
Towards Logic Programs with
Ordered and Unordered Disjunction!

Philipp Kärger1, Nuno Lopes2, Daniel Olmedilla1, and Axel Polleres2

1 L3S Research Center & Leibniz University of Hannover, Germany
2 DERI Galway, National University of Ireland

Abstract. Logic Programming paradigms that allow for expressing pref-
erences have drawn a lot of research interest over the last years. Among
them, the principle of ordered disjunction was developed to express totally
ordered preferences for alternatives in rule heads. In this paper we intro-
duce an extension of this approach called Disjunctive Logic Programs
with Ordered Disjunction (DLPOD) that combines ordered disjunction
with common disjunction in rule heads. By this extension, we enhance
the preference notions expressible with totally ordered disjunctions to par-
tially ordered preferences. Furthermore, we show that computing optimal
stable models for DLPODs still stays in Σp

2 for head-cycle free programs
and establish Σp

3 upper bounds for the general case.

1 Introduction

Expressing preferences in logic programs has been a research issue in the com-
munity for quite some time now. One can distinguish two directions: preferences
between rules of a logic program and preferences among literals. In both cases,
typically the semantics of the approaches require a total order preference relation
to be imposed in the preference expressions. But requiring total order preferences
is a restriction that does not fit the world of subjective expressions: total order
preferences do not allow for cases where for several options it is not known which
one is preferred. But such cases, called indifferences, are common, be it due to
incomplete information about the world or due to the lack of decision of a user
between options.

In this paper we present an approach for preferences in logic programming
that allows to specify partially ordered preferences among literals. We achieve
this by combining two things which were handled separately until now: first, the
usual disjunction common in disjunctive logic programs (DLP) [1–3]; second, the
preference approach of Brewka et al. [4] called Logic Programming with Ordered
Disjunction (LPOD). LPOD is an extension to logic programming that introduces
a special disjunction denoted by the operator × that exploits the order of literals
in a disjunction in order to express preferences among these literals. We argue
that allowing either ordered or unordered disjunctions alone in the head of a
! This work has been supported by Science Foundation Ireland under the Lion project

(SFI/02/CE1/I131) and by the European FP6 project inContext (IST-034718)

program’s rules is not sufficient whenever it comes to statements of indifference
in the preferences. Typically, one may be indifferent between some options but
still prefer some others rather than defining a total order between all the options.
In our approach, we propose to use the semantics of the ordered disjunction to
express preferences and the disjunction to express indifferences. For example, the
preference concerning the activities for a night may then look as follows (inspired
by the example given in [4]):

pub× (cinema ∨ tv).

The intuition behind this expression is that pub is the most preferred option and,
in case pub is not possible, both cinema and tv are equally preferred.

The remainder of the paper is structured as follows. In Section 2 we recall
definitions about DLP and LPODs used later in the paper. In Section 3, we
detail our new language including syntax and semantics definition. An encoding
of partial order preferences in DLPODs is given in Section 4. Section 5 provides
an implementation of our approach and in Section 6 general complexity results
for computing optimal answer sets of a DLPOD are given. We want to point
out that this section marks preliminary results in the sense that we have not yet
nailed down exact complexity bounds for the newly defined language and that
some proofs are admittedly sketchy due to space restrictions.

2 Preliminaries

The stable model semantics extends the typical least model semantics for logic
programs (where all rules are definite Horn clauses) to so-called normal logic
programs, i.e. programms allowing negation as failure in rule bodies. Logic pro-
gramming under the answer set semantics, often referred to as “Answer Set Pro-
gramming”, further extends the stable model semantics by features such as var-
ious forms of disjunction. In the following, we review the definitions of two such
forms of disjunction, which we will refer to later in the paper. Namely, we will
introduce Disjunctive Logic Programs (DLPs) and Logic Programs with Ordered
Disjunction (LPOD).

In this paper we will mostly restrict our elaborations and examples to proposi-
tional programs. As usual in answer set programming rules containing variables—
also called rule schemata—are considered as representations of their instantiations
where variables are replaced by the constants occurring in the program.

2.1 Disjunctive Logic Programming

Given disjoint sets of predicate, constant and variable symbols, σpred, σcon and
σvar respectively, an atom can be defined as p(t1, . . . , tn) where p ∈ σpred, t1, . . . , tn
∈ σcon ∪ σvar and n is called the arity of p. Atoms such that n = 0 are called
propositional. A literal is an atom a or its negation ¬a (’¬’ represents classical
negation).

Definition 1 (DLP). A disjunctive logic program (DLP) P is defined as a set
of rules r of the form h1 ∨ . . . ∨ hl ← b1, . . . , bm,not bm+1, . . . ,not bn where
each hi (bj) is a literal and not represents negation as failure. We further define
Head(r) = {h1, . . . , hl}, Body+(r) = {b1, . . . , bm}, Body−(r) = {bm+1, . . . , bn},
and Lit(P) as the set of all literals occurring in P .

Variables present in a program P are assumed to be a shorthand notation
representing each element of the Herbrand Universe of program P , HUP , which
corresponds to the set of all constants c ∈ σcon present in P . The semantics of
DLPs is defined as usual by its disjunctive stable models, or answer sets, i.e., a
set of literals S is an answer set of P if and only if it is a minimal Herbrand model
of the Gelfond-Lifschitz reduct PS , see [5, 1] for details.

Head-Cycle Free Logic Programs [6] are a special kind of disjunctive logic
programs which will be of interest later in the paper. They are defined based on
the notion of a program’s dependency graph:

Definition 2 (Dependency graph). The dependency graph of a Logic Program
P is defined as a directed graph where every literal that occurs in P is represented
as node l and there is an edge from l′ to l if there is a rule in P such that
l ∈ Head(r) and l′ ∈ Body+(r).

Definition 3 (Head-Cycle Free). P is head-cycle free if its dependency graph
does not contain directed cycles that go through two literals occurring in the same
rule head.

2.2 Logic Programming with Ordered Disjunction

In [4], Brewka et al. describe so-called Logic Programs with Ordered Disjunction
(LPOD) for expressing preferences in logic programming based on a special kind of
disjunction called ordered disjunction and denoted by ×. It expresses a disjunction
while at the same time building up a preference order between the single disjuncts.
This ordered disjunction is—similarly to DLP—only allowed to appear in a rule’s
head. A typical example rule is “pub× cinema× tv.” stating that pub is preferred
to be true. If for some reason pub can not hold, cinema would be the second
option, and so on. Due to space restrictions we ommit a formal presentation of
LPODs and their semantics and refer the reader to [4].

2.3 Other Related Work

There is a lot of work about modeling and exploiting preferences in logic programs,
we refer the reader to [7, 8] for a complete overview. To the best of our knowledge,
none of the existing approaches to preference handling in logic programs allow for
partial order preferences expressions. For the sake of completeness, we want to
mention the work presented in [9]. There, LPODs are used as a basis for the policy
language PPDL describing the behaviour of a network node and allowing for
preference definitions between possible actions a node can perform. This approach
models partial order preferences by assigning levels to elemets of distinct branches

of the partial order. However, this leveling approach does not work with all partial
order preferences. For instance, the one described in our Example 5 later in the
paper: there is no unique level assignment that keeps B and D as well as C
and D incomparable but the semantics of partial orders defines both pairs as
incomparable.

3 DLPOD—Disjunctive Logic Programs with Ordered
Disjunction

In this section we will detail our approach to combine ordered and unordered
disjunctions. In a few words: we allow both, ordered disjunctions indicated by the
operator × and normal disjunctions indicated by the operator ∨ in a rule’s head.
Based on this we can extend the example given in [4] and define the rule

pub× (cinema ∨ tv) ← not sunny.

Here we allow an indifference between the two options cinema and tv. Intu-
itively, in case the body of the rule is true, a user prefers pub to be true, that is,
to be contained in the answer set. If pub can not be satisfied (e.g., another rule
remedies the possibility of visiting a pub), it is considered equal if either of the
options cinema and tv are true. In the following we will first provide a detailed
definition of how such rules look like and second, we define their exact semantics.

3.1 Syntax

Our syntax simply extends Logic Programs with Ordered Disjunction from [4]
with the common disjunction ‘∨’ used in Disjunctive Logic Programming.

Definition 4 (Ordered Disjunctive Term). An ordered disjunctive term is a
(possibly nested) term of literals C1, . . . , Cn connected by ∨ or ×. We define such
terms recursively as follows.
– Any literal L is an Ordered Disjunctive Term.
– If t1 and t2 are Ordered Disjunctive Terms, then (t1 × t2) and (t1 ∨ t2) are

Ordered Disjunctive Terms as well.

We define a DLPOD as an extended logic program with an Ordered Disjunc-
tive Term in the head:

Definition 5 (Disj. Log. Program with Ordered Disjunction). A Disjunc-
tive Logic Program with Ordered Disjunction (DLPOD) P is a set of rules of the
form r = Headr ← Bodyr. where Bodyr = B1, . . . , Bm, not Bm+1, . . . , not Bk

such that all Bi (1 ≤ i ≤ k) are literals and Headr is an Ordered Disjunctive
Term. We further define Body+(r) = {B1, . . . , Bm}, Body−(r) = {Bm+1, . . . , Bk}.

In the following we define the semantics of a DLPOD by first introducing
answer sets of a DLPOD and subsequently defining a preference relation among
those answer sets.

3.2 Answer Sets of a DLPOD

The definition of the answer sets of a DLPOD is based on an extended notion
of split programs as they are introduced in [4]. For defining split programs of a
DLPOD we first define what an Ordered Disjunctive Normal Form (ODNF) of a
rule is. Then, we show how to transform each rule’s head into this normal form.
Based on rules given in this normal form and on the definition of the option of
such a rule, we can define the split programs of a DLPOD.

Definition 6 (Ordered Disjunctive Normal Form (ODNF)). The Ordered
Disjunctive Normal Form of an Ordered Disjunctive Term is

n∨

i=1

mi×
j=1

Ci,j = (C1,1 × . . .× C1,m1) ∨ . . . ∨ (Cn,1 × . . .× Cn,mn)

We call (Ci,1 × . . .×Ci,ki) the i-th Ordered Disjunct of the ODNF. We say that
a rule r is in ODNF if Head(r) is in ODNF.

We treat arbitrarily nested DLPOD rules as shorthand for DLPOD rules in
ODNF. I.e., given an ordered disjunctive term S and subterms a, b and c of S the
following rewriting rules can be used to expand S to ODNF:

a× (b ∨ c) ⇒ (a× b) ∨ (a× c) (1)

(a ∨ b)× c ⇒ (a× c) ∨ (b× c) (2)

(a× b)× c ⇒ a× b× c (3)

a× (b× c) ⇒ a× b× c (4)

Example 1. By exhaustive application of these rules, we can transform any rule
in a program into ODNF. For instance

pub× (cinema ∨ tv) ← not sunny.

yields the following rule in ODNF:

(pub× cinema) ∨ (pub× tv) ← not sunny.

(

Using the rewriting rules (1)–(4), hereafter we will define the semantics of
a DLPOD P in terms of rules in ODNF only. We begin with the definition of
the split programs of P which—intuitively—denote combinations of all options
of each rule:

Definition 7 (Option of a rule). Let r be a DLPOD rule in ODNF:
n∨

i=1

mi×
j=1

Ci,j ← body.

where mi is the number of literals in the i-th Ordered Disjunct of r. An option of
r is any rule of the form (ji ≤ mi):

C1,j1 ∨ C2,j2 ∨ . . . ∨ Cn,jn ← body,

not C1,1, not C1,2, . . . , not C1,j1−1,

not C2,1, not C2,2, . . . , not C2,j2−1,

. . .

not Cn,1, not Ci,2, . . . , not Cn,jn−1.

Example 2. The ODNF rule (pub× cinema) ∨ (pub× tv) ← not sunny. has
the following four options (for example purposes repeated atoms are not removed):

pub ∨ pub ← not sunny.

pub ∨ tv ← not sunny, not pub.

cinema ∨ pub ← not sunny, not pub.

cinema ∨ tv ← not sunny, not pub, not pub.

(
Definition 8 (Split program of a DLPOD). A split program P ′ of a DLPOD
P is obtained by replacing each rule in P by one of its options.

It is important to note that—in contrast to [4]—the split programs of DLPODs
are disjunctive logic programs.

Example 3. Given the following DLPOD P :
pub× (cinema ∨ tv) ← not sunny.

beach ∨ hiking ← sunny.

We obtain the following four split programs:
1. pub ← not sunny.

beach ∨ hiking ← sunny.
2. pub ∨ tv ← not sunny, not pub.

beach ∨ hiking ← sunny.

3. cinema∨pub ← not sunny, not pub.
beach ∨ hiking ← sunny.

4. cinema ∨ tv ← not sunny, not pub.
beach ∨ hiking ← sunny.

(
Analogously to disjunctive logic programs, we define head-cycle-freeness [6]

for DLPODs as follows:

Definition 9 (Dependency graph). The dependency graph of a DLPOD P is
the directed graph containing all literals in P as nodes such that there is an edge
from l′ to l iff there is a rule r in P such that l ∈ Head(r) and l′ ∈ Body+(r).

Definition 10 (Head-Cycle Free). A DLPOD P is head-cycle free if its depen-
dency graph does not contain directed cycles that go through two literals occurring
in two ordered disjuncts Ci and Cj (i)= j) of the same rule head.

The following observation can be easily verified:

Proposition 1. Split programs of head-cycle free DLPODs are head-cycle free.

The possible optimal answer sets of a DLPOD are the answer sets of all split
programs. In the following section we will explain in detail which answer set we
call optimal according to the original DLPOD.

3.3 Optimal Answer Sets of a DLPOD

For the definition of the semantics of a DLPOD we still miss the notion of preferred
answer sets of a DLPOD. So far, we have shown how the possible answer sets of a
DLPOD are defined. In this section we will detail how to compare these possible
answer sets in order to find the optimal ones (i.e., the most preferred answer sets
according to the ordered and unordered disjunctions in the rules’ heads). First, we
define the Satisfaction Degree Vector as a measurement of how much an answer
set satisfies a DLPOD rule:

Definition 11 (Satisfaction Degree Vector). Let r be a DLPOD rule of the
form

r =
n∨

i=1

mi×
j=1

Ci,j ← A1, ..., Al, not B1, ..., not Bk

and let S be a set of literals. The satisfaction degree vector D of r in S is a vector
of the form D = (d1, . . . , dn) representing degrees of satisfaction for each disjunct
in r’s head where each di is either a natural number or the constant ε. We define
the dimensions of the Satisfaction Degree Vector as follows:

1. D = (1, . . . , 1) if (a) Body+
r)⊆ S, or (b) Body−r ∩ S)= ∅, or otherwise

2. di = ε if Ci,j)∈ S for all 1 ≤ j ≤ mi,
3. di = min{t|Ci,t ∈ S}.

We denote the Satisfaction Degree Vector of r in S by DegS(r).

Intuitively, in this definition, we assign to each Ordered Disjunct a penalty
representing how much the answer set satisfies the disjunct. For each rule, these
penalties build up a vector of degree values—one dimension for each disjunct. We
choose degree ε for head disjuncts which do not overlap with S (cf. Condition 2).
With ε we denote that a particular disjunct does not tell anything about how much
an answer set is preferred. Further, like in [4], we assign the best satisfaction degree
(i.e., the vector (1, . . . , 1)) in case a rule’s body is not satisfied (cf. Conditions 1):
there is no reason to be dissatisfied if a rule does not apply for a particular answer
set.

Example 4. Let us again consider the rule
r = (pub× cinema) ∨ (pub× tv) ← not sunny.

Since this rule has two Ordered Disjuncts, any Satisfaction Degree Vector has
two dimensions. The set of literals {pub} as well as {sunny} satisfies this rule
to degree (1, 1) (applied condition 3. and condition 1.(b), respectively). The set
{cinema} satisfies r to degree (2, ε) and the set {tv} satisfies r to degree (ε, 2). (

Definition 12 (Preference acc. to a rule). A set of literals S1 is preferred to
another S2 according to a rule r (denoted as S1 -r S2) iff DegS1(r) = (d1

1, . . . , d
1
n)

Pareto-dominates DegS2(r) = (d2
1, . . . , d

2
n). That is, the following two conditions

hold:
1. ∀i (d1

i ≤ d2
i ∨ d1

i = ε ∨ d2
i = ε)

2. ∃i d1
i < d2

i (d1
i)= ε ∧ d2

i)= ε) .

Intuitively, we require all dimensions in DegS1(r) to show a smaller or equal
number than in DegS2(r) and in at least one dimension DegS1(r) has to show a
strictly smaller number than DegS2(r). The constant ε plays the role of a place-
holder which is, roughly speaking, equal to any number (cf. Condition 1). As
we will see in Section 4, this ε provides us with the “incomparability” needed to
capture partial orders.

Now, we finally extend the preference notion to a relation comparing sets of
literals according to a whole DLPOD:

Definition 13 (Preference acc. to a program). A set of literals S1 is pre-
ferred to another S2 according to a set of rules R = {r1, . . . , rn} (denoted as S1 -
S2) iff ∃i(S1 -ri S2) ∧ ¬∃j(S2 -rj S1).

The conditions in both definitions follow the fair principle of Pareto optimality:
an object is preferred if it is better or equal to another in all attributes (in our
case in all Ordered Disjuncts or in all rules, respectively) and strictly better in at
least one attribute. Finally, we provide the Definition of a preferred answer set of
a program P :

Definition 14 (Preferred Answer Set). Given a DLPOD P , one of its split
programs P ′, and an answer set S of P ′. S is called a preferred answer set (of P)
if there is no answer set S′ of P ′ for which S′ - S holds.

4 Encoding Partial Order Preferences into DLPODs

As hinted already in the introduction part, DLPOD-programs extend the ap-
proach of preferences in logic programming towards partial order preference re-
lations. In this section we detail how to actually model partial order preference
relations with Ordered Disjunctive Terms. For this, we specify a transformation
of a partial order of literals into a Disjunctive Normal Form yielding a partial
order preference statement in a rule’s head.

Definition 15 (Transformation of a Partial Order). Given a Partial Order
< over a set of literals S and its corresponding covering relation <∗ (that is, <∗
contains the transitive reflexive reduction of <), the transformation P of < into
an Ordered Disjunctive Term is defined as: P (<, S) =

∨n
j=1(C1× . . .×Ckj) such

that (∀Ci : Ci ∈ S) ∧ (¬∃C : C <∗ C1) ∧ (¬∃C : Ck <∗ C) ∧ (∀i : Ci <∗ Ci+1).

Intuitively speaking, given a partial order preference relation represented by
its Hasse-diagram [10], for each possible path from an element with no incoming
edges to an element with no outgoing edges, we create an Ordered Disjunct (C1×
. . .×Ck) where C1 is a node with no incoming edge, Ck is a node with no outgoing
edge, and there is an edge between any pair Ci, Ci+1.

Example 5.
Given the preference relation < over the set of literals
S = {A, B,C, D, E} as depicted in the Hasse diagram on
the right hand side, the transformation P (<, S) yields
the following Ordered Disjunctive Term:

(A×B × C × E) ∨ (A×D × E).
! !

!

"

#
$

% (

This transformation provides us with the means for modelling partial order
preferences in DLPODs: now every partial order preference expressed for literals
can be formulated as the head of a rule in a DLPOD.

5 Implementation

As for a possible implementation, we extend the implementation of LPOD by
Brewka et al. [11] towards DLPODs. As we shall see, this is not entirely straight-
forward. Concretely, in [11] the LPOD semantics is implemented on top of a
standard solver for non-disjunctive logic programs based on the observation that
each split program corresponds to guessing exactly one degree for each rule with
ordered disjunction. Our approach and [11] basically share the following procedure
to compute a preferred answer set given a program P :

1. Guess a particular satisfaction degree vector for each rule (i.e., a split pro-
gram) and compute the answer sets for this guess. This is encoded in a in
program called generator G(P).

2. For each answer set S, check whether there is no split program which yields a
better answer set than S. This is encoded in a program T (P, S) called tester,
which is called in an interleaved fashion for each answer set generated by
G(P). Whenever the tester does not find a better answer set, S is a preferred
answer set.

This is analog to [11] except for the following three modifications. First, in
order to generate all possible splits we need to guess a satisfaction degree vector
per rule (instead of a single degree value). Second, we need to generate the answer
sets for each split, which is—as opposed to LPODs—a disjunctive logic program.
Third, we need to modify the tester program which establishes whether a better
answer set can be found.

Before adapting the formal definitions of Brewka et al.’s generator and tester
we need to prove two lemmata. The first Lemma states that one can replace a
head symbol h in a disjunctive rule of a program P with a new symbol h′ by
adding some extra rules without changing the semantics of P :

Lemma 1 (Ground head atom replacement). Let r = h1∨. . .∨hi∨. . .∨hn ←
Bodyr. be a rule in a disjunctive logic program P such that hi is ground, and let
further P ′ = P \ r ∪ {h1 ∨ . . . ∨ h′i ∨ . . . ∨ hn ← Body. h′i ← hi. hi ← h′i.}
such that h′i does not occur in P . Then S is an answer set of P if and only if
S′ = S ∪ {h′i | hi ∈ S} is an answer set of P ′.

Similarly, we note that a part of the body of r can essentially be “outsourced”
to an external rule by the following Lemma:

Lemma 2 (Body replacement). Let r = Head ← Body1, Body2. be a rule in
a disjunctive logic program P , and let further

P ′ = P \ r ∪ {Head ← b′, Body2.b
′ ← Body1.}

such that b′ does not occur in P . Then S is an answer set of P if and only if
S′ = S ∪ {b′ | Body1 true in S} is an answer set of P ′.

Using these lemmata, we are almost ready to go ahead to define the generator
program. For this definition we make use of the cardinality constraint notation
L{l1, . . . ln}U [12] in the head of a rule. Here, l1, . . . , ln are literals and L (lower
bound) and U (upper bound) are natural numbers. The intuition is that this
statement holds if at least L and at most U of the literals l1, . . . , ln are satisfied.

Definition 16 (Generator Program, adapts [11, Def. 10]). Let r be the
rule of a DLPOD of the form

H1,1 × . . .×H1,m1∨
...
Hi,1 × . . .×Hi,mi∨
...
Hn,1 × . . .×Hn,mn

← Bodyr.

Then the transformation G(r) is defined as the following set of rules:

(a) { 1{cr,i(1), . . . , cr,i(mi)}1 ← Bodyr. | 1 ≤ i ≤ n}
(b) ∪ { hr,1 ∨ . . . ∨ hr,n ← br,1, . . . , br,n, Bodyr.}
(c) ∪ { hr,i ← Hi,j , cr,i(j). Hi,j ← hr,i, cr,i(j). | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}
(d) ∪ { br,i ← cr,i(j), not Hi,1, . . . , not Hi,j−1. | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}
(e) ∪ { ← not H1,1, . . . , not H1,m1 , . . . ,

not Hi−1,1, . . . , not Hi−1,mi−1 ,
not Hi,1, . . . , not Hi,j−1,
Hi,j , not cr,i(j),
not Hi+1,1, . . . , not Hi+1,mi+1 , . . .
not Hn,1, . . . , not Hn,mn . | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}

Finally, the transformation G(P) of a complete DLPOD is the union of all its
transformed rules:

G(P) =
⋃

{G(r)|r ∈ P}.

Here, the newly introduced predicates cr,i, hr,i, br,i (1 ≤ i ≤ n) stand for
“choice”, “head”, and “body” auxiliary symbols. Whereas the cr,i plays the role
of modeling the choice of an actual degree vector, the hr,i and br,i predicates are
auxiliary symbols used according to Lemmas 1 and 2 for a particular choice. Rules
(a) are guessing a particular choice option forming a split. Using this choice, rules

(b) to (e) represent the actual rules in the split program for the particular choice,
by using Lemma 1 in rules (c) and Lemma 2 in rules (d). Finally, rules (e) ensure
that – in case all other ordered disjuncts k)= i are false – we must choose to add
Hi,j if no better literal Hi,l in disjunct i with l < j is already in the model. 3

Example 6. Let us consider the following rule r = (A × B) ∨ (C ×D) ← Body.
Then, the transformation G(r) looks as follows:

(a) 1{cr,1(1), cr,1(2)}1 ← Body.
1{cr,2(1), cr,2(2)}1 ← Body.

(b) hr,1 ∨ hr,2 ←br,1, br,2, Body.
(c) hr,1 ← A, cr,1(1). A ← hr,1, cr,1(1).

hr,1 ← B, cr,1(2). B ← hr,1, cr,1(2).
hr,2 ← C, cr,2(1). C ← hr,2, cr,2(1).
hr,2 ← D, cr,2(2). D ← hr,2, cr,2(2).

(d) br,1 ← cr,1(1), not A.
br,1 ← cr,1(2), not A, not B.
br,2 ← cr,2(1), not C.
br,2 ← cr,2(2), not C, not D.

(e) ←A, not cr,1(1), not B, not C, not D.
←notA, B, not cr,1(2), not C, not D.
←notA, notB, C, not cr,2(1), not D.
←notA, notB, notC, D, not cr,2(2). (

Proposition 2. Let P be a DLPOD. Then (i) G(P) is polynomial in the size of
P and (ii) S is an answer set of G(P) if and only if S ∩Lit(P) is an answer set
of P.

Proof. [sketch] (i) is easy to see by looking at the rules (a) to (e). The idea for
(ii) is similar to the analogous Proposition 2 in [11] where we additionally need to
apply Lemma 1 and 2. Intuitively, each “guess” of the cr,i(j) in rules (a) yields a
split program in the sense that each rule not belonging to that particular guess is
“projected” away by putting cr,i(j) in the bodies of rules (c) and (d). By lemmas 1
and 2 now, rule (b) exactly corresponds to the guess rule in the split program
corresponding to the guess modeled in (a). !

Each answer set S of G(P) is subsequently tested by a tester program T (P, S)
for whether it is a preferred answer set.

Definition 17 (Tester Program). Let P be a DLPOD and S be a set of literals.
The tester program checking whether there is a better answer set than S is defined
as follows:

T (P, S) = G(P)
∪ {Oi,j . | Hi,j ∈ S} ∪ {rule(r). | r ∈ P}
∪ {better(r) ← rule(r), Oi,j , Hi,k. | r ∈ P, 1 ≤ i ≤ n, 1 ≤ k ≤ mi, 1 ≤ j < k}

3 For the interested reader, rules (a) roughly correspond to the rule in equation (8)
in [11], rules (b)–(d) to rule (4) in [11], and finally rules (e) to rule (5) in [11].

∪ {worse(r) ← rule(r), Oi,k, Hi,j . | r ∈ P, 1 ≤ i ≤ n, 1 ≤ k ≤ mi, 1 ≤ j < k}
∪ {betterRule(R) ← better(R), not worse(R).

worseRule(R) ← worse(R), not better(R).
worseSet ← worseRule(R).
betterSet ← betterRule(R), not worseSet.
← not betterSet.

Intuitively, the predicate better(r) fires if there is a dimension i in r’s satisfac-
tion degree vector according to S such that T (P, S) found an answer set S′ with a
satisfaction degree vector that is better in position i. Conversely, worse(r) fires if
a dimension can be found where S′ is worse. Note that we do not need to encode
ε in the Tester, since the rules defining better(r) and worse(r), respectively, are
only constructed for comparable options, i.e., pairs of literals occurring in the
same disjunct of the same rule. Next, S′ -r S (expressed by betterRule(r)) holds
if there is a dimension where S′ is better least but there is no dimension where
S′ is worse. Analogously, worseRule(r) determines rules such that S -r S′. By
the remaining two rules and the final constraint, answer set S′ only “survives”, if
it is better in some rule and not worse in any rule. Thus, only those answer sets
S′ - S “pass”, (cf. Definition 13).

Proposition 3. Let S be an answer set of G(P). If T (P, S) does not have any
consistent answer sets, then S is an optimal answer set of P .

By this result, we can implement DLPOD using a standard solver for disjunc-
tive logic programming such as GnT [13]. We further note that LPODs are just
a special case of DLPODs:

Proposition 4. LPODs are a special case of DLPODs and the preferred answer
set of an LPOD computed by G(P) and T (P, S) correspond 1-to-1 to the preferred
answer sets computed by the generator and tester presented in [11].

Proof. [sketch] This is easy to see by the correspondence of G(P) and T (P, S)
modulo application of lemmas 1 and 2, i.e., the answer sets of the generator and
tester programs outlined in [11] only differ by the auxiliary symbols hr,i and br,i

which are introduced according to both lemmata. !

6 Complexity

In the following, we sketch some complexity results for DLPODs which mainly
derive from lifting respective results from normal LPODS to the disjunctive case.
At this point, we focus on establishing membership results and leave hardness
proofs for future work.

Considering the complexity of finding an optimal answer set for LPODs we
observe the following. Firstly, it is easy to see that determining whether an optimal
answer set exists is not more difficult than determining whether “any” answer
set exists, i.e. we can straightforwardly lift Theorem 1 from [11], by the Σp

2 -
completeness of disjunctive logic programs [3].

Theorem 1. Deciding whether a DLPOD P has an optimal answer set is Σp
2 -

complete.

The same “lifting” to the second level of the polynomial hierarchy also works
for checking whether S is optimal.

Theorem 2. Deciding whether an answer set S of a DLPOD is an optimal an-
swer set is in Πp

2 .

Proof. [sketch] Membership: analogously to [11]. !

We also conjecture hardness, but leave the proof to future work at this point.
The idea would be that in variation of the proof for co-NP-hardness for the non-
disjunctive LPOD case—see [11, Proof of Theorem 2]—we should be able to use,
instead of a reduction of SAT, a variation of the “standard” disjunctive encoding
of QSAT with two quantifier alternations into ASP, see e.g. [14].

Theorem 3. Given a DLPOD P and a literal l ∈ Lit(P), deciding whether there
exists an optimal answer set S such that l ∈ S is in Σp

3 .

Again, we conjecture hardness, but leave the in-depth investigation to future
work. For the moment, let us just focus on membership, which we show by arguing
that the algorithm sketched in the previous section indeed can be brought down
to Σp

3 .

Proof. Membership: First note that the algorithm from [11] can, with slight mod-
ifications, be used to solve exactly this decision problem. Namely, we need to
simply add to the “outer” G(P) computation the constraint “← not l.” invali-
dating answer sets that do not contain l in the initial guess to G(P). Obviously,
this modification yields an algorithm which is in the complexity class Σp

2
Σp

2 . It
remains to be shown that this indeed boils down to Σp

3 = NPΣp
2 . Here the idea

is the following: As Σp
2

Σp
2 = (NPNP)Σp

2 we should be able to use the “outer” Σp
2

oracle also to compute the “inner” NP oracle calls. In the following, we will sketch
how the algorithm of Section 5 can be modified accordingly.

Note that, since G(P) is a disjunctive logic program, it can—following the
same approach as GnT [13]—be rewritten to two normal logic programs: first,
Gen(G(P)) which takes care of computing the supported models of G(P) and
second, Test(G(P), M) which tests for each supported model M whether it is
indeed a stable model. Again, the test succeeds by non-existence of an answer set
for Test(G(P), M).

After disambiguating symbols occurring in T (P,M) and Test(G(P), M) by
replacing symbols within Test(G(P), M) we obtain Test′(G(P), M). This guar-
antees no “interferences” between the two test modules, which then can simply be
combined into a joint tester: T (P,M)∪Test′(G(P), M). We end up in a modified
algorithm for computing optimal answer sets which proceeds as follows:

– Compute an answer set of Gen(G(P))
– Determine whether T (P,M) ∪ Test′(G(P), M) has no answer set

where Gen(·) and Test(·, ·) are the transformations as defined in [13]. Clearly,
since Gen(G(P)) is solvable in NP, and T (P,M) ∪ Test′(G(P), M) is solvable in
Σp

2 , we have shown membership of optimal answer set computation of a DLPOD
in Σp

3 . !

We note that DLPODs preserve the better computational properties when
only head-cycle free programs are considered. Actually, all examples in this paper
fall in this class of programs.

Theorem 4. Given a head-cycle-free DLPOD P and a literal l ∈ Lit(P), decid-
ing whether there exists an optimal answer set S such that l ∈ S is Σp

2 -complete.

Proof. Hardness follows immediately from hardness of this problem for non-
disjunctive LPODs. As for membership, we have stated already in Proposition 1
that each split program of a head-cycle-free program is head-cycle-free again.
Thus, we can observe that guessing a split and checking whether an answer set
S exists such that l ∈ S is doable in NP and likewise checking non-existence of a
better answer set is in co-NP which brings the overall problem down to Σp

2 . !

In fact, we note that using the methodology in [14] we could even obtain an
algorithm encoding optimal answer set computation for head-cycle-free DLPODs
into a single disjunctive logic program, instead of interleaved computations.

As next steps, we plan to experimentally compare all three possible implemen-
tations, (i) the interleaved computation from Section 5, (ii) its refinement from the
proof of Theorem 3, as well as (iii) the integrated encodings for head-cycle-free
programs following [14]. We note that many Σp

2 -complete problems have more
concise encodings than the metainterpreter-based encoding in [14] and plan to
explore such more concise encodings for the head-cycle-free case.

7 Conclusions and Future Work

In this paper, we have presented a new approach for modelling preferences in
logic programs. By extending the approach of Logic Programs with Ordered Dis-
junction with normal disjunction in the head of rules, we introduce partial order
preference expressions for non-monotonic reasoning. We show how to transform a
DLPOD into an interleaved disjunctive logic program which allows normal ASP
solvers to compute preferred answer sets. Furthermore, we show that comput-
ing optimal stable models for our extension still stays in Σp

2 for head-cycle free
programs and establish Σp

3 upper bounds for the general case.
For future work we plan to experimentally evaluate variants of the generator

and tester programs provided in Section 5 with dierent ASP solvers. We remark
that our considerations have so far been restricted to DLPODs in (ordered) dis-
junctive normal form and that the naive transformation to this normal form by
applying “distributivity” rewriting rules potentially leads to exponential blowup.
A generalization of the definition of the semantics to arbitrarily nested ordered
disjunctive terms along with the investigation of the applicability of cheaper,
structure-preserving normal form transformations is on our agenda.

In this work we focused on a Pareto-semantic based preference notion. We are
aware that in [4] two other preference notions (namely cardinality-preferred and
inclusion-preferred) are introduced. However, at the same time they are proven to
be not general enough (see the motivation for Def. 11 in [4]). We argue that these
two preferences are based on counting and hence do not reflect the qualitative na-
ture of partial order preferences. However, we leave to future work considerations
of integrating these preferences into our approach.

For basing our language extensions on solid ground, we are planning to add
the hardness proofs for Theorem 2 and Theorem 3. As already stated at the
end of Section 6, we plan to compare and evaluate the different implementation
strategies outlined in Sections 5 and 6.

References

1. Przymusinski, T.C.: Stable Semantics for Disjunctive Programs. New Generation
Computing 9 (1991) 401–424

2. Minker, J., Rajasekar, A., Lobo, J.: Foundations of Disjunctive Logic Programming.
MIT Press (1992)

3. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on
Database Systems 22(3) (September 1997) 364–418

4. Brewka, G., Niemelä, I., Syrjänen, T.: Logic programs with ordered disjunction.
Computational Intelligence 20 (May 2004) 335–357(23)

5. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9 (1991) 365–385

6. Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Pro-
grams. Annals of Mathematics and Artificial Intelligence 12 (1994) 53–87

7. Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: Towards a classification of pref-
erence handling approaches in nonmonotonic reasoning. Computational Intelligence
20 (2003) 308–334

8. Niemelä, I.: Language extensions and software engineering for ASP. Technical
report, European Working group on Answer Set Programming (2005)

9. Bertino, E., Mileo, A., Provetti, A.: PDL with preferences. In: Sixth IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks (POLICY’05),
Los Alamitos, CA, USA, IEEE Computer Society (2005) 213–222

10. Skiena, S.: 5.4.2 Hasse Diagrams. In: Implementing Discrete Mathematics: Combina-
torics and Graph Theory with Mathematica. Addison-Wesley (1990) 163, 169–170,
and 206–208

11. Brewka, G., Niemelä, I., Syrjänen, T.: Implementing ordered disjunction using
answer set solvers for normal programs. In: JELIA ’02: Proceedings of the European
Conference on Logics in Artificial Intelligence, London, UK, Springer-Verlag (2002)
444–455

12. Simons, P.: Extending the smodels system with cardinality and weight constraints.
In: Logic-Based Artificial Intelligence, Kluwer Academic Publishers (2000) 491–521

13. Janhunen, T., Niemelä, I.: GnT – A Solver for Disjunctive Logic Programs. In:
LPNMR 2004. (2004) 331–335

14. Eiter, T., Polleres, A.: Towards automated integration of guess and check programs
in answer set programming: a meta-interpreter and applications. Theory and Prac-
tice of Logic Programming (TPLP) 6(1-2) (2006) 23–60

