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Abstract—Eye-tracking studies are getting more prevalent in
software engineering. Researchers often use different metrics
when publishing their results in eye-tracking studies. Even when
the same metrics are used, they are given different names, causing
difficulties in comparing studies. To encourage replications and
facilitate advancing the state of the art, it is important that the
metrics used by researchers be clearly and consistently defined
in the literature. There is therefore a need for a survey of eye-
tracking metrics to support the (future) goal of standardizing eye-
tracking metrics. This paper seeks to bring awareness to the use of
different metrics along with practical suggestions on using them.
It compares and contrasts various eye-tracking metrics used in
software engineering. It also provides definitions for common
metrics and discusses some metrics that the software engineering
community might borrow from other fields.

I. INTRODUCTION

Researchers in software engineering (SE) use eye-tracking
technology to study the cognitive processes and efforts in-
volved in different types of SE tasks. An eye tracker (hardware
and software) monitors an participant’s visual attention via
eye-movement data [1], [2]. Eye movements are essential to
cognitive processes because they focus the participant’s visual
attention to the parts of a visual stimulus that are processed
by the brain. Visual attention triggers cognitive processes that
are required to perform tasks [3]. It is also a proxy for visual
effort—a subset of cognitive effort—measured as the amount
of visual attention allocated to parts of a visual stimulus. The
stimulus in SE studies is shown on a computer screen.

A systematic literature review (SLR) showed that previous
eye-tracking studies in SE proposed and used a wide variety
of eye-tracking metrics to measure and interpret visual effort
required to perform tasks using eye movements [4]. However,
the number of unique metrics is smaller than it appears because
there are no standard names and definitions for many metrics.
Often, same metrics have been used in several studies but
called by different names. Also, similar names have been
used for different metrics. Finally, the lack of an exhaustive
list of metrics (with unique names) prevents researchers from
appreciating the complexity of eye movements and also causes
confusion in choosing the most appropriate metrics for their
research. The imprecise names and definitions and the con-
flicting uses of the metrics make it difficult to compare and/or
replicate eye-tracking studies in SE.

For example, notwithstanding the definitions in the follow-
ing sections, it is confusing that a metric calculating the ratio
of the total number of fixations for an area of interest (AOI)
in a stimulus (or a set of related AOIs) to the total number
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of fixations for the whole stimulus is called “Fixation Rate”
[5], ON-target ALL-target [6], Ratio of ON-target:All-target
Fixation (ROAF) [7], Ratio of fixation count [8], Relevant
fixation count [9], and “Time in Region (TIR)” [10].

Consequently, we study exhaustively (to the best of our
knowledge) all the ways in which an participant’s visual effort
has been measured in SE eye-tracking studies and provide
unique names and definitions for the used metrics. We also
discuss the interpretations of the values of these metrics with
references to the literature. We provide practical suggestions on
using these metrics and, finally, introduce a list of metrics that
SE researchers could borrow from usability studies. Therefore,
the contributions of this paper are:

1)  Side-by-side comparisons and contrast of existing
metrics for visual effort in SE eye-tracking studies.

2) A proposal of new metrics to borrow from other
domains, with example applications.

3) A discussion on how to standardize metrics to help
compare and replicate eye-tracking studies.

We provide necessary background information on eye
tracking in Section II. Section III summarizes previous eye-
tracking studies in SE. Section IV presents a list of visual-
effort metrics followed by a discussion in Section V. Threats
to the validity are reported in Section VI-A and VI-B. Section
VII concludes and sketches future studies.

II. BACKGROUND ON EYE TRACKING

Eye trackers help assess a participant’s visual attention
by recording eye movements [1], [2], which show where a
participant is looking, the duration, and the sequence in which
her attention switches from one location to another. We briefly
describe some eye movement terminology.

Fixation: The stabilization of the eye on part of a stim-
ulus for a period of time (200-300 ms). The link between
fixations and cognitive processes relies on two assumptions
[3]: the immediacy assumption, which states that, as soon as
a participant sees the word, she tries to interpret it, and the
eye-mind assumption, which states that a participant fixates
her attention on the word until she comprehends it.

Saccade: The quick (and continuous) eye movements from
one fixation to another. Saccadic eye-movements are extremely
rapid (within 40-50 ms). Saccades are usually voluntary.
Micro-saccades on the other hand are small jerky eye move-
ments that are involuntary and occur during a long fixation to
refresh the participant’s visual memory.
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Fig. 1. Scanpath on a code snippet. Fixations are represented by circles, the
size of a circle is proportional to the duration of the fixation. Saccades are
lines between fixations. Numbers in the circles order the fixations.

Pupil dilation: The widening of the pupil, which allows
more light to get into the eye in low light conditions. It also
happens when a participant’s mood or attitude changes or
during complex cognitive tasks [11].

Scanpath: A series of fixations in chronological order that
represents an participant’s pattern of eye movements.

Researchers study eye-gaze data with respect to certain
areas on the stimuli (e.g., diagrams or source code) called
Areas of Interest (AOIs). An AOI can be relevant to the correct
answer needed from the participant performing a task or can
be irrelevant. For example, if we consider a class diagram as
a stimulus, an irrelevant AOI can be any class or any notation
while a relevant AOI could be the specific class that is relevant
to the given task. For source code, it could be any source code
element such as method call or identifier. See Figure 1 for an
example of a gaze plot overlaid on a code snippet.

III. PREVIOUS EYE-TRACKING RESEARCH IN SE
A. Model Stimulus

Several previous eye-tracking studies focused on the com-
prehension of UML class diagrams with respect to design
patterns [6], [7], [12], the impact of layout [13], [14], and the
impact of expertise [15]. Petrusel et al. [10] focused on the
understanding of business process models (BPMN diagrams)
while Cagiltay et al. [16] performed non-formal inspections of
entity relationship diagrams (ERD). In addition, Sharafi et al.
[17] investigated the efficiency of graphical representations vs.
textual ones in modeling and presenting software requirements
presented by TROPOS modeling technique.

B. Source code and Text Stimulus

The majority of previous studies focused on the impact of
expertise on comprehension and viewing strategies while com-
paring source-code reading with natural-language text reading
[18]-[21]. They reported that source-code reading is different
from text reading [8] and that participants have higher fixation
time and regression rate when reading source code compared
to text [20]. They also reported that novices spend more
visual attention on comments than experts while experts spend
more time on relevant AOIs [18], [19]. Busjahn et al. [22]
also performed the first eye-tracking study that adapt several
linearity metrics used to analyze natural-language reading to
source-code reading. Kevic er al. [23] were able to conduct
the first eye tracking study on large source code files in an
open source system using the Eclipse plugin iTrace [24]. iTrace
automatically maps eye movements to source code elements
while maintaining context during scrolling.

Some previous studies analyzed the impact of software
visualisation on code comprehension [25] and debugging [26],
[27]. They reported that, by helping participants to find relevant
AOISs and their dependencies, visualizations guided participants
to follow more systematic strategies [25]. Their results also
showed that participants with higher performance mainly use
graphical representations although they also used text from
time to time [26]. Participants with lower performance per-
formed attention switching very frequently [27].

Several previous studies focused on debugging and defect
finding tasks [9], [26]-[29]. Turner et al. [29] studied the im-
pact of programming languages (C++ vs. Python) and reported
that the programming language impacts the visual effort spent
by novices compared to experts while working with buggy
lines of code. The impact of identifier styles (camel case vs.
underscore) on code comprehension has also been investigated
[8], [30], [31]. No difference regarding accuracy, time, and
effort for comprehension tasks were reported [30], [31] but
expertise lessens the impact of identifier styles [30], [31]. Fritz
et al. [32] combined pupil dilation, blink rates, electrodermal
activity, and EEG (electroencephalogram) to characterise and
predict task difficulty.

All these previous eye-tracking studies used different types
of metrics to compute visual effort for specific tasks. No study
summarizes and provides a list of all available metrics along
with detailed definitions and suggestions on how to measure
visual effort and use the metrics, the main contribution of
this paper. In addition, some researchers use the same metric
but name it differently. For example, while analyzing the
distribution of visual attention on different code elements, all
of the previous studies [18]-[21] considered each code element
as an AOI and calculated the sums of all fixation durations for
each AOI but called this metric differently: fixation time [18]—
[20], [26], aggregated fixation time [20], total time of fixations
[33], or total dwell time [21]. Conversely, the same name may
refer to different metrics. Gaze time either refers to the sum
of all fixation durations for an AOI for the whole study [34]
or is defined as the sum of all fixation durations [21].

Such ambiguities make comparison and replication of
previous studies difficult. This makes it even more important
to clarify and standardize the names and definitions of eye-
tracking metrics. This paper seeks to bring awareness to these
ambiguities and pave the way towards future standardization.

IV. VISUAL EFFORT METRICS

When designing an eye-tracking study, researchers in SE
must choose adequate metrics to measure the visual effort that
is representative of the tasks and stimuli being assessed. We
provide a list of visual-effort metrics, their names, and defi-
nitions and discuss how previous studies used and interpreted
them. We divide metrics into: (1) metrics based on fixations,
(2) metrics based on saccades, (3) metrics based on scanpaths,
and (4) metrics of pupil size and blink rate.

A. Metrics Based on Fixations

Visual-effort metrics using fixations divide into two groups.



1) Metrics based on the Number of Fixations: Table 1
presents a list of metrics used in previous studies measuring
visual effort based on the number of fixations.

Fixation Count (FC) is the total number of fixations in
each AOI. Several studies refer to this metric as the total
number of fixations. Goldberg et al. [5] reports that a higher
number of fixations devoted to a stimulus shows that the search
for finding relevant information is not efficient. Previous eye-
tracking studies in SE mainly use this metric to find AOIs
that attract more visual attention or to report that more visual
effort is required to perform a task. When working with text,
the fixation count can be adjusted to the text length by dividing
the number of fixations by the number of words in the text.

Fixation Rate (FR) [5] is calculated using Equation 1. The
Area of Glance (AOG) can be either the whole stimulus, to
calculate the ratio of the total number of fixations in one AOI
to all fixations, or it can be another AOI, to show the ratio of
fixations between two different AOIs. A smaller ratio shows
lower efficiency in search tasks: participants spend more effort
to find relevant areas [36]. For comprehension tasks, a higher
ratio indicates that either the participant shows a great interest
in an AOI or that this AOI is difficult to understand [37].
Other names for this metric are “ON-target ALL-target” [6],
“Ratio of ON-target:All-target Fixation (ROAF)” [7], “Ratio
of Fixation Count” [8], and “Relevant Fixation Count” [9].

_ Total Number of Fixations in AOI
" Total Number of Fixations in AOG

ey

Fixation Spatial Density (SD) [5] is equal to the number
of cells containing at least one fixation, divided by the total
number of cells, if we consider the stimulus as a grid. It is
calculated using Equation 2 where n is the number of cells in
the grid and ¢; is equal to 1 if the cell number ¢ is visited,
otherwise it is 0. It represents the “coverage of an area” and
measures the dispersion of the participant’s fixations. Smaller
spatial density shows less coverage.

Sp = &= % )
n

Convex Hull Area [5] represents the area of the smallest
convex set of fixations that contains all a participant’s fixations
to visualize the spatial distribution of fixations and show
the preferred parts of a visual stimulus. It is very sensitive
to outliers [4] and even one fixation that deviates from its
true location can change the convex hull significantly. Thus,

rigourous noise removal is necessary.

2) Metrics based on the Duration of Fixations: The du-
ration of fixations represents the required time to analyze
a stimulus [5] and, thus, the depth of processing. Table II
presents a list of metrics used by previous studies based on the
duration of fixations. It is important to measure both fixation
counts and their durations because it is possible to have a low
fixation count but a high duration and vice versa.

Average Fixation Duration (AFD) [5] is the sum of the
durations of all the fixations divided by the number of fixations,
as in Equation 3, where ET(F;) and ST(F;) are the end time
and start time for a fixation F; and n is the total number
of fixations in a given AOI. Another name for this metric is
“Mean Fixation Duration” [20], [38].

S (ET(F;) — ST(F;))in AOI

AFD(AOI) =
n

3

Ratio of ON-target:All-target Fixation Time (ROAFT) [5] is
the sum of the durations of all fixations in an AOI, divided by
the total duration of all fixations for the area of glance (AOG),
as in Equation 4. An AOG can be the entire stimulus or a
set of AOIs. A smaller ratio indicates lower efficiency while
searching the stimulus [5]. Other names for this metric are
“Proportional Fixation Time (PFT)” [26], “Ratio of Fixation
Time” [8], “Relevant Fixation Duration” [9], and “Time in
Region (TIR)” [10].

S (ET(F;) — ST(F;))in AOI

ROAFT = " (ET(F;) — ST(F;))in AOG
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Fixation Time (FT), also known as gaze or fixation cluster,
is the sum of the durations of all fixations in an AOI. Busjahn et
al. [21] compute this metric for every AOI visit separately and
called it “Dwell Time”. They define FT, which they call “Total
Dwell Time”, as the sum of all dwell times on a AOI over an
entire study [21]. Other names for this metric are “Aggregated
Fixation Time” [20] and “Total Time of Fixations” [33].

Average Duration of Relevant Fixations (ADRF) is the total
duration of the fixations for relevant AOIs as in Equation 5. A
corresponding metric exists for non-relevant AOIs and is called
“Average Duration of Non-Relevant Fixations (ADNRF)”.

Fixations Duration of Relevant AOIs
ADRE = Total Number of Relevant AOIs )

Normalised Rate of Relevant Fixations (NRRF) [12] is
shown in Equation 6 and allows comparing two or more stimuli
with each other. If a stimulus requires more relevant fixations
than another, then it requires more visual effort [12]. To adjust
for the size of stimulus, this metric must be normalized using
the total number of AOIs in the stimulus [12].

ADRF
NRRE = Fixation Duration of All AOIs ©)
Number of All AOIs

B. Metrics Based on Saccades

Table III presents a list of saccade-based metrics used by
previous studies to measure visual effort. Higher numbers of
saccades indicate more searching [5], [36].

Number of Saccades and Saccade Duration are metrics
whose definitions are identical to the corresponding fixations-
based metrics, see the previous subsection. They also have
similar interpretations in relation to the visual effort.

Regressions Rate indicates the percentage of backward
saccades of any length [22]. Good readers are characterized
by few regressions [22], thus higher regressions rates denote
that the participants have difficulty reading and understanding
a stimulus [5], [36].



TABLE 1.

METRICS FOR VISUAL EFFORT BASED ON THE NUMBER OF FIXATIONS

Name Study Interpretation Stimulus
(Crosby, 1990) [18] Higher number indicates beacons (key lines) for comprehension. Code
(Crosby, 2002) [19] Higher number shows more devoted attention to AOIL Code
(Uwano, 2006) [28] Higher number on the whole stimulus while reading and scanning the code leads to find defects faster. Code
Fixation (Yusuf, 2007) [13] Higher number indicates poor arrangements of elements in a stimulus which means that more effort is required UML Model
Count (FC) to explore and navigate.
(Sharif, 2010) [14] Higher number indicates more visual effort to find defects. UML Model
(Sharif, 2012) [9] Higher number indicates more visual effort to perform the task. UML Model
(Sharif, 2013) [8] Higher number indicates longer processing time to understand source-code phrases. English text
(Sharif, 2013) [35] Higher number indicates more visual effort to perform bug fixing task. Code
(Sharafi, 2012) [31] Higher number indicates more visual effort to recall the name of identifiers. Code
(Cepeda, 2010) [7] Higher ratios indicate higher efficiency associated with less effort to find the relevant elements. UML model
Fixation (Sharif, 2010) [14] Higher ratio indicates higher efficiency, less effort for the designated layout. UML model
Rate (FR) (DeSmet, 2012) [6] Higher ratio indicates higher efficiency, less effort for specific design pattern understanding. UML Model
(Sharif, 2012) [9] Higher ratio indicates less effort. Code
(Sharafi, 2012) [31] Higher ratio shows participant’s great interest in analyzing the designated AOIs. While recalling the name of | Code
identifiers by answering the multiple choice questions, this metric is used to compare participants based on
the ratio of time that they spent analyzing either a correct answer or three wrong choices.
(Binkley, 2013) [8] Higher value indicates more effort to understand source-code phrases. English text
Fixation Spatial (DeSmet, 2012) [6] Smaller spatial density indicates more directed search. Model
Density (SD) (Soh, 2012) [15] Smaller value indicates that the participant uses the information gathered from the previous scan or her UML model
knowledge, thus she spent less time and effort exploring the diagram.
(Sharafi, 2012) [31] Smaller value indicates that the fixations are close from one another thus, less effort is required to find the Code
relevant elements.
Convex hull (Soh, 2012) [15] Smaller value indicates focused fixations, thus less effort is required to find the relevant elements UML model
(Sharafi, 2013) [17] Smaller value indicates less effort to explore the whole model to find the relevant parts of the stimulus. TROPOS
model
TABLE II. METRICS FOR VISUAL EFFORT BASED ON THE DURATION OF FIXATIONS
Name Study Interpretation Stimulus
(Crosby, 1990) [18] Longer fixations indicates beacons (key lines) for comprehension. Code
(Bednarik, 2005) [38] The distribution of average fixation duration over different areas of interest is different. Code
Average (Cepeda, 2010) [7] Longer fixations indicate that participants devote more time and effort aqalyzing and understanding the visual | UML model
Fixation stimulus. Thus, representations that require shorter fixations are more efficient.
Duration (AFD) (Bednarik, 2005) [38] Longer fixations indicate that more visual effort is required to work with this specific layout. Code
(Busjahn, 2011) [20] Longer fixations indicates a “substantial increase in demands in terms of attentiveness”. Code
(Soh, 2012) [15] Longer fixations indicates more overall effort spent by a participant during the task. UML model
(Binkley, 2013) [8] Longer fixations indicates more effort to understand source-code phrases. English text
(Cagiltay, 2013) [16] Longer fixations indicates that the difficulty level of the task is higher. ERD Model
(Sharafi, 2013) [17] Longer fixations indicates more effort to complete the task. TROPOS
model
Ratio of (Bednarik, 2006) [25] Higher ratio of source code AOI over visualization AOI indicates the importance of code to participants. Code
ON-target:All-target (Cepeda, 2010) [7] Higher ratios indicate higher efficiency associated with lower effort to find the relevant elements. UML model
Fixatioi‘l Time (Bedr}a}rik, 2012) [26] The rat%o %nd%cates the t(?tal amgum of tim; spent on designated area compared to the rest. Code
(ROAFT) (Sharif, 2012) [9] The ratio indicates the visual effort to perform the task. Code
(Binkley, 2013) [8] Higher ratio indicates more effort to understand source-code phrases. English text
(Petrusel, 2013) [10] Higher value increases the probability of finding the correct answer. BPMN Model
(Crosby, 1990) [18] Higher value indicates more relative attention that is devoted to an AOL Code
(Crosby, 2002) [19] Higher value shows areas that the participant considers important. Code
Fixation (Uwano, 2006) [28] Higher value for code reading and scanning leads to find defects faster. Code
Time (FT) (Bednarik, 2012) [26] Higher value indicates more effort. Code
(Busjahn, 2014) [21] Higher value indicates higher attention which denotes rich information and—or higher complexity of the Code
element.
(Ali, 2015) [33] Higher value shows areas that the participant considers important. Code
Average (Jeanmart, 2009) [12] Higher value indicates more time (attention) devoted to relevant AOIs. UML Model
Duration of Relevant [ (DeSmet, 2012) [6] Higher value indicates more time (attention) devoted to relevant AOIs. UML Model
Fixations (ADRF)
Normalised (Jeanmart, 2009) [12] Higher rate indicates more effort. UML Model
Rate of Relevant (DeSmet, 2012) [6] Higher rate indicates more effort. UML Model
Fixations (NRRF) (Soh, 2012) [15] Higher rate indicates more effort. UML model

C. Metrics Based on Scanpaths

Table IV shows scanpath-based metrics for visual effort
used by previous studies.

Attention Switching Frequency measures the dynamics of
visual attention using the total number of switches between
a set of AOIs per minute. A switch happens whenever the
participant’s focus of attention changes between any AOISs.

Transitional Matrix is a tabular representation of the fre-
quencies of transitions between AOIs [39] computed using
Equation 7 in which n is the number of fixations in a AOI (for
one cell) and c¢; is equal to 1 if the AOI number ¢ is visited and
0 otherwise. To compare two transition matrices, the density

of a transition matrix is the number of non-zero matrix cells
divided by total number of cells. Higher density indicates
extensive search with inefficient scanning on a stimulus, while
a sparse matrix is a proxy for an efficient and directed search

(5]
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Edit Distance uses the Levenshtein algorithm, which com-
putes the minimum editing cost to transform one string into
another using three basic operations (insertion, deletion, and
substitution). (For each operation, the cost of one is consid-
ered.) It only uses the location of fixations, not their duration.



TABLE III.

METRICS FOR VISUAL EFFORT BASED ON SACCADES.

Name Study Interpretation

Stimulus

Number of (Fritz, 2014) [32]

Saccades by the difficulty of the material.

It is associated with mental workload and it helps to gain insight into how their eye-movements are influenced | Code

Saccade Duration (Fritz, 2014) [32]

by the difficulty of the material.

It is associated with mental workload and it helps to gain insight into how their eye-movements are influenced | Code

Regression Rate (Busjahn, 2011) [20] Higher regression rate is reported for source code compared to natural language text. Code

i (Busjahn, 2015) [22] Regression rate describes non-linear reading Code

TABLE IV. METRICS FOR VISUAL EFFORT BASED ON SCANPATHS
Name Study Interpretation Stimulus
Attention (Bednarik, 2006) [25] The attention allocation and its switching between AOIs denotes what information and what representation is Code
Switching relevant to the participants during the task.
Frequency
Transitional Matrix (DeSmet, 2012) [6] Frequent transition between AOIs (almost full matrix) indicates inadequate search. UML Model
Edit Distance (DeSmet, 2012) [6] Lower value for edit distance (higher similarity) for a group of participants indicates using the same viewing | UML Model
strategies to scan the visual stimulus.

Sequential PAttern (Sharafi, 2013) [17] Higher similarity for a group of participants indicates using the same viewing strategies to scan the stimulus. TROPOS
Mining (SPAM): Model

ScanMatch (Hejmady, 2012) [27]

Higher similarity for a group of participants indicates using the same viewing strategies to scan the stimulus. | Code

(Busjahn, 2015) [22]

Higher similarity indicates that participants read source code as linearly as natural language text. Code

Linearity (Busjahn, 2015) [22]

Expertise impacts to some extent the way participants read source code linearly. Code

Mathematically, the Levenshtein distance between two strings
a and b is calculated recursively as in Equation 8.

maz (i, J) if min(i,j) = 0
levgp(i—1,7)+1
levep(i,7 — 1)+ 1

lev(hb(i — l,j — 1) —+ l(aﬁébi)

leva,b(ia ]) =

min = Otherwise

Sequential PAttern Mining (SPAM) [40] uses the depth-first
algorithm to mine and compare scanpaths by considering both
fixation locations and durations.

ScanMatch [41] compares scanpaths based on the
Needleman-Wunsch algorithm used in bioinformatics to com-
pare sequences of DNA. After adjusting the length of the
scanpaths based on the fixations durations using a temporal
binning, this metric calculates the similarity score to compare
two scanpaths.

Linearity determines a participant’s search strategy of a
stimulus [36]. For source code, “linearity represents how
closely readers follow a text’s natural reading order” [22]. It
uses eye-movements linearity (left-to-right and top-to bottom)
to characterize how developers read source code. A set of local
and global metrics exist to measure linearity. For example,
local metrics are as follows:

e  Vertical Next Text is the percentage of (forward)
saccades that happen either on the same line or move
only one line below.

e  Vertical Later Text is the percentage of (forward)
saccades that happen either on the same line or move
any number of lines below.

e  Horizontal Later Text is the percentage of (forward)
saccades that happen on the same line.

e  Regression Rate is defined in Section IV-B.

e Line Regression Rate is the percentage of backward
saccades that happen on the same line.

e Saccade Length is defined as the average Euclidean
distance between consecutive fixations.

e Element Coverage is the percentage of words that a
participant puts visual attention on.

Global metrics use the order in which source code is read:

e Story Order is the extent to which the orders of
fixations are similar (aligned) to the linear text reading
order (left-to-right), using the ScanMatch metric [41].

e  Execution Order is the extent to which the orders of
fixations are similar (aligned) to the program control
flow and also uses the ScanMatch metric [41].

D. Pupil Size and Blink Rate

Table V presents previous studies that measured visual
effort using pupil sizes and blink rates. These two metrics are
associated with cognitive workload. Lower blink rates indicate
higher workload or attention [32] while higher rates are
associated with fatigue [36]. Larger pupil sizes indicate more
effort [36]. In addition, Beatty reported that the maximum
amplitude of pupil sizes indicates memory and processing load
that fluctuates with task difficulty [11].

V. DISCUSSION
A. Data Analysis

Previous eye tracking studies used a combination of the
following data analysis approaches to investigate eye-gaze
data: (1) start with a hypothesis or a theory and analyze
the eye-tracking data to validate it and/or (2) work entirely
based on observation without considering any theories in
advance [37], [42]. Our review of previous works shows that
fixation-based metrics have been mostly used for the first
approach, whereby researchers are interested in calculating
effort for specific AOIs. Scanpath-based metrics or saccade-
based metrics have been mostly used for the second approach,
e.g., for evaluating search and navigation strategies. Yet, some
existing studies used both approaches, using different sets of
metrics on different eye-movement data [15], [17], [31].

Most of the time, defining a set of AOIs is the main step
towards analyzing eye-tracking data. Defining an AOI is a
subjective task and is based on the researchers’ assumptions
and experimental goals and conditions. There are no detailed
guidelines about defining AOIs [43], especially for SE tasks.
Also, the majority of previous studies did not provide details




TABLE V. METRICS FOR VISUAL EFFORT BASED ON THE PUPIL SIZE AND BLINK RATE.

Name Study Interpretation Stimulus

Blink Rate (Fritz, 2014) [32] It indicates visual attention. Lower the blink rate shows the higher the mental load or attention. Code

Pupil Size (Fritz, 2014) [32] It indicates cognitive load, memory load, and mental workload. When working with difficult materials, pupil | Code
size inclines to increase up to 0.5 mm.

about AOI definition and data extraction. Only, Goldberg et al.
[43] proposed a set of general guidelines for defining AOIs.
Thus, researchers must be careful when defining AOIs and
gather and analyze data, especially if the AOIs overlap or
are nested. In addition, we encourage researchers in the SE
community to explain their choices of AOIs, data extraction,
and data analysis approaches in detail. There is also a need
for further studies investigating the impact of the type, the
granularity, and the analysis of different AOIs for variety of
software artifacts and tasks.

B. Metric Popularity

All of the previous studies in SE used fixation-based and
scanpath-based metrics. Only a handful of studies used metrics
based on saccades because the general consensus in the eye-
tracking research community is that cognitive processing and
comprehension occur during fixations, while the processing (if
any) happening during saccades is very limited. Even for eye-
tracking research in usability studies, pupil size and blink rates
have been scarcely used because these measures are very sensi-
tive to ambient light level and will be contaminated easily [36].
Only one study used pupil size and blink rate, for measuring
task difficulty [32]. It used an EEG device, filtering certain
frequencies, to measure blink rates more accurately than using
eye-trackers. In addition, it applied noise removal and cleaning
techniques on the data. The results were promising and show
that the task difficulty can be classified using pupil size and
other psycho-physiological factors.

C. Metric Representativeness

We provided a complete list of eye-tracking metrics used in
SE research. However, there exists other metrics proposed and
used in other domains, such as human-computer interaction
(HCI) and usability [5], [36], [37]. These metrics have not
been used in SE research yet. We analyze these metrics with
respect to their adequacy and (possible) uses in SE research.

We categorize metrics in HCI and usability studies into two
main groups [5]: (1) “Measure of processing”, which measures
the amount of effort required to process, understand, and
analyze a stimulus while performing a task and (2) “Measure
of search”, which measures the amount of effort required to
explore and navigate a stimulus when performing a task.

Metrics for the measure of processing are fixation-based
metrics, including those presented in Section IV-A. They are
mostly and frequently used in SE eye-tracking studies. They
provide a single quantitative value to measure the amount of
visual effort independently from the type of material that have
been used because, to use these metrics, researchers only need
to define the AOIs and their relevancy. Thus, these metrics
can be used to assess source code or any models, as shown in
Tables I and II. Yet, when reviewing the literature on HCI and
usability, we found one metric that has not been used in SE.

Saccade-Fixation Ratio (SF Ratio) is a metric for process-
ing that is calculated using Equation 9. It indicates the ratio
of searching over processing. A higher value indicates more
searching compared to processing. It can be used to compare
different layouts (e.g., orthogonal vs. three-cluster vs. multi-
cluster layouts for UML class diagrams [14]) or representations
(e.g., graphical vs. textual [17]).

. Total Saccade Time (Search Time)
SF Ratio = — - - -
Total Fixations Time (Processing Time)

®

Metrics for search include scanpath-based and saccade-
based metrics. Sections IV-B and IV-C present some of these
metrics used in SE. There are several other metrics for search
in the literature on HCI and usability that have not been used
by SE researchers, including:

Average Saccade Amplitude indicates the angular distance
that the eye travels and is computed by summing the dis-
tances between consecutive fixations, divided by the number
of fixations minus one for the stimulus [5]. To filter out
micro-saccades, a minimum amplitude is used. This metric
can be used to compare two layouts [14] or representations
[17] to determine their efficiency for a task. An efficient
layout/representation must arrange elements such that partici-
pants’ scanning to relevant AOIs is minimal [5], [36].

Scanpath Regularity is the ideal situation in which partici-
pants follow relevant cues until they reach the desired element.
Any deviation from this regular path denotes less efficient
search. For SE tasks, a researcher may define a set of relevant
AOIs and then consider AOI-based scanpaths instead of ones
based on fixations. The most efficient scanpath would be the
one that visits all relevant AOIs in a specific order. Irregularity
could be measured as either focusing on an irrelevant AOI or
following a different path.

Metrics such as Average Saccade Amplitude must be used
with care because they may not be adequate for SE tasks:
they measure the distances between saccades or fixations in
numbers of pixels. For SE materials (source code and models),
distances between AOIs in numbers of pixels have no meaning
because the amplitude is completely dependent on the size of
the stimulus and of its elements. For example, two UML class
diagrams that differ only by the sizes of the rectangles used to
display classes will yield two different values of this metric.

VI. THREATS TO THE VALIDITY
A. Previous Eye-tracking Studies

Several threats limit the validity of previous studies re-
garding effort measurement based on eye-movement data. We
now discuss these potential threats and how previous studies
tried to mitigate them. Reported eye-tracking studies use eye-
movement data to measure visual effort. One threat to these
studies is that there may be other factors that influence the
amount of effort put forth by participants to complete their




tasks, including stress (e.g., due to the Hawthorn effect),
fatigue, or time of the day. Previous studies tried to mitigate
this threat by performing the studies in quiet laboratories.
They also avoided long studies to reduce fatigue and limited
interactions between participants and researchers.

Like any other human psycho-physiological measure, eye
movements may contain gaze data that are unintentional and
unconscious. Any distracting events in the environment or in
the visual stimulus may impact the eye movements and lead to
noise in the collected data and consequently, possibly incorrect
interpretations of the data. Previous studies used tasks and
stimuli that were not distracting, i.e., without any interactive
menus, and performed the experiments in a controlled envi-
ronment to avoid any distractions.

Another major threat to validity of previous eye-tracking
studies is that it is hard to compare results across studies,
thereby limiting generalization. The main factor contributing
to this lack of generalization was the confusing and redundant
naming of visual effort metrics used as dependent variables.
To mitigate this threat, we conducted the survey described in
this paper. We hope that future studies using eye-trackers will
take advantage of this one-stop cross reference for visual effort
metrics, thereby eventually standardizing the terms and making
it easier to compare results across different studies.

B. This Study

The main threat to validity of this study is whether or not
we covered all visual effort metrics that have been proposed or
used in previous eye-tracking studies. To reduce the possibility
of missing relevant metrics, we performed a SLR [4] by
following the process and advice given by Kitchenham [44].
Due to space limitations, we direct the reader to our previous
study [4] for the protocol used in the SLR covering 1990-
2014, which drives the comparisons done in this study. In
this previous study, we did not compare metrics. The first
author extracted data from previous eye-tracking studies to
provide interpretation of the metrics. To reduce the likelihood
of erroneous results, the three other authors checked and
validated the extraction and interpretations.

VII. CONCLUSIONS AND FUTURE STUDIES

Eye-tracking studies are becoming more prevalent in soft-
ware engineering. However, a review of the literature [4] shows
that previous eye-tracking studies in software engineering
proposed and used a wide variety of eye-tracking metrics
to measure and interpret visual effort using eye-movement
data. Yet, several of these metrics are identical or similar but
carry different names. Conversely, some metrics have similar
names but different definitions. We surveyed the software en-
gineering literature and, to the best of our knowledge, studied
exhaustively all the ways in which an participant’s visual
effort has been measured in eye-tracking studies. We then
present detailed descriptions of the eye-tracking metrics. We
also discuss the interpretations of the values of these metrics
with references to the literature. We provide some practical
suggestions on using these metrics, and finally introduce a
list of metrics that software engineering researchers could
refer to for HCI and usability studies. Using these lists of
existing and potential metrics as well as other suggestions

provided, researchers interested in measuring visual effort
while performing software engineering related tasks could (1)
compare and contrast existing metrics and, therefore, choose
the most appropriate one for their studies, (2) borrow “new”
metrics from other domains, when appropriate to their studies,
and (3) standardize the presentation of the used metrics and
their values to help compare and replicate their studies. Hence,
we pursue and contribute to the efforts on “standardizing”
the reporting of empirical studies [45], [46]. We also aim at
reducing the time new researchers would spend to determine
what metrics are suitable for their specific study.

A future goal is to move towards a formal standardization
procedure for eye-tracking studies in SE. This paper also sets
the stage to compare and contrast eye-tracking metrics that
will help in future standardization efforts.
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