, ϕ(x))

A particular case is when import relations are cyclic. Importing an ontology
into itself is considered a null action, so if ontology OA imports OB and OB

imports OA, then the two ontologies are considered to be equivalent [1]. Based
on this OWL definition, we extend Guha’s definition to allow cycles in a graph of
importsFrom. We introduce a new symbol eq, and the notation eq(c1, c2) states
that c1 is equivalent to c2, i.e. that the set of propositions true in c1 is identical
to the set of propositions true in c2.

Definition 2. Let c1 and c2 be two contexts. If c1 contains the proposition im-
portsFrom(c1, c2) and c2 the proposition importsFrom(c2, c1), then the two con-
texts are considered equivalent:

ist(c2, importsFrom(c2, c1)) ∧ ist(c1, importsFrom(c1, c2))→ eq(c1, c2)

2.3 Deductive Closure of Semantic Documents

In Sindice, we consider for indexing inferred statements from the deductive clo-
sure of each document we index. What we call here the “deductive closure” of a
document is the set of assertions entailed in the aggregate context composed of
the document itself and of its ontology import closure.

When reasoning with Web documents, we can not expect to deal with doc-
uments at a level of expressiveness of OWL-DL [6], but would need to consider
OWL Full. Since under such circumstances, we cannot strive for complete reason-
ing anyway, we therefore content with an incomplete but finite entailment regime
based on a subset of RDFS and OWL, namely the ter Horst fragment [20] as im-
plemented by off-the-shelf rule-based materialisation engines such as for instance
OWLIM2. Such an incomplete deductive closure is sufficient with respect to in-
creasing the precision and recall of the search engine, providing useful RDF(S)
and OWL inferences such as class hierarchy, equalities, property characteristics
such as inverse functional properties or annotation properties.

Indeed, a rule-based inference engine is currently used to compute full materi-
alisation of the entailed statements with respect to this finite entailment regime.
In fact is it in such a setting a requirement that deduction to be finite, which in
terms of OWL Full can only be possible if the entailment regime is incomplete (as
widely known the RDF container vocabulary alone is infinite already [12]). This is
deliberate and we consider a higher level of completeness hardly achievable on the
Web of Data: In a setting where the target ontology to be imported may not be
accessible at the time of the processing, for instance, we just ignore the imports
primitives and are thus anyway incomplete from the start.

Deductive Closure of Aggregate Contexts One can see that the deductive
closure of an aggregate context can lead to inferred statements that are not true
in any of the source contexts alone.

Definition 3. Let c1 and c2 be two contexts with respectively two propositions
ϕ1 and ϕ2, ist(c1, ϕ1) and ist(c2, ϕ2), and ϕ1 ∧ ϕ2 |= ϕ3, such that ϕ2 6|= ϕ3,

2 http://www.ontotext.com/owlim/

ϕ1 6|= ϕ3, then we call ϕ3 a newly entailed proposition in the aggregate context
c1 ∧ c2. We denote the set of all newly defined propositions ∆c1,c2 , i.e.,

∆c1,c2 = {ist(c1, ϕ1)∧ist(c2, ϕ2) |= ist(c1∧c2, ϕ3) and ¬(ist(c1, ϕ3)∨ist(c2, ϕ3))}

For example, if a context c1 contains an instance x of the class Person, and a
context c2 contains a proposition stating that Person is a subclass of Human, then
the entailed conclusion that x is a human is only true in the aggregate context
c1 ∧ c2:

ist(c1, P erson(x))∧ist(c2, subClass(Person,Human))→ ist(c1∧c2, Human(x))

Note that - by considering (in our case (Horn) rule-based) RDFS/OWL in-
ferences only - aggregate contexts enjoy the following monotonicity property:3 if
aggregate context c1 ⊆ c2 then ist(c2, φ) implies ist(c1, φ), or respectively, for
overlapping contexts, if ist(c1 ∩ c2, φ) implies both ist(c1, φ) and ist(c2, φ). We
will exploit this property in the following outlined reasoning procedure.

3 Context Dependent Reasoning Procedure

Our goal is to develop a distributed ABox reasoning procedure based on an per-
sistent TBox, called an ontology base. The ontology base is in charge of storing
any ontology discovered on the Web of Data with the import relations between
them. The ontology base also stores inference results that has been performed in
order to reuse such computation later.

When trying to apply the above theory, architectural design problems appear.
In order to support the context mechanism presented in the previous section, the
ontology base requires 1. an internal representation of the import relations and
2. lifting rules as built-in triggers that are activated in the presence of import
declarations.

We first introduce the basic concepts used for the formalisation of the ontology
base. We then discuss an optimised strategy to update the ontology base. We
finally describe how to query the ontology base for performing ABox reasoning
on a single document.

3.1 Ontology Base Concepts

The ontology base uses the notion of named graphs for modeling the contexts of
ontologies and their import relations. The ontology base has a rules-based infer-
ence engine that can be applied to any context independently or to a combination
of them. This particular reasoning model allows to localise the inference of a
reasoning task.

3 We remark here that under the addition of possibly non-monotonic rules to the Se-
mantic Web architecture, this context monotonicity only holds under certain circum-
stances [17].

Ontology Entity An Ontology Entity is a property, instance of rdf:Property,
or a class, instance of rdfs:Class. The ontology entity must be identified by an
URI (we exclude entities that are identified by a blank node) and the URI must
be resolvable and point to a document containing the entity definition.

Ontology Context Internally to our ontology base, an Ontology Context O is a
named graph composed by the ontology statements that have been retrieved after
dereferencing the entity URIs of the ontology. The content of this graph consists
of the union of the description of each property and class associated to a Web
namespace of an ontology. According to the Best practices [15], properties and
classes defined in an ontology context should have the same URI namespace.

Usually, this means that the RDF associated with the ontology context will
simply contain the ontology as found on the Web. There are cases however, e.g. in
the case of the DBpedia ontology, where each property and class has its own RDF
document. The DBpedia ontology context is therefore composed by the union of
all these RDF documents.

Ontology Network An ontology context can have import relationships with
other ontology contexts. A directed link lAB between two contexts, OA and OB ,
stands for OA imports OB . In this view, lAB serves as pointer to a frame of
knowledge that is necessary for completing the semantics of OA and are mapped
to an importsFrom lifting rule.

Definition 4 (Ontology Network). An ontology network is a directed graph
G = (O,L) with O a set of vertices (ontology contexts) and L a set of directed
edges (import relations).

Definition 5 (Import Closure). The import closure of an ontology context OA

is a subgraph GOA
= (O′,L′) such as:

GOA
⊆ G,O′ ⊆ O,L′ ⊆ L | ∀O ∈ O′,∃ path(OA, O)

where a path is a sequence of n vertices OA, OB , . . . , On such that from each of
its vertices there is an edge to the next vertex.

For the purpose of this work, we consider the import closure to also contain
the result of the inference that can be performed on the union of all the ontologies.
For example, given two ontology contexts OA and OB , with OA importing OB ,
the import closure of OA will consist of the context aggregating OA, OB and the
deductive closure of the union of the two ontologies.

3.2 Ontology Base Update Strategy

Whenever a new ontology context is added to the ontology network, the import
closure of the new context is materialised. The deductive closure is then performed
on the ontology by lifting the axioms of the imported ontologies. The ontology
network is then updated so that the stored inferred triples are never duplicated.

This is better explained by an example. In Fig. 1 a document D1 is processed
which imports explicitly 2 ontologies O1 and O2. The import closure of D1 is
calculated and this is found to include also O3 since O3 is imported by O2. At
this point, the deductive closure of O1, O2 and O3 is performed both separately
(stored in their respective nodes) and together by lifting their axioms into a
virtual aggregate context. The statements resulting from the reasoning over O1,
O2 and O3 together but that are not found already in any of the source contexts
(i.e. ∆O1,O2,O3 , see Def. 3 for a detailed formalisation) are stored in the virtual
aggregate context I123.

At this point a new RDF document comes (D2) which only imports O1 and
O3. The update strategy will: 1. calculate the inference results of O1 and O3 and
store the new triples (∆O1,O3) in a new virtual context I13; 2. subtract these
triples from the content of the previous context I123. I123 is renamed into I123−13

and at the same time connected to I13 by an import relation.
As a result of the upload procedure, if two or more ontologies are never acti-

vated together by an RDF document, their deductive closure will never be com-
puted and stored.

A last optimisation is based on Def. 2. Whenever a cycle is detected into the
ontology network, the ontology contexts present in the cycle are aggregated into
one unique context.

O1 O2

O3I123

D1

O1 O2

O3I123-13

I13

D1 D2

Fig. 1. On the left, the ontology network after processing a document D1. On the right,
after processing D2, the virtual context I123 has been split in 2 parts.

3.3 Ontology Base Querying Strategy

When a document imports an ontology O, we query the ontology base to lift the
import closure GO = (O′,L′) (see Def. 5) into the document.

If a document imports more than one ontology, we query the ontology base
with the set of ontologies. The ontology base computes the import closure of
each ontology and returns the union of the import closures including related ∆
contexts.

For example in Fig. 1, the document D1 imports the two ontologies O1 and
O2. This lifts the contexts {O1, O2, O3, I13, I123−13} into the document D1.

4 Prototype Implementation

In Sindice, reasoning is performed for every document at indexing time. This
is possible with the help of a distributed architecture based on Hadoop4. Each
Hadoop node has its own ontology base which support the linked ontology and
inference model described in the previous section. A single ontology base is shared
across several Hadoop worker jobs. This architecture can be seen as a distributed
ABox reasoning with a shared persistent TBox.

Each hadoop worker job acts as a reasoning agent processing a document at a
time. It first analyses the document in order to discover the explicit owl:imports
declarations or the implicit ones by resolving each class and property URIs. Then,
the reasoning agent lift the content of the refered ontologies inside the documents
by querying the ontology base with the URIs of the ontologies. The ontology
base responds by providing the set of ontological assertions as described in 3.3.
As none of the triple-stores available today support context aware reasoning,
our implementation required considerable low level modifications to the Aduna
Sesame framework.5

4.1 Experimental Setup

The prototype has been deployed on a small Hadoop cluster of 3 nodes. Each
node is a 4 cores 2.33GHz with 8GB and executes 4 Hadoop jobs. Thus, in total,
the cluster enables the execution of 12 Hadoop jobs in parallel.

Each node has its own ontology base, shared among 4 Hadoop jobs. We assume
in the next that all the ontologies required for the experiment has been inserted
beforehand into the ontology base.

4.2 Preliminary Resuts

Using the experimental setup described in the previous section, we are able to
process6 an average of 40 documents per second when building the 30 million
documents index currently available in the Sindice beta1 index.

The processing speed varies depending on the type of document. On documents
with a simple and concise representation, such as the ones found in the Geonames
dataset, the prototype is able to process up to 80 documents per second. It is to
be noticed however that these results come from a prototypical implementation,
still to be subject to many possible technical optimizations.

4 Hadoop: http://hadoop.apache.org/core/
5 OpenRDF Sesame: http://www.openrdf.org/
6 including document pre-processing and post-processing (metadata extraction, index-

ing, etc.)

The deductive closure of each document that has been indexed in Sindice can
be checked online on the Sindice web site7. For example, for the search result
“tim berners lee”8, the hyperlink “Cached”9 will display the cached version of the
document and its deductive closure. The same page also displays, when clicking
on the hyperlink “Ontologies”, the list of ontologies that have been recursively
imported when performing the reasoning.

It is interesting to make a few observation based on the large corpus of docu-
ments processed by Sindice. We observe that on a snapshoot of the index contain-
ing 6 million of documents, the original size of the corpus was 18GB whereas the
total size after inference was 46GB, thus a ratio of 1.5. As a result of inference,
we can then observe that in Sindice we are indexing twice as many statements
as we would by just indexing explicit semantics. Also we find that the number
of ontologies, defined as documents which define new classes or properties, in
our knowledge base is around 95.000, most of which are fragments coming from
projects such as OpenCyc, Yago and DBpedia. The ratio of ontologies to semantic
documents is nevertheless low, currently 1 to 335.

5 Related Work

The notion of context has been extensively studied since early 1990s, starting with
a first formalisation by Guha [10] followed by McCarthy [14] and by Giunchiglia [9].
For more information about the domain, [18] presents a survey and comparison
of the main formalizations of context. There is recent works that adapt context
formalisations to the Semantic Web such as [4, 11].

The previous references provide a strong theoretical background and frame-
work for developing a context-dependent reasoning mechanism for the Semantic
Web. Up to our knowledge, only [19] propose a concrete application of man-
agement of contextualized RDF knowledge bases. But no one has described a
methodology for efficient large scale reasoning that deals with contextuality of
web documents.

Assumption-based Truth Maintenance Systems [7] are somehow comparable to
our approach since such system keeps track of dependency between facts in mul-
tiple views (contexts) in order to maintain consistency in a knowledge base. The
difference with our approach lies in that we does not try to maintain consistency,
instead we just maintain the provenance of each inferred statements.

A side remark in [8] suggests that the authors follow a very similar strategy
to ours in determining the ontological closure of a document, but no details on
efficient contextual confinement and reuse of inferences – which are the main
contribution of our work – are discussed.

7 Sindice.com: http://www.sindice.com
8 http://sindice.com/search?q=tim\%20berners\%20lee&qt=term
9 http://sindice.com/search/page?url=http\%3A\%2F\%2Fwww.w3.org\%2FPeople\

%2FBerners-Lee\%2Fcard

6 Conclusion

In this paper, we discussed a context dependent methodology for large scale web
reasoning.

We first define the problem conceptually and then illustrate how to create an
ontology repository which can provide the materialization of reasoning statements
while still keeping tracks of the original statements provenance. Our implementa-
tion currently support a subset of RDFS and OWL. We find this level of inference
support to be in line with Sindice’s target objective to support the RDF commu-
nity of practice, e.g. the Linked Data Community, which usually relies only on
RDFS and OWL features covered by the OWL ter Horst fragment [20].

Reasoning of the Web of Data enables the Sindice search engine to be more
effective in term of precision and recall for Semantic Web information retrieval. As
an example, it would not be possible to answer a query on FOAF social networking
files asking for entities which have label “giovanni” unless reasoning is performed
to infer rdfs:labels from the property foaf:name.

The context mechanism allows Sindice to avoid the deduction of undesirable
assertions in documents, a common risk when working with the Web of Data.
However, this context mechanism does not restrict the freedom of expression of
data publisher. Data publisher are still allowed to reuse and extend ontologies in
any manner, but the consequences of their modifications will be confined in their
own context, and will not alter the intended semantics of the other documents.

The technique presented in this paper is mainly focussed on the TBox level.
Import relations between ontologies provide a good support for lifting rules. On
ABox level, this becomes more difficult since it is not clear which ABox relations
should be consider as lifting rules. ABox relations, such as owl:sameAs declara-
tions will be investigate in a future work.

References

[1] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Ref-
erence. W3C Recommendation, February 2004.

[2] T. Berners-Lee. Linked data. W3C Design Issues, July 2006.
[3] P. Bouquet, C. Ghidini, F. Giunchiglia, and E. Blanzieri. Theories and uses

of context in knowledge representation and reasoning. Journal of Pragmatics,
35:455–484(30), March 2003.

[4] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini,
and Heiner Stuckenschmidt. Contextualizing ontologies. Journal of Web
Semantics, 1(4):325–343, 2004.

[5] J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance
and trust. In WWW ’05: Proceedings of the 14th international conference on
World Wide Web, pages 613–622, New York, NY, USA, 2005. ACM.

[6] M. d’Aquin, C. Baldassarre, L. Gridinoc, S. Angeletou, M. Sabou, and
E. Motta. Characterizing Knowledge on the Semantic Web with Watson.
In EON, pages 1–10, 2007.

[7] Johan de Kleer. An Assumption-Based TMS. Artif. Intell., 28(2):127–162,
1986.

[8] Li Ding, Jiao Tao, and Deborah L. McGuinness. An initial investigation on
evaluating semantic web instance data. In WWW ’08: Proceeding of the 17th
international conference on World Wide Web, pages 1179–1180, New York,
NY, USA, 2008. ACM.

[9] Fausto Giunchiglia. Contextual reasoning. Epistemologia, special issue on I
Linguaggi e le Macchine, 345:345–364, 1993.

[10] R. V. Guha. Contexts: a formalization and some applications. PhD thesis,
Stanford, CA, USA, 1992.

[11] R. V. Guha, R. McCool, and R. Fikes. Contexts for the Semantic Web. In
International Semantic Web Conference, pages 32–46, 2004.

[12] P. Hayes. RDF Semantics. W3C Recommendation, World Wide Web Con-
sortium, February 2004.

[13] J. Mayfield and T. Finin. Information retrieval on the Semantic Web: In-
tegrating inference and retrieval. In Proceedings of the SIGIR Workshop on
the Semantic Web, August 2003.

[14] John McCarthy. Notes On Formalizing Context. In Proceedings of IJCAI-93,
pages 555–560, 1993.

[15] A. Miles, T. Baker, and R. Swick. Best Practice Recipes for Publishing RDF
Vocabularies. Technical report, 2006.

[16] E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn, and G. Tum-
marello. Sindice.com: A document-oriented lookup index for open linked
data. International Journal of Metadata, Semantics and Ontologies, 3(1),
2008.

[17] A. Polleres, C. Feier, and A. Harth. Rules with contextually scoped negation.
In 3rd European Semantic Web Conference (ESWC2006), volume 4011 of
LNCS, Budva, Montenegro, June 2006. Springer.

[18] Luciano Serafini and Paolo Bouquet. Comparing formal theories of context
in AI. Artificial Intelligence, 155(1-2):41, 2004.

[19] Heiko Stoermer, Paolo Bouquet, Ignazio Palmisano, and Domenico Redavid.
A Context-Based Architecture for RDF Knowledge Bases: Approach, Imple-
mentation and Preliminary Results. In RR, pages 209–218, 2007.

[20] H. J. ter Horst. Completeness, decidability and complexity of entailment
for RDF Schema and a semantic extension involving the OWL vocabulary.
Journal of Web Semantics, 3(2-3):79–115, 2005.

