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ABSTRACT
Developers may introduce anti-patterns in their software
systems because of time pressure, lack of understanding,
communication, and–or skills. Anti-patterns impede devel-
opment and maintenance activities by making the source
code more difficult to understand. Detecting anti-patterns
in a whole software system may be infeasible because of the
required parsing time and of the subsequent needed manual
validation. Detecting anti-patterns on subsets of a system
could reduce costs, effort, and resources. Researchers have
proposed approaches to detect occurrences of anti-patterns
but these approaches have currently some limitations: they
require extensive knowledge of anti-patterns, they have lim-
ited precision and recall, and they cannot be applied on
subsets of systems. To overcome these limitations, we intro-
duce SVMDetect, a novel approach to detect anti-patterns,
based on a machine learning technique—support vector ma-
chines. Indeed, through an empirical study involving three
subject systems and four anti-patterns, we showed that the
accuracy of SVMDetect is greater than of DETEX when
detecting anti-patterns occurrences on a set of classes. Con-
cerning, the whole system, SVMDetect is able to find more
anti-patterns occurrences than DETEX.

1. INTRODUCTION
Anti-patterns are “poor” solutions to recurring design and

implementation problems. Researchers have performed em-
pirical studies to show that anti-patterns create hurdles dur-
ing program comprehension, software evolution and mainte-
nance activities [8]. It is important to detect anti-patterns
at an early stage of software development, to reduce the
maintenance costs.

Current anti-pattern detection approaches as proposed by
Marinescu [11], Moha et al. [14] and Alikacem et al. [1] have
several limitations such as they require extensive knowledge
of anti-patterns, they have limited precision and recall and
cannot be applied on subsets of systems. We argue that
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these limitations could be taken care of using Support Vector
Machines (SVM).

Support vector machines (SVM) have been applied in var-
ious areas, e.g., bioinformatics [2], information retrieval [15].
It is a recent alternative solution to the classification prob-
lems. We can apply SVM on subsets of systems because
it considers system classes one at a time, not collectively
as previous rule-based approaches do. To the best of our
knowledge, researchers have not yet studied the potential
benefits of using SVM to detect anti-patterns.

Our conjecture is that detecting anti-patterns using SVM
yields better accuracy (precision and recall) than previ-
ous approaches on systems (and subsets thereof).
The contribution of this paper is two-fold. First, we pro-

pose our approach, SVMDetect, to detect anti-patterns us-
ing SVM. We use both the measures of precision and re-
call to compare SVMDetect to DETEX [14], the state-of-
the-art approach, on a set of three programs and the four
most studied anti-patterns. We showed that the accuracy of
SVMDetect is greater than of DETEX when detecting anti-
patterns occurrences on a set of classes. Concerning the
whole system, SVMDetect is able to find more anti-patterns
occurrences than DETEX. We thus conclude that our con-
jecture is correct: a SVM-based approach can overcome the
limitations of previous approaches.

The paper is organised as follows. Section 2 provides a
brief description of the state-of-the-art of anti-patterns de-
tection approaches and SVM. Section 3 describes our ap-
proach. Section 4 introduces our empirical study while Sec-
tion 5 reports and discusses its results. Finally, Section 6
presents the threats to validity whereas Section 7 concludes
the paper and outlines future work.

2. RELATED WORK
We now recall the major related work.

Smell/Anti-pattern Detection: Many researchers stud-
ied anti-patterns detection. Rahma et al. [12] used quality
metrics to identify anti-patterns in UML Alikacem et al. [1]
detected smells/anti-patterns using a meta-model for repre-
senting the source code and fuzzy thresholds. Langelier et
al. [10] proposed a visual approach to detect anti-patterns.
Marinescu [11] presented detection strategies based on quan-
tifiable expression of rules using metrics to detect anti-patterns
in systems. Sahraoui et al. [7] used search-based techniques
to detect anti-patterns conjecturing that the more the code
deviates from good practices, the more it is likely to be vul-
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nerable to anti-patterns. Moha et al. [14] proposed an ap-
proach based on a set of rules (metrics, relations between
classes) that describes the characters of each antipattern to
identify them.

Various tools1 like Aspect, LCLint, Extended Static Checker,
and Semmlecode were developed to identify code smells while
Analyst4J, PMD, and Hammurapi for detecting anti-patterns.

The works carried out so far suffered from some limita-
tions: they have limited precision and recall (if reported at
all), had not been adopted by practitioners yet, cannot be
applied on subsets of systems, and required sufficient knowl-
edge of anti-patterns. These limitations can be overcome
using a Support Vector Machine (SVM).

SVM: SVM has been used in several domains in the past
for various applications, e.g., bioinformatics [2], information
retrieval [15], object recognition [4]. Further, SVM is a re-
cent alternative to the classification problems. For example,
Guihong et al. [3] used C-SVM, a variant of SVM, for terms
classification. SVM was also used in image retrieval systems
when Sethia et al. [13] used invariant feature histograms to
compare the efficiency of different SVMs claiming that a sig-
nificant performance gain was obtained with their approach.
Kim et al. [9] proposed the change classification approach for
predicting latent software bugs based on SVM. Their ap-
proach acquired 78% accuracy and 60% buggy change recall
in classifying changes as buggy or not.

To the best of our knowledge, no previous approach used
SVM for anti-pattern Detection.

3. OUR APPROACH: SVMDETECT
SVMDetect is based on Support Vector Machines (SVM)

using a polynomial kernel to detect occurrences of anti-
patterns.

SVM is a set of techniques based on statistical theory of
supervised learning introduced by Vapnik [5]. It relies on
the existence of a linear classifier in an appropriate space
and uses a set of training data to train the parameters of
the classifier. It is based on the use of functions called ker-
nel, which allows an optimal separation of data into two
categories by a hyperplane.

As other machine learning techniques, applying SVMDe-
tect requires preprocessing. Indeed, we must first train SVMDe-
tect on some sets of known occurrences of the anti-patterns,
one anti-pattern at a time, before applying it on some set of
classes.

We use SVMDetect to detect the well-known anti-patterns:
Blob, Functional Decomposition, Spaghetti code, and Swiss
Army Knife. For each anti-pattern detection, the detection
process is identical.

We illustrate the detection process with the Blob anti-
pattern for the sake of clarity. We define:

• TDS = {Ci, i = 1, . . . , p}, a set of classes Ci derived
from an object-oriented system that constitutes the
training dataset;

• ∀i, Ci is labelled as Blob (B) or not (N);

• DDS is the set of the classes of a system in which we
want to detect the Blob classes.

1semmle.com/, www.codeswat.com/, pmd.sourceforge.
net/, and www.hammurapi.biz/

To detect the Blob classes in the set DDS, we apply
SVMDetect through the following steps:

Step 1 (Object Oriented Metric Specification): SVMDe-
tect takes as input the training dataset TDS. For each class
from TDS, we calculate object-oriented metrics that will
be used as the attributes xi for each class in TDS. We
use POM2 to compute metrics for all the studied systems.
POM is an extensible framework, based on the PADL meta-
model, which provides more than 60 metrics [6], including
the well-known metrics by Chidamber and Kemerer.

Step 2 (Train the SVM Classifier): We train the SVM
classifier using the dataset TDS and the set of metrics com-
puted in Step 1. We define the training dataset as: TDS =
{(xi, yi)|xi ∈ Rp, yi ∈ {−1, 1}, ∀i ∈ (1, . . . , n)} where yi is
either 1 or −1, indicating respectively if a class xi is a Blob
or not. Each xi is a p-dimensional real vector with p the
number of metrics.

The objective of the training step is to find the optimal
hyperplane that divides the classes into the two different
groups, Blob or Not-Blob.

Step 3 (Construction of the dataset DDS and de-
tection of the occurrences of an anti-pattern): We
build the dataset of the system on which we want to detect
an anti-pattern as follows: for each class of the system, we
compute the same set of metrics as in Step 1. We use the
SVM classifier trained in Step 2 to detect the new occur-
rences of the anti-pattern in the dataset DDS.

We use Weka3 to implement SVMDetect using its SVM
classifier.

4. EMPIRICAL STUDY
The goal of our empirical study is to validate that SVMDe-

tect can overcome the limitations of previous approaches, by
comparing our approach, SVMDetect, with DETEX [14].
The quality focus of our study is the accuracy of SVMDe-
tect, in terms of precision and recall. The perspective is
that of researchers and practitioners interested in verifying
if SVMDetect can be effective in detecting various kinds of
anti-patterns, and in overcoming the previous limitations.

4.1 Research Questions
To see whether SVMDetect overcomes the previous limi-

tations, we ask the following research question:

• RQ1: How does the accuracy of SVMDetect compare
with that of DETEX, in terms of precision and recall?
We decompose RQ1 as follows:

– RQ11: How does the accuracy of SVMDetect com-
pare with that of DETEX, in terms of precision
and recall, when applied on a same subset of a
system?

– RQ12: How many occurrences of Blob SVMDe-
tect can detect when comparing with that of DE-
TEX on a same entire system?

4.2 Objects
2http://wiki.ptidej.net/doku.php?id=pom
3http://www.cs.waikato.ac.nz/ml/weka/
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Names Versions # Lines of Code # Classes # Interfaces

ArgoUML 0.19.8 113,017 1,230 67
A design tool for UML

Azureus 2.3.0.6 191,963 1,449 546
A peer-to-peer client that implements the protocol BitTorrent

Xerces 2.7.0 71,217 513 162
A syntaxic analyser

Table 1: Description of the objects of the study

The objects4 of our study are ArgoUML v0.19.8, Azureus
v2.3.0.6, and Xerces v2.7.0, three open-source Java systems.
We chose these systems on several factors. First, we se-
lected open-source systems that are freely available so that
other researchers can replicate our study. Second, we se-
lected systems that have been used by other researchers to
allow comparisons [14]. Table 4.2 provides the details of the
studied systems.

4.3 Subjects
The subjects of our study are the following four anti-

patterns: Blob, Functional Decomposition (FD), Spaghetti
Code (SC), and Swiss Army Knife (SAK). We chose these
four anti-patterns because these are known anti-patterns and
commonly studied in previous work, particularly by Moha
et al. [14] for comparison.

More details on the description of these anti-patterns can
be found in [14].

4.4 Analysis Methods
For the purpose of our empirical study, we build two

datasets for each system and each anti-pattern, composed
of anti-patterns and non-anti-patterns classes in equal num-
bers.

To answer RQ11 (respectively RQ12) , we train SVMDe-
tect on a dataset DDS1 and detect occurrences of an anti-
pattern on DDS2 (respectively on the rest of the whole sys-
tem). We compute the precision and recall of SVMDetect
on DDS2 (respectively on the rest of the whole system). We
then run DETEX on the same dataset, DDS2 (respectively
on the rest of the whole system), and compute its precision
and recall.

5. RESULTS AND DISCUSSION
This section reports and discusses the results of our em-

pirical study. The data, for replication purpose, is available
online5.

Subsets of System: RQ11: Table 2 reports the precision
and recall values when applying DETEX and SVMDetect
on the DDS2 datasets.

When applied on subsets of systems, we observed that
DETEX could not detect occurrences of some anti-patterns
and, when it did, the precision and recall values were quite
low, mostly 0. We explain this observation by the use by DE-
TEX of boxplots and thresholds. When DETEX analyses a
few classes, its use of boxplots and thresholds yields most
of the classes to fall under (respectively above) the thresh-
olds and, hence, it is not to be reported. This problem does
not arise when analysing an entire system because then the

4argouml.tigris.org/, azureus.sourceforge.net/, and
xerces.apache.org/xerces-c/
5http://www.ptidej.net/download/experiments/ase12/

DETEX SVMDetect
ArgoUML 25 40
Azureus 38 48
Xerces 39 55
Total 102 143

Table 3: Total recovered occurrences of BLOB by
DETEX and SVMDetect

boxplots quartiles are different and more classes falls within
the threshold values set in the rules. SVMDetect can work
on the whole system and part of a system.

Complete System: RQ12:
Table 3 shows the total number of anti-patterns’ occur-

rences of blob detected by DETEX and SVMDetect. When
applied on the whole system for detecting Blob occurrences,
SVMDetect, on an average, performed better than DETEX.
SVMDetect could detect 143 Blob occurrences; whereas DE-
TEX could detect 102 Blob occurrences, in spite of DETEX
being able to perform at its best when detecting Blob. Fur-
ther, we applied SVMDetect using a trained dataset of one
system A, for detecting an anti-pattern of another system
B. For example, trained dataset of ArgoUML was used to
detect anti-patterns of the whole system Xerces. The re-
sults obtained were significantly better than DETEX and
the results can be generalised for any system. We cannot
perform experiment on other anti-patterns detection due to
the lack of manually validated oracle. But looking at the
nature of Blob detection, we believe that SVMDetect would
even perform better when detecting other anti-patterns.

Thus, we answer RQ1: “How does the accuracy of
SVMDetect compare with that of DETEX, in terms of
precision and recall?” as follows: on subsets of systems,
SVMDetect dramatically outperforms DETEX, while on
entire systems, SVMDetect detects more occurrences of
Blob than DETEX.

6. THREATS TO VALIDITY
We now discuss threats to the validity of our results.

Construct validity: Threats to construct validity con-
cern the relation between theory and observation. In our
study, they are mainly related to the identification of classes
suspected to be anti-patterns. To reduce the effect of this
threat, the occurrences of anti-patterns have been manually
validated by independent engineers.

Internal Validity: Threats to internal validity concern the
dependence of the obtained results that depend on the cho-
sen anti-patterns and systems. These threats do not affect
our study because we used four well-known and representa-
tive anti-patterns. These anti-patterns also have been used
in previous works. We also used three open-source systems
with different sizes, which have been used by previous re-
searchers.

Reliability Validity: Reliability validity threats concern
the possibility of replicating the study concerned. To mit-
igate this threat, we used three open-source systems that
can be freely downloaded from the Internet. We attempted
to provide all the necessary details to replicate our study.
Moreover, the results of the validation and the datasets are
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ArgoUML Azureus Xerces

Blob
DETEX 0.00 0.00 0.00

SVMDetect 97.09 97.32 95.51

FD
DETEX 0.00 0.00 0.00

SVMDetect 70.68 72.01 66.93

SC
DETEX 0.00 0.00 0.00

SVMDetect 85.00 88.00 86.00

SAK
DETEX 10.00 10.00 0.00

SVMDetect 75.46 84.54 80.76

ArgoUML Azureus Xerces

Blob
DETEX 0.00 0.00 0.00

SVMDetect 84.09 91.33 95.29

FD
DETEX 0.00 0.00 0.00

SVMDetect 57.50 84.28 70.00

SC
DETEX 0.00 0.00 0.00

SVMDetect 71.00 89.00 86.00

SAK
DETEX 0.00 0.00 0.00

SVMDetect 77.14 85.71 75.50

Table 2: Precision (left) and Recall (right) of SVMDetect vs. DETEX in subsets (%)

available on-line.

External Validity: Threats to external validity concern
the possibility to generalise our results. We studied three
systems with different sizes and different domains. Further,
we also used a representative subset of anti-patterns. How-
ever, we will apply SVMDetect on other systems and anti-
patterns in future work.

7. CONCLUSION AND FUTURE WORK
Anti-patterns are a fact of developers’ life when developing

software systems, under the conditions prevailing nowadays:
distribution in time and space, time pressure and complex-
ity. Anti-patterns in particular impede program comprehen-
sion and thus have negative impact on both development
and maintenance activities. We observed, as other authors
[14], that current anti-patterns detection approaches have
some limitations: they require extensive knowledge of anti-
patterns, they have limited precision and recall, and they
cannot be applied on subsets of systems. To overcome these
limitations, we introduced a novel approach to detect anti-
patterns, SVMDetect, based on support vector machines
(SVM).

We designed an empirical study that allowed us to com-
pare the results of DETEX, the state-of-the-art approach
by Moha et al. [14] based on rules, with that of SVMDe-
tect, our approach based on a SVM. We overcame the diffi-
culty of finding a training set for SVMDetect and of apply-
ing DETEX and SVMDetect on the same input. We per-
formed experiments to show how SVMDetect performs on
a set of three systems (ArgoUML v0.19.8, Azureus v2.3.0.6,
and Xerces v2.7.0) and four anti-patterns (Blob, Functional
Decomposition, Spaghetti Code, and Swiss Army Knife).

We showed that the accuracy of SVMDetect is greater
than that of DETEX when detecting anti-patterns occur-
rences on a set of classes. Concerning the whole system,
SVMDetect is able to find more anti-patterns occurrences
than DETEX.

We thus conclude that our conjecture is correct: a SVM-
based approach can overcome the limitations of the pre-
vious approaches and could be more readily adopted by
practitioners.
Future work includes performing an empirical study tak-

ing into account the user feedback. It also includes the use of
SVMDetect in real-world environments. We would ask our
industrial partners help in realising such a study. Further,
we would also reproduce the study with other systems and
anti-patterns to increase our confidence in the generalisabil-
ity of our conclusions. Another interesting study could be
the evaluation of the impact of the quality of feedback on

SVMDetect results.
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[6] Y.-G. Guéhéneuc, H. Sahraoui, and Farouk Zaidi.
Fingerprinting design patterns. In E. Stroulia and A. de Lucia,
editors, Proceedings of the 11th Working Conference on
Reverse Engineering (WCRE), pages 172–181. IEEE
Computer Society Press, November 2004. 10 pages.

[7] M. Kessentini, S. Vaucher, and H. Sahraoui. Deviance from
perfection is a better criterion than closeness to evil when
identifying risky code. In Proceedings of the IEEE/ACM
international conference on Automated software engineering,
ASE ’10, pages 113–122, New York, NY, USA, 2010. ACM.

[8] F. Khomh, M. D. Penta, and Y.-G. Guéhéneuc. An exploratory
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