
A Pragmatic Study of Binary Class Relationships

Yann-Gaël Guéhéneuc∗, Hervé Albin-Amiot †

École des Mines de Nantes
4, rue Alfred Kastler – BP 20 823

44 307 Nantes Cedex 3
France

{guehene,albin}@emn.fr

Abstract

A discontinuity exists between modeling and object-
oriented programming languages. This discontinuity is
a consequence of ambiguous notions in modeling lan-
guages and lack of corresponding notions in object-
oriented programming languages. It hinders the transi-
tion between software implementation and design and
hampers software maintenance. This discontinuity is
particularly acute for binary class relationships, such
as the association, aggregation, and composition rela-
tionships. We present a solution to bridge the disconti-
nuity between implementation and design for the binary
class relationships: We propose consensual definitions
of the binary class relationships in terms of four prop-
erties (exclusivity, invocation site, lifetime, multiplic-
ity). We describe algorithms to detect these properties
in Java source code.

1 Introduction

A recurrent problem in the object-oriented software
(re)engineering community is the automated transition
between software implementation and design during
maintenance.

Modeling and programming languages possess simi-
lar notions, such as class and inheritance, guaranteeing
the continuity between implementation and design.

However, modeling languages aspire to provide
higher-level abstractions and thus include notions not-
existing in programming languages, in particular bi-
nary class relationships.

∗This work has been partly funded by IBM OTI Labs – 2670
Queensview Drive – Ottawa, Ontario, K2B 8K1 – Canada

†This work has been partly funded by Soft-Maint S.A. – 4,
rue du Château de l’Éraudière – 44 324 Nantes – France.

The existence of binary class relationships in mod-
eling languages brings a discontinuity in the transition
between a software implementation and its design.

This discontinuity hinders the understanding of the
software implementation, limits the capabilities and
efficiency of reverse engineering tools, and impedes the
communication among software maintainers.

In this paper, we consider only the association, ag-
gregation, and composition relationships because they
exist in common modeling languages, such as the UML,
but are not explicit in standard programming lan-
guages, such as Java.

Lot of work exist on the definitions of binary class
relationships. However, none of this work tackles the
discontinuity between implementation and design1.

Some researchers study binary class relationships at
an abstract level, without linking their results to im-
plementation level constructs, such as [5, 12].

Some other researchers formalize object-oriented
programming languages without focusing on imple-
mentation issues [1, 4, 15].

Yet some other researchers consider only subsets of
the binary class relationships and of their definitions
at implementation level, such as [7, 13].

Industrial and open-source CASE tools, such as
Rational Rose and ArgoUML, distinguish only
graphically the association, aggregation, and com-
position relationships. The results of their reverse
engineering algorithms contain erroneous relationships.

We think essential to bridge the discontinuity be-
tween programming and modeling languages for the
binary class relationships to provide maintainers with
tools to reverse engineer accurately software and to of-
fer consistent round-tripping [3, page 517].

1A more detailed state of the art is available in [9].

This paper has been accepted at ASE 2003 as short paper.



A first solution to bridge the discontinuity is design-
ing a new programming language (or an extension to
an existing one) including the definitions of binary class
relationships, for examples [6, 11, 14]; However, this so-
lution uses a non-standard programming language and
thus eliminates the benefits of standardization (debug-
gers, efficient compilers. . . ).

A second solution is defining binary class relation-
ships at implementation level, in terms of constructs of
an existing programming language; This solution relies
on definitions at design and implementation levels
and on detection algorithms, which bring continuity
between implementation and design.

We apply the second solution to the Java program-
ming language with a pragmatic study of UML-like as-
sociation, aggregation and composition relationships.

In section 2, we propose consensual definitions of the
binary class relationships and discuss their properties
at implementation level. In section 3, we focus on four
common properties: Exclusivity, invocation site, life-
time, and multiplicity. In section 4, we refine the defi-
nitions with these properties. In section 5, we propose
algorithms to detect binary class relationships using
their properties. In section 6, we conclude and present
some future work.

2 Definitions

We propose definitions of the association, aggrega-
tion, and composition relationships. We advocate that
these definitions are as consensual as possible with the
state of the art [9]. Indeed, our approach requires that
one accepts our definitions; However, more than defini-
tions, our approach shows that it is possible to bridge
software implementation and design.

Association relationship At design level, an asso-
ciation relationship is a conceptual link between two
classes. Each class can have multiple instances involved
in the relationship.

At implementation level, most authors agree that a
binary class relationship involves the instances of two
classes, an origin and a target, respectively A and B. It
is oriented, irreflexive, anti-symmetric at instance and
class level, and asymmetric at instance level [12].

Thus, we propose that an association between A
and B is the ability of an instance of A to send a message
to an instance of B.

Nothing prevents other relationships to link classes B
and A: An association, an aggregation, or a composition
relationship may exist between B and A.

Aggregation relationship At design level, an ag-
gregation relationship is an association between two
classes, respectively the whole and the part. Concep-
tually, a part has no sense without a whole.

At implementation level, we say that an aggregation
relationship exists between A and B when the definition
of A, the whole, contains instances of B, the part.

The whole must define a field (or an array field, or
field of type collection) of the type of its part. Instances
of the whole send messages to the instances of the part.

Subclasses inherit the aggregation relationship be-
tween A and B, because subclasses inherit the structure
and behavior of their superclasses2.

Composition relationship At design level, a com-
position relationship is an aggregation relationship
where the parts held by the whole are destroyed when
the whole is destroyed.

At implementation level, we define a composition as
an aggregation with a constraint between the lifetimes
of the whole and of the parts and a constraint on the
ownership of the parts by the whole. The instances of
the part are exclusive to the instance of the whole.

The definition of the composition relationship only
allows an association relationship between the part and
the whole, to ensure the lifetime and ownership prop-
erties between the whole and its part.

Discussions The definitions at implementation level
of the binary class relationships use four language-
independent properties. The association relationship
allows multiple instances of A and B to take part in
the relationship, while the aggregation and composi-
tion relationships allow multiple instances of B to be
in a relationship with one instance of A. In an aggre-
gation relationship, instances of A access to instances
of B through a particular invocation site: a field. In a
composition relationship, instances of B are exclusive
to their corresponding instance of A and instances of A
and B have related lifetimes.

3 Properties

We detail the four properties at implementation
level of the binary class relationships.

Exclusivity An instance of a class involved in a re-
lationship can, or cannot, be in another relationship at
a given time.

EX(A, B) ∈ {true, false}
2Inheritance of structure and behavior is subject to access-

control limitations

2



We name B the set {true, false}. The value true
states that an instance of B can take part in another
relationship with another instance of A or of another
class. The exclusivity property only holds at a given
time: It does not prevent possible exchanges.

Invocation site Instances of A, involved in a rela-
tionship, send messages to instances of B.

IS(A, B) ⊂ Ø ∪ {field, array field,
collection, parameter, local variable}

The values of the IS property summarize the
invocation sites for messages sent from instances of A
to instances of B. There can be no message sent from A
to B: IS(A, B) = Ø, or messages can be sent from A
through a {field} of type B, an {array field}, a
field of type {collection}, a method {parameter},
a method {local variable}. We name yes the set
{field, array field, collection, parameter, local
variable}.

Lifetime This property constrains the lifetime of in-
stances of B with respect to the lifetime of instances of
A. It corresponds to the time elapsed between the times
of destruction LTd of two instances of A and B [5].

LT (A, B) = LTd(A)− LTd(B)
∈ {−,+}

We name ‖ the set {−, +}. LT (A, B) = + if instances
of B are destroyed before the corresponding instances
of A, LT (A, B) = − if destroyed after, and LT (A, B) ∈ ‖
if their times of destruction are unrelated.

Multiplicity The number of instances of B allowed
in a relationship with A.

MU(A, B) ⊂ N ∪ {+∞}

We use an interval of the minimum and maximum
numbers to represent the multiplicity.

Discussions The four properties we propose to de-
fine binary class relationships are orthogonal. How-
ever, the exclusivity and the multiplicity properties are
closely related with one another.

4 Formalization

We formalize the binary class relationships at imple-
mentation level as three conjunctions of the four prop-
erties: AS, AG, and CO.

Association We define an association relationship
between A and B, AS(A, B), as:

AS(A, B) ,
(IS(A, B) ∈ yes) ∧ (IS(B, A) = Ø) ∧
(EX(A, B) ∈ B) ∧ (EX(B, A) ∈ B) ∧
(LT (A, B) ∈ ‖) ∧ (LT (B, A) ∈ ‖)

(MU(A, B) = [0, +∞]) ∧ (MU(B, A) = [0, +∞]) ∧
∈ {true, false}

Aggregation We define the aggregation relationship
between A and B, AG(A, B), as:

AG(A, B) ,
(IS(A, B) = {field,array field,

collection}) ∧
(IS(B, A) = Ø) ∧

(EX(A, B) ∈ B) ∧ (EX(B, A) ∈ B) ∧
(LT (A, B) ∈ ‖) ∧ (LT (B, A) ∈ ‖) ∧

(MU(A, B) = [1, +∞]) ∧ (MU(B, A) = [0, +∞]) ∧
¬ CO(B, A)
∈ {true, false}

Composition We define the composition relation-
ship between A and B, CO(A, B), as:

CO(A, B) ,
(IS(A, B) = {field,array field,

collection}) ∧
(IS(B, A) = Ø) ∧

(EX(A, B) = true) ∧ (EX(B, A) = false) ∧
(LT (A, B) = +) ∧ (LT (B, A) = −) ∧

(MU(A, B) = [1, +∞]) ∧ (MU(B, A) = [1, 1]) ∧
¬ AG(B, A)
∈ {true, false}

Discussion The definitions of the binary class rela-
tionships decompose into two fundamental parts: A
static part corresponding to the MU and IS proper-
ties; A dynamic part corresponding to the EX and
LT properties. This dichotomy between static and dy-
namic parts is important for the detection.

5 Detection

We briefly describe algorithms to check the four
properties of binary class relationships and thus bring
continuity between design and implementation3.

3The interested reader may refer to [9, 10] for detailed expla-
nations.

3



The detection of the static part of the binary class
relationships is simple to perform using Java introspec-
tion capabilities and using a byte-code analysis frame-
work: IBM CFParse v1.21 [8].

Detection of MU The detection of the values of the
MU property corresponds to the fields and their mul-
tiplicities. In particular, we determine the types of
collections using Java programming idioms [13].

Detection of IS We iterate through the byte-codes
of each class, looking for invocation sites, to assign the
corresponding values to the IS property.

The detection of the dynamic part uses a trace-
analysis technique [10] to model a program execution
as a sequence of execution events. There are three
kinds of events, represented as Prolog terms: Assign-
ment events emitted every time a field of an instance
of a class A is assigned with an instance of a class B;
Finalize events emitted when the Java virtual machine
garbage-collects an instance; A program-end event that
is emitted when the program terminates.

Detection of LT We check the lifetime property of
the composition relationship with the help of a Pro-
log predicate [9]. This predicate builds a list of terms
abstracting sequences of events in the execution trace
depending on the order in which assignation, finaliza-
tion, and program-end happen.

Detection of EX Following the same principle, we
define a predicate to check the exclusivity property of
the composition relationship.

The terms in these lists represent values of the life-
time and exclusivity properties between instances of
two classes. Then, we can infer the value of the prop-
erties of the two classes by conjunctions.

6 Future work

In this paper, we propose definitions and algorithms
to bridge the discontinuity between modeling and pro-
gramming languages for binary class relationships.

We included our algorithms in two software reverse
engineering tools, Ptidej and Caffeine, which bring
consistency during maintenance and offer an improve-
ment over existing industrial and academic tools.

We currently develop and use our reverse engineer-
ing tools to identify micro-architectures similar to
design-patterns in Java programs [2].

Future work includes:
• To develop our approach with more flavors of bi-

nary class relationships, such as the use, shared-
aggregation, and container relationships.

• To verify that our definitions are really consensual
and that our set of properties is minimal with re-
spect to existing definitions.

• To apply our reverse engineering tools on real-life
programs and to validate their results with the
developers of the programs.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs
in Computer Science. Springer-Verlag, second edition, 1998.

[2] H. Albin-Amiot, P. Cointe, Y.-G. Guéhéneuc, and N. Jussien.
Instantiating and detecting design patterns: Putting bits and
pieces together. In proceedings of the 16th conference on
Automated Software Engineering, pages 166–173. IEEE Com-
puter Society Press, November 2001.

[3] G. Booch. Object-Oriented Design with Applications. The

Benjamin/Cummings Publishing Company, Inc., 2nd edition,
September 1993.

[4] R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech,
B. Rumpe, and V. Thurner. Towards a formalization of the
unifed modeling language. In proceedings of the 11th Eu-
ropean Conference for Object-Oriented Programming, pages
344–366. Springer-Verlag, June 1997.

[5] F. Civello. Roles for composite objects in object-oriented anal-

ysis and design. In proceedings of the 8th conference on
Object-Oriented Programming, Systems, Languages, and Ap-
plications, pages 376–393. ACM Press, September 1993.

[6] S. Ducasse, M. Blay-Fornarino, and A.-M. Pinna-Dery. A re-
flective model for first class dependencies. In proceedings of
10th conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 265–280. ACM Press, Oc-
tober 1995.

[7] H. Eichelberger and J. W. von Gudenberg. On the visualiza-
tion of Java programs. In proceedings of the 1st international
seminar on Software Visualization, pages 295–306. Springer-
Verlag, May 2002.

[8] M. Greenwood. CFParse Distribution. IBM AlphaWorks,
September 2000.

[9] Y.-G. Guéhéneuc, H. Albin-Amiot, R. Douence, and P. Cointe.
Bridging the gap between modeling and programming lan-
guages. Technical Report 02/09/INFO, Computer Science De-

partment, École des Mines de Nantes, July 2002.
[10] Y.-G. Guéhéneuc, R. Douence, and N. Jussien. No Java with-

out Caffeine – A tool for dynamic analysis of Java programs.
In proceedings of the 17th conference on Automated Software
Engineering, pages 117–126. IEEE Computer Society Press,
September 2002.

[11] T. Hartmann, R. Jungclaus, and G. Saake. Aggregation in

a behavior oriented object model. In proceedings of 6th Eu-
ropean Conference for Object-Oriented Programming, pages
57–77. Springer-Verlag, June–July 1992.

[12] B. Henderson-Sellers and F. Barbier. A survey of the UML’s
aggregation and composition relationships. In L’objet : Logi-
ciel, Base de données, Réseaux, 5(3/4):339–366, December
1999.

[13] D. Jackson and A. Waingold. Lightweight extraction of object
models from bytecode. In proceedings of the 21st Interna-
tional Conference on Software Engineering, pages 194–202.
ACM Press, May 1999.

[14] B. B. Kristensen. Complex associations: Abstractions in

object-oriented modeling. In proceedings of the 9th confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications, pages 272–283. ACM Press, October 1994.

[15] J. Noble and J. Grundy. Explicit relationships in object-

oriented development. In proceedings of the 18th conference
on the Technology of Object-Oriented Languages and Sys-
tems, pages 211–226. Prentice-Hall, November 1995.

4


