
© EUROSIS-ETI

SEMANTIC WEB SERVICE EXECUTION FOR WSMO BASED
CHOREOGRAPHIES

James Scicluna
Axel Polleres

Digital Enterprise Research Institute (DERI Innsbruck)
Institute of Computer Science, University of Innsbruck,

Technikerstrasse 21a, 6020 Innsbruck, Austria
E-mail: {james.scicluna, axel.polleres}@deri.org

KEYWORDS
Semantic Web, Web Services, WSMO, Web Service
Execution, Choreography, Orchestration, Workflow.

ABSTRACT

The Semantic Web is slowly gathering more importance as
both academic and industrial organizations are realizing the
potential benefit that might be obtained from it. This is
especially true in the areas of tourism in which Semantic
Web Services can provide a drastically new way on how to
find and book related services such as hotel, flights and taxi
transfers. However, many aspects of Semantic Web Services
are still under development. This short paper presents issues
related to choreography and orchestration representation in
the Web Service Modelling Ontology (WSMO) and also how
such ideas can be applied to an e-tourism use case.

INTRODUCTION

The Web Service Modelling Language (WSMO) is based on
the Web Service Modelling Framework (Fensel and Bussler
2002) which specifies the key elements for describing
Semantic Web Services. Such elements include Ontologies,
Goals, Web Services and Mediators. Ontologies are the key
to describe all of these elements through concepts, relations,
functions, instances and axioms. Goals specify what the user
wants from a particular web service. Web Service
descriptions specify what a service can provide in terms of a
capability and any number of interfaces. Mediators link
heterogenous elements between each other in order to enable
heterogenous components to interoperate.

Details of these elements are beyond the scope of this
document and we refer the reader to (Feier 2005). Rather,
here we want to focus on the Interface of a web service
description which enables to model a choreography interface
and orchestration for a web service. We will then provide an
example of to define such an interface based on an etourism
use case (Lopez 2004).

Our use cas is called Stream Flows! System (SFS). It is a
frequent flyer program designed to be accessible from the
internet by its customers. Using this system, customers can
buy packages or contract new ones in exchange of points
rather than using a credit card. Packages may include flights,
hotel booking, car rentals and others. The system is
responsible for the continuous maintenance of its packages,
that is, once a service is no longer available, the package has
to be updated or removed from the system.

A Web Service description in WSMO is defined in terms of
non functional properties, a single capability and any number
of interfaces. Non Functional Properties define information
regarding the usage of the service without affecting its
functional aspect. In addition to the core non functional
properties for the WSMO elements, a web service defines
further service specific issues such as quality of service,
financial range, robustness and others. A capability defines
what the service can provide in terms of preconditions,
assumptions, postconditions and effects. A precondition
defines what the web service expects for enabling it to
provide its service. An assumption describes the expectation
of the service on the state of the world when starting an
execution of the service. A postcondition describes the state
of the information space that must be reached by executing
the service and an effect describes the state of the world that
must be reached after executing the service. All these
features are defined using logical expressions based on the
Web Service Modelling Langue (WSML) (De Bruijn 2005) .

The interface of a service defines two pieces of information,
namely, a choreography and an orchestration. WSMO allows
to define multiple interfaces for a service and hence there
could be more than one way in which a user (or an agent)
may interact with it. The choreography exposes how a client
(whether a user or an agent) should interact with the service.
The orchestration describes how the service uses other web
services in order to achieve the required functionality.

CHOREOGRAPHY

WSMO defines a choreography as how services interact with
a client which may either be a user or a service. This adheres
to the W3C definition. WSMO is concerned with the formal
modeling of a choreography which would also enable to
perform reasoning over the description (such as to identify
whether two web services can talk to each other).

Abstract State Machines as a Formal Model

Abstract State Machines (formerly knows as Evolving
Algebras) have been used to describe and validate a wide
variety of computing systems. In WSMO, they provide the
basis for describing both the choreography and orchestration
specifications. In a nutshell, an abstract state machine is
defined in terms of a state signature, a state and a number of
guarded transitions. A state signature defines the invariant
elements of the state description. A state is described by a set
of instance elements and guarded transitions are rules that
express the changes of states. For further details about how
these aspects are defined in a choreography, we refer the

© EUROSIS-ETI

reader to (Roman et. al., 2005). Rather, we will provide some
examples on how these aspects can be applied In our use
case.

Figure 1: A simple package illustrating the WSMO

Choreography and Orchestration Perspectives

Figure 1 depicts a very simple package which defines in its
choreography a booking of a flight and then that of a hotel.
We will now provide a simple way on how to specify this in
terms of an abstract state machine in the choreography of
some interface defined in the service. For simplicity reasons
and to keep this document concise, we will just describe the
choreography definition in the web service. Hence, we will
assume that the needed ontologies (for flight, hotel etc)
already exist in some ontology. The classes needed are as
follows:

• Package Booking (receive a request to book the
package)

• Package Confirmation (send a confirmation that package
has been booked)

• Flight
• Hotel

In order to identify which concept is an input or an output,
we require to extend the concepts needed in order to support
the attribute mode whose value determines whether a concept
is an input or an output of a choreography. This extended
ontology imports all the ontologies which define the classes
to be extended in order to be used by the Web Service.
Below is an abstract of the extended concepts to be used by
the web service.

bookPackage subClassOf sfs#packageBooking
 nonFunctionalProperties
 mode hasValue in
 grounding hasValue sfsWsdl#bookPackage
 endNonFunctionalProperties

packageConfirmed subClassOf sfs#confirmedPackage
 nonFunctionalProperties
 mode hasValue out
 grounding hasValue sfsWsdl#bookPackage
 endNonFunctionalProperties

A state is described by the attribute values of the instances in
the choreography vocabulary (that is, the ontology defining
the extended classes needed). The transition rules in the
choreography express the current state in the condition and

also the updates required in order to move to a next state. In
both cases, this is defined in terms of attribute values of the
instances used by the choreography as shown below.

choreography simplePackageChoreography

 guardedTransitions simplePackageTransitions

 if(bookPackageInstance memberOf
 sfs#packageBooking[
 book hasValue true
])
 then
 (confirmedPackageInstance memberOf
 sfs#confirmedPackage[
 confirm hasValue true
]).

Notice that the concepts bookPackage and
packageConfirmed are grounded to a single WSDL
Operation. The mode attribute thus identifies whether the
concept is an input or an output of the operation. In our very
simple example, the choreography requires only one
transition since as soon as the booking request is received,
what’s left is to send back a confirmation. The booking
request defines a boolean value which determines whether
the booking should be performed or not, if this is so, the
confirmed package instance will be sent to the user and its
confirm value set to true.

ORCHESTRATION

WSMO Orchestration is based on the same Abstract State
Machine model. However, the guarded transitions are
extended to support links to mediators when performing
updates. These mediators can either link to a goal
(wgMediator) or to another Web Service (wwMediator). The
orchestration thus models what other Web Services are to be
used in order to achieve the requirements of the Web Service
defining the orchestration.

if(flightInstance memberOf sfs#flight[
 booked hasValue true
]
then
 _”http://example.org/bookFlightMediator”

if((flightInstance memberOf sfs#flight[
 booked hasValue true
)]
 and
 (hotelInstance memberOf sfs#hotel[
 reserved hasValue true
])
then
 _”http://example.org/bookHotelMediator”

Notice that the second rule specifies a condition on both the
flight and hotel instances in order to ensure that it is not
infinitely fired.

The roles of the mediators linked by the orchestration differ
depending on the type of mediator used. A wgMediator must:

1. Mediate data between the ontologies used by the
source service and the target goal.

2. Link the capability of the source web service to the
one in the target goal such that it reduces the
information space needed by the orchestration at a
given state

© EUROSIS-ETI

The purposes of a wwMediator are as follows:
1. The normal data mediation which is needed to

resolve heterogeneities between the ontologies used
by the source and targets

2. Link the orchestration to the target choreography of
the web service such as to enable invocation of the
target web service

3. Perform Process Mediation in case the orchestration
and the target choreography don’t match at the
protocol level

LANGUAGE FOR A WORKFLOW SPECIFICATION

The language for choreography and orchestration in WSMO
formally models such aspects. However, such a model is not
executable in terms of concrete Web Service calls (such as
via SOAP). Therefore, a more expressive workflow language
is needed in order to enable actual execution of an
orchestration. This language must enable to perform
execution at the semantic level in order to enable reasoning
about parameters (such as simple subsumption) and also
reasoning for service composition purposes. An example of
such a workflow language is outlined below.

inputs
 bookingRequest impliesType sfs#packageBooking

outputs
 confirmation impliesType sfs#confirmedPackage

initial_state
 bookingRequest = EMPTY

flow
 get(bookingRequest)

 if(bookingRequest.book == true)
 then
 confirmation.confirm hasValue true
 else
 confirmation.confirm hasValue false

 put(confirmation)

First, the inputs and outputs are declared. All of the elements
needed are instances of ontologies. Where necessary,
variables are used but this is not the case. The initial state is
declared by setting the input to get to EMPTY. The <flow>
element defines the behavioral flow of the service. To
receive data, the method get is used. This method required
that execution stops until the required data is obtained. Once
the booking request is received, it is checked if the book
attribute is set to true and the confirm attribute of the
confirmation element is set appropriately. Once the package
has been booked, the confirmation element is sent to the
client using the put statement.

Another approach in defining “semantic” workflows is that
of providing semantic information for existent technologies
and specifications. An example for such an approach is the
one taken in (Mandell and McIlraith) providing a description
of how BPEL4WS can be extended in order to provide the
semantic information needed for automatic discovery and
composition.

FUTURE WORK

Our main future efforts will involve in a better specification
for Choreography and Orchestration in WSMO.
Furthermore, a more clear and executable workflow language
will be specified and mapped to the ASM model defined in
WSMO. Also, the mediators which are used to link from an
orchestration to a goal (wgMediator) or another Web Service
(wwMediator) need to be further defined in order to enable
interoperability between their source and target components.

CONCLUSION

We hereby provided a very short description of the current
work which addresses the choreography and orchestration
specifications in WSMO based on Abstract State Machines
and how we intend to provide a workflow language in order
to enable execution of the web service. Also, a simple
example was provided to show how these aspects can be
applied in an eTourism use case. Our main focus was how
WSMO can model such scenarios and enable also actual
execution of the underlying service.

ACKNOWLEDGEMENT

The work is funded by the European Commission under the
projects DIP, Knowledge Web, InfraWebs, SEKT, SWWS,
ASG and Esperonto; by Science Foundation Ireland under
the DERI-Lion project; by the Vienna city government under
the CoOperate programme and by the FIT-IT (Forschung,
Innovation, Technologie - Informationstechnologie) under
the projects [EQUATION] and TSC.

REFERENCES

De Bruijn J. 2005. “The WSML Family of Representation
Languages” WSML Working Draft, March 2005.

Feier Cristina. 2005 “WSMO Primer”. WSMO Working Draft,
March 2005..

Fensel D.; Bussler C. 2002 “The Web Service Modeling
Framework”. January 2002.

Gurevich Y. 1993 “Evolving Algebras: Lipari Guide, 1993”.
Lopez O. 2004 “Requirement Profile 1 & Knowledge Objects”.

Infrawebs Working Draft December 2004
Mandell D. and McIlraith S. “Adapting BPEL4WS for the

Semantic Web: The Bottom-Up Approach to Web Service
Interoperation”

Roman D.; Feier C.; and Scicluna J. “Ontology-based
Choreography and Orchestration of WSMO Services” WSMO
Working Draft. March 2005

