
Towards a REST Cloud Computing Lexicon

Fabio Petrillo1,3, Philippe Merle2, Naouel Moha1 and Yann-Gaël Guéhéneuc3

1Université du Québec à Montréal, Montréal, Canada
2Inria Lille - Nord Europe, Villeneuve d’Ascq, France
3École Polytechnique de Montréal, Montréal, Canada

fabio@petrillo.com, philippe.merle@inria.fr, moha.naouel@uqam.ca, yann-gael.gueheneuc@polymtl.ca

Keywords: REST, Lexicon, Cloud, Services

Abstract: Cloud computing is a popular Internet-based computing paradigm that provides on-demand computational
services and resources, generally offered by cloud providers’ REpresentational State Transfer (REST) APIs.
To the best of our knowledge, there has been no study on the analysis of the lexicon adopted by cloud providers,
despite its importance for developers. In this paper, we studied three different and well-known REST APIs
(Google Cloud Platform, OpenStack, and Open Cloud Computing Interface) to investigate and organise their
lexicons. This study presents three main contributions: 1) a tooled approach, called CLOUDLEX, for extracting
and analysing REST cloud computing lexicons, 2) a dataset of services, resources, and terms used in the three
studied REST APIs, 3) our analysis of this dataset, which represents a first attempt to provide a common REST
cloud computing lexicon. After analysing our dataset, we observe that although the three studied REST APIs
to describe the same domain (cloud computing), contrary to what one might expect, they do not share a large
number of common terms, and only 5% of terms (17/352) are shared by two providers. Thus, the three APIs
are lexically heterogeneous, and there is not a consensus on which terms to use on cloud computing systems.
We discuss new avenues for cloud computing API designers and researchers.

1 Introduction

Cloud computing has transformed the Informa-
tion Technology (IT) industry (Armbrust et al., 2010)
by hosting applications and providing resources (e.g.,
CPU and storage) as services on-demand over the In-
ternet (Zhang et al., 2010), offering huge opportu-
nities for the IT industry. Cloud providers, such as
Google Cloud Platform (a commercial public cloud)
and OpenStack (an open source stack for building
public/private clouds), usually offer these services in
the form of REST (REpresentational State Transfer)
(Fielding, 2000) APIs, the de facto standard adopted
by many software organisations for publishing their
services. In particular, we observe that most of cloud
providers, such as Google Cloud Platform or Open-
Stack, propose their own proprietary APIs. Con-
versely, open and standard cloud APIs have also been
proposed, such as the Open Cloud Computing Inter-
face (OCCI) (Nyren et al., 2016), which is a neutral-
vendor cloud standard.

However, there is a wide variety of cloud APIs that
might be difficult to understand and use by develop-
ers, especially within such a complex and technical

context as cloud computing. Moreover, well-designed
and well-named REST APIs may attract client de-
velopers to use them more than poorly designed and
named ones, particularly in the current open market,
where Web services are competing against one an-
other (Masse, 2011). Indeed, client developers must
understand the providers’ APIs while designing and
developing their systems that use these APIs. There-
fore, in the design and development of REST APIs,
their understandability and reusability are two major
quality characteristics, which are reachable when best
practices for REST APIs design (Masse, 2011) and
naming are followed.

To improve the understandability and cloud com-
puting adoption, a better comprehension of the tech-
nology is essential (Youseff et al., 2008) and we
believe that this understanding involves the right
choice of lexicon used to describe the cloud com-
puting APIs. Nevertheless, despite its importance
and to the best of our knowledge, there has been
no study on the analysis of the lexicon adopted by
cloud providers. This raises three open research ques-
tions: RQ1: Which lexicon is adopted by cloud
computing providers? RQ2: Are there common



terms between providers’ lexicons? RQ3: What
is the global lexicon of all cloud providers? To
answer these questions, we studied three different
and well-known REST APIs (Google Cloud Plat-
form, OpenStack, and Open Cloud Computing Inter-
face) by investigating and organising their lexicons.
This study presents three main contributions in re-
sponse to the three open research questions: 1) a
tooled approach, called CLOUDLEX, for extracting
and analysing REST cloud computing lexicons, 2)
a dataset of services, resources, and terms used in
the three studied REST APIs, 3) our analysis of this
dataset, which represents a first attempt to provide a
common REST cloud computing lexicon.

The remainder of the paper is organised as fol-
lows. Section 2 presents our study: the three studied
cloud computing REST APIs, our conceptual model
for cloud computing REST APIs, the design and im-
plementation of our CLOUDLEX approach to extract
and analyse lexicons from cloud computing REST
APIs. Section 3 presents our results, answers the three
open research questions, and discusses threats to va-
lidity. Section 4 presents some related work. Finally,
Section 5 concludes the paper with future work.

2 Study Design

2.1 Objects

The objects of our study are three different cloud
REST APIs including the API of Google Cloud Plat-
form (GCP)1, the API of OpenStack2, and the API
of OCCI3. We specifically target these APIs because
they represent the range of the different types of
cloud APIs available: a well-known commercial pub-
lic cloud, a worldwide used open source implementa-
tion for building private clouds, and a community-led
open standard for cloud computing.

2.2 Conceptual Model for Cloud
Computing REST APIs

Cloud computing is provided by many companies
like Amazon, Google, Microsoft, IBM, Oracle, im-
plemented by different open source stacks like Open-
Stack, CloudStack, Nebula, Eucalyptus, and speci-
fied by few standards like OGF’s (Open Grid Fo-
rum) OCCI (Nyren et al., 2016) and DTMF’s CIMI
(Cloud Infrastructure Management Interface) (Davis

1documented at https://cloud.google.com/docs
2documented at http://docs.openstack.org
3available at http://occi-wg.org

and Pilz, 2012), to cite a few. In our conceptual
model, we abstract this diversity of cloud computing
actors (companies, implementations, and standards)
under the single concept of Provider.

Each provider supplies a set of REST APIs. In
Google Cloud Platform, each API is in fact a com-
mercial product of Google, such as compute and
sql. OpenStack simply provides APIs, such as
orchestration-api and os-compute-2. In OCCI,
each API is specified as an extension of the OCCI core
model, such as Infrastructure and Platform ex-
tensions. Independently of the name used by cloud
providers (product, API, extension), each provider’s
REST API is conceptually a useful service, e.g., man-
aging virtual machines, networks, databases, or ap-
plications, orchestrating their deployment, control-
ling their access, etc. The number and contents of
these services are extremely heterogeneous for each
provider: tens of services in Google Cloud Platform,
more than one hundred in OpenStack, and five in
OCCI. In our conceptual model, we abstract this di-
versity of functional services (product, API, exten-
sion) under the single concept of Service.

Each service of a provider manages a set of com-
puting resources such as virtual machine, storage
disk, network, application, etc. Each computing re-
source is implemented as a REST resource character-
ized by a unique resource identifier (e.g., URI, URL,
etc.). For instance, virtual machines are accessible
through the URI /{project}/zones/{zone_id}/
instances/{instance_id} in the compute service
of Google Cloud Platform, the URI /{tenant_
id}/servers/{server_id} in the os-compute-2
service of OpenStack, and are reachable by URI
/compute/{compute_id} in the Infrastructure
service of OCCI. Our conceptual model abstracts this
diversity of computing resources under the single
concept of Resource.

Each resource supports common CRUD (Create,
Retrieve, Update, and Delete) operations and some
specific business behaviors like start and stop a vir-
tual machine, attach a disk to a virtual machine, etc.
Our conceptual model abstracts this diversity (opera-
tion, behavior) under the single concept of Action.

To instantiate this conceptual model, we designed
a tooled approach for automatically identifying Ser-
vice, Resource and Action data from cloud comput-
ing REST APIs of three Providers, and then for ex-
tracting and analysing lexicons of these APIs.

2.3 CloudLex Approach

Our study is supported by the CLOUDLEX tooled ap-
proach composed of four steps illustrated in Figure 1:



Step 1. Collecting documentation The first
step of the CLOUDLEX approach consists in
manually collecting the documentation of cloud
computing providers’ REST APIs. The Web site
of Google Cloud Platform contains HTML pages
documenting all GCP’s REST APIs. For instance,
the HTML page https://cloud.google.
com/compute/docs/reference/latest/
describes all GCP’s compute services. Open-
Stack’s REST APIs are documented with Swagger
documents such as http://rackerlabs.
github.io/wadl2swagger/openstack/sw
agger/dbaas.json. OCCI is specified by a set
of PDF documents such as https://redmine.ogf.
org/attachments/220/infrastructure.pdf. We
analysed the three provider’s documentation, search-
ing for pages with API URIs. Then, we identified
all API pages manually and stored their URLs. At
the end of this step, we obtain a list of API pages
URLs that contain both GCP and OpenStack URIs
organised by service, and for OCCI, a list of relevant
PDF specification documents.

Step 2. Parsing documentation The second step
of the CLOUDLEX approach consists in automatically
parsing all the providers’ documentation to collect all
provided services (e.g., compute and sql for GCP,
orchestration-api and os-compute-2 for Open-
Stack, Infrastructure and Platform for OCCI),
resource URIs and allowed HTTP request methods
in order to feed the implementation of our concep-
tual model presented in Section 2.2. However, the
nature of this documentation is heterogeneous since
it varies from one provider to another. Therefore,
the CLOUDLEX toolchain contains a set of heteroge-
neous parsers, each dedicated to a specific documen-
tation format, including GCP Parser, OCCI Parser,
and OpenStack Parser as shown in Figure 1. The
CLOUDLEX toolchain is extensible by design as it
could support other cloud provider’s APIs, e.g. Ama-
zon Web Services, with its own documentation for-
mat by just adding a new parser, as illustrated by
Other Parser at the bottom of Figure 1. Each
parser identifies Provider, Service, Resource and
Action data from a specific provider’s documenta-
tion, and then feeds the Cloud Dataset, which is the
tooled implementation of the CLOUDLEX conceptual
model. Table 3 gives an excerpt of the obtained Cloud
Dataset. We parsed these API’s pages and docu-
ments to identify their structure. OpenStack provides
a page with Swagger JSON files, from which we ex-
tracted directly URIs. As for Google Cloud Platform,
which provides HTML documentation pages, we had
to develop an HTML parser to extract URIs. Unfor-

tunately, OCCI documents do not explicitly list URIs
but only give rules about how URIs must be gener-
ated by an OCCI implementation. Then, we added a
generator to OCCIWARE STUDIO, which is a model-
driven implementation of OCCI, and ran it to obtain
all the URIs for OCCI. At the end of this second step,
we get the Cloud Dataset, a dataset with the list of
resource URIs with allowed HTTP request methods
for each provider’s service, as illustrated in Table 3.

Figure 1: CLOUDLEX Approach

Step 3. Extracting lexicon The third step of the
CLOUDLEX approach consists in automatically ex-
tracting the lexicon of each provider from its asso-
ciated Cloud Dataset. The lexicon of each provider
contains the name of all services of this provider, the
terms extracted from the path of the uri of all pro-
vided resources, and the name of all the actions de-
fined by provided resources. The path of a URI is
usually organised in a hierarchical form, which ap-
pears as a sequence of segments separated by slashes.
For example, the URI /{project}/zones/{zone_
id}/instances/{instance_id} contains five seg-
ments: {project}, zones, {zone_id}, instances,
and {instance_id}. We keep all segments not en-
closed by braces in the lexicon, e.g., zones and
instances. Segments enclosed by braces, such as
{project} and all {*_id}, are identifiers either com-
puted by the cloud provider or freely chosen by the
cloud user. For this reason, these identifier segments
are not part of the lexicon. We then performed a fine-
grained analysis of all obtained URIs automatically,
parsed the URIs following provider’s URI patterns,
and extract lexicon terms. These extractions resulted
in the Lexicon Dataset, a dataset of terms associ-
ated with each API.

Step 4. Analysing lexicon The fourth step of
the CLOUDLEX approach consists in automatically



analysing the lexicons. Various analyses are pro-
vided to count occurrences of each term in the lexi-
con datasets, and identify nouns versus verbs, singu-
lar versus plural terms, and lower/upper/camel case
of terms. The results of these analyses are reported in
several tables and charts of Section 3.

2.4 Implementing CLOUDLEX

Both Cloud and Lexicon Datasets are encoded
as CSV (Comma-Separated Values) files. This im-
plementation choice fosters the reusability of our
datasets by other researchers and practitioners. CSV
files can easily be generated from any program-
ming language and read from any analysis software
like Apache OpenOffice or Microsoft Excel spread-
sheets. Most of the CLOUDLEX parsers, extractors
and analyses are implemented in Python, a dynamic
scripting language providing simple libraries to get
and parse HTML pages/Swagger files, and read/write
CSV files, etc. This implementation choice fosters
readability, comprehension and auditability of our
parsing, extraction and analysis scripts by other re-
searchers and practitioners. Finally, we used OpenOf-
fice spreadsheet software to produce tables and charts
shown in Section 3. Our implementation of the
CLOUDLEX tooled approach and all the produced
datasets are freely available on https://github.
com/Spirals-Team/CloudLexicon.

3 Results

3.1 Analysis of the Cloud Dataset

Using the tooled approach CLOUDLEX presented in
Section 2.3, we extracted a total of 1,297 URIs from
the 142 services of the three cloud providers, as
shown in Table 1. The distribution of URIs is 588
for OpenStack (45,34% of all URIs), 505 for GCP
(38,94%), and 204 for OCCI (15,53%). The distri-
bution of services is 115 for OpenStack (80,99% of
all services), 22 for GCP (15,49%), and 5 for OCCI
(3,52%). An excerpt of the whole Cloud Dataset
is given in Table 3. The average number of URIs

Cloud provider # of services # of URIs
OpenStack 115 588
GCP 22 505
OCCI 5 204
Total 142 1.297

Table 1: Services and URIs by cloud provider

by service is 9; indicating that the number of anal-

ysed cloud services is small compared to the provided
URIs. However, this mean is very different from one
provider to another: 5 for OpenStack, 23 for GCP, and
41 for OCCI.

Provider Service # of URIs
GCP compute 198
OCCI Infrastructure 77
OCCI Platform 45
OpenStack orchestration-api 39
GCP sql 38
GCP storage 36
OpenStack os-compute-2 33
OCCI Service Level Agreements 32
OCCI Monitoring 26
OCCI Compute Resource Templates 24

Profile 24

Table 2: The ten biggest cloud provider’s services

Table 2 gives the ranking of the top ten biggest
services in terms of provided URIs, which are
compute for GCP (198 URIs, 15,27% of all URIs),
Infrastructure for OCCI (77, 5,94%), Platform
for OCCI (45, 3,47%), orchestration-api for
OpenStack (39, 3,01%), sql for GCP (38, 2,93%),
storage for GCP (36, 2,78%), os-compute-2
for OpenStack (33, 2,54%), Service Level
Agreements for OCCI (32, 2,47%), Monitoring
for OCCI (26, 2,00%), and Compute Resource
Templates Profile for OCCI (24, 1,85%). To-
gether these ten services provide 42,25% of all URIs.
We also observed that 71% of all URIs (922/1297)
are provided by only 23% of services (33 services out
of 142 services) including 14 services of OpenStack
(12,17% of all OpenStack services), 14 of GCP
(63,63%), and 5 of OCCI (100%). Each of the other
109 services provides less than 10 URIs. These
results show that the studied REST APIs are not
homogeneous in terms of number of URIs by service.

We conclude that most of the analysed cloud ser-
vices are tiny in terms of number of provided URIs,
i.e., less that 10 URIs. Most of OpenStack services,
i.e., 101 out of 115 (87,8%), are very small. About
two-thirds of GCP services and all OCCI services are
medium or large services, i.e., more than 10 URIs.

We analysed the HTTP methods (GET, POST,
PUT, DELETE, PATCH and HEAD) associated with
each URI. As shown in Figure 2, we observed that
globally 45% of HTTP requests are GET, 30% are
POST, 15% are DELETE, 9% are PUT, and 2% are
PATCH requests. The HEAD method is used only
by OpenStack on two requests. We notice that GET
and POST are the most common HTTP methods used
in the analysed cloud computing REST APIs. Thus,
client developers should mainly deal with retrieving
and updating cloud resources.



Provider Service Resource URI HTTP Verb
GCP compute /{project}/aggregated/addresses GET
GCP compute /{project}/regions/{region}/addresses/{address} DELETE
GCP compute /{project}/regions/{region}/addresses/{address} GET
GCP compute /{project}/regions/{region}/addresses POST
GCP compute /{project}/regions/{region}/addresses GET
... ... ... ...
OpenStack dbaas /v1.0/{accountId}/instances/{instanceId}/databases/{databaseName} DELETE
OpenStack dbaas /v1.0/{accountId}/instances/{instanceId}/users/{name} DELETE
OpenStack dbaas /v1.0/{accountId}/instances/{instanceId} DELETE
OpenStack dbaas /v1.0/{accountId}/instances/{instanceId} GET
OpenStack dbaas /v1.0/{accountId}/flavors GET
... ... ... ...
OCCI Infrastructure {provider_specific_path}/network/ GET
OCCI Infrastructure {provider_specific_path}/network/ POST
OCCI Infrastructure {provider_specific_path}/network/ DELETE
OCCI Infrastructure {provider_specific_path }/network/?action=up POST
OCCI Infrastructure {provider_specific_path}/network/?action=down POST

Table 3: Excerpt of the Cloud Dataset

Figure 2: Distribution of HTTP Methods

3.2 RQ1: Which lexicon is adopted by
cloud computing providers?

The lexicon adopted by each provider contains 185
terms for GCP, 137 for OpenStack, and 47 for OCCI.
Each Table 4, 5 and 6 provides the five most used
terms for GCP, OpenStack, and OCCI, respectively.
For each term, the number of occurrences represents
the number of URIs containing this term. More-
over, we observed the parts of speech that providers
adopted in their APIs.

Firstly, APIs use nouns and verbs with 67% of
nouns and 33% of verbs. If we study this aspect by
providers, we observed that GCP uses 50% of nouns
and 50% of verbs, OCCI has a proportion of 70% of
nouns for 30% of verbs, while OpenStack adopts 88%
of nouns and 12% of verbs. Figure 3 shows these re-
sults with absolute values by providers.

Secondly, the analysis of APIs in terms of singu-
lar and plural terms reveals that 51,5% of terms are
singular, and 48,5% are plural. OCCI has 100% of
singular terms. GCP has 48,65% of singular terms

Term # of occurrences
projects 111
global 108
zones 84
instances 52
regions 51

Table 4: The Five Most Used Terms in GCP

Term # of occurrences
servers 81
flavors 43
images 38
users 37
detail 31

Table 5: The Five Most Used Terms in OpenStack

and 51,35% of plural terms. OpenStack has 38,69%
of singular terms and 61,31% of plural terms.

Thirdly, the analysis of APIs in terms of lower,
upper and camel cases shows that 72,9% of
terms are lowercase, 25,5% use camel case, and
about 1,6% are upper case. OCCI is 100% lower
case. OpenStack mainly uses lower case, but
it has six terms with upper case and one camel
case: OS-KSADM, OS-OAUTH1, OS-KSCATALOG,
OS-OS-KSS3, OS-KSEC2, OS-KSVALIDATE, and
ec2Credentials. GCP uses camel case, but there
are two exceptions, i.e., trainedmodels, and
serverconfig.

Petrillo et al. (Petrillo et al., 2016) compiled a cat-
alog of 73 best practices in the design of REST APIs.
In the catalog, there are four best practices directly
related with URI lexicon: 1) lowercase letters should
be preferred in URI paths; 2) a singular noun should
be used for document names; 3) a plural noun should



Term # of occurrences
action 36
compute 17
agreement 17
storage 11
network 11

Table 6: The Five Most Used Terms in OCCI

Figure 3: Nouns and Verbs by Provider

be employed for collection names; 4) a verb or verb
phrase should be used for controller names. Match-
ing these practices with our lexicon’s analysis, our re-
sults show that the three APIs, in general, follow these
four good practices for REST APIs, using lowercase
letters, nouns and verbs correctly, and a correct appli-
cation of plural and singular on API terms.

To summarize, we found that the lexicon of anal-
ysed cloud computing REST APIs contains a ma-
jority of nouns, which are equally singular or plu-
ral, and are mainly in lower case, following REST
API best practices.

3.3 RQ2: Are there common terms
between providers’ lexicons?

We tabled all terms and analysed which terms are in
common in three or two APIs. No common term ap-
pears in the three APIs. Table 7 presents the list of
the 17 common terms in two APIs, which represents
less than 5% (17/352) of terms used simultaneous by
two APIs, the majority of nouns (12 nouns versus 5
verbs). Consequently, Table 7 highlights an important
finding: the three cloud computing REST APIs do
not share a common lexicon and very few terms
are common between two APIs.

3.4 RQ3: What is the global lexicon of
all cloud providers?

Globally, if we combine all terms and identify the
number of occurrences of common terms, the three
APIs formed a lexicon of 352 different terms (nouns

Term Noun Verb GCP OpenStack OCCI
action X X X
databases X X X
events X X X
images X X X
instances X X X
members X X X
networks X X X
resources X X X
restart X X X
resume X X X
snapshots X X X
start X X X
stop X X X
storage X X X
types X X X
users X X X
validate X X X

Table 7: Common terms in two APIs

and verbs) to express all provided services. As illus-
trated in Figure 4, we present the most common terms
in the form of a tag cloud to illustrate our REST cloud
computing lexicon. Visually, we can see the high
heterogeneity between APIs, and it highlights terms
as servers, images, flavors, instances, users, projects.
Briefly, we conclude that there is no consensus cur-
rently on which terms to use on cloud computing
systems.

Figure 4: Cloud lexicon tag cloud

3.5 Threats to Validity

As with any such empirical study, threats exist that
reduce its validity, which we attempted to mitigate or
had to accept. We now discuss these threats and the
measures that we took on them.

Threats to the construct validity of our study
concern the relationship between theory and obser-
vations. We assumed that good naming practices
(Petrillo et al., 2016) improve the quality of the REST
APIs of the cloud providers that follow them (Zhang
et al., 2010). Although these assumptions are legiti-
mate and have been withheld by many researchers and



works before, for example that of Zhang and Budgen
(Zhang and Budgen, 2012), future work should study
whether these good naming practices apply univer-
sally to all cloud services. Also, we argued that the
presented lexicon is exhaustive to the three analysed
APIs (GCP, OpenStack and OCCI). However, other
terms could be included if a different approach were
adopted.

Threats to internal validity concern confounding
factors that can affect our dependent variables. Al-
though we did not carry any statistical analysis on the
characteristics of the studied REST APIs, we assumed
that the lexicon was a typical feature of the REST
APIs. However, there may be other terms that de-
scribe more accurately these REST APIs, in particular
analysing their documentations. Future work includes
analysing and contrasting more APIs with more terms
and documentation. Further, other researchers should
perform similar analyses to confirm or invalidate ours.

Threats to external validity concern the general-
ization of our results. Although we presented, to the
best of our knowledge, the largest study on the lexicon
of cloud computing REST APIs, we cannot generalise
our results to all cloud computing REST APIs. Future
work is necessary to analyze more REST APIs, from
other cloud providers, open source implementations,
and standards to confirm or invalidate our observa-
tions. However, as we state in the introduction, this
study represents the first attempt towards a common
REST cloud computing lexicon.

3.6 Discussion

Our results raise important open questions for re-
searchers, as well as new opportunities for educators
and cloud service designers. First, CLOUDLEX pro-
vides an approach that researchers could use or extend
to analyse new qualitative aspects about REST cloud
services. Second, our conclusion that the cloud lex-
icon is currently very heterogeneous could influence
cloud providers endeavour to work together to create
a consensual nomenclature for cloud services, simpli-
fying adoption, maintenance and interoperability on
cloud computing APIs. Finally, educators could use
our results to guide their courses, focusing on more
relevant services and applying common terms cor-
rectly.

4 Related work

Recently, there is a growing interest in the design
quality evaluation of REST APIs. However, to the
best of our knowledge, few studies made specifically a

lexical evaluation of REST APIs in general, and none
in the domain of cloud computing.

In related work for the general design quality
evaluation of REST APIs, we can cite the research
work of Hausenblas (Hausenblas, 2011), who stud-
ies some widely used RESTful Web APIs in terms
of URI space design, resource representations, and
hyperlinking support. Rodríguez et al. (Carlos Ro-
dríguez et al., 2016) also evaluated the conformance
of good and bad design practices in REST APIs from
the perspective of mobile applications. They analysed
large data logs of HTTP calls collected from the In-
ternet traffic of mobile applications, identified usage
patterns from logs, and compared these patterns with
best design practices. Zhou et al. (Zhou et al., 2014)
showed how to fix design problems related to the use
of REST services in existing Northbound networking
APIs in a Software Defined Network and how to de-
sign a REST Northbound API in the context of Open-
Stack. These previous works made contributions to
the design evaluation of REST APIs for general or
specific domains, mobile and networking, while we
consider the domain of cloud services.

Some researchers have dealt with the linguistic as-
pects of RESTful APIs, in particular in terms of lex-
icon. For instance, Parrish (Parrish, 2010) performs
a subjective lexical comparison between two well-
known RESTful APIs, i.e., Facebook and Twitter. In
the comparison, the author specifically focuses on the
analysis of verbs and nouns in URIs naming. Palma
et al. (Palma et al., 2015) evaluated the linguistic as-
pects of several REST APIs based on REST patterns
and anti-patterns, which correspond to good and bad
practices in the design of REST services. However,
the APIs evaluated were selected from different and
general domains. They included Facebook, Twitter,
Dropbox, and Bestbuy. So, it was not possible to com-
pare and discuss the results among the APIs. More-
over, the list of patterns and anti-patterns was really
comparable to this focused study.

Petrillo et al. (Petrillo et al., 2016) evaluated three
cloud computing REST APIs using a catalog of 73
general best practices. However, this catalog was
mainly dedicated to the design of REST APIs from a
conceptual and syntactic point of view, but not neces-
sarily lexical. The present paper specifically focuses
on a lexical evaluation of cloud computing REST
APIs.

5 Conclusion and Future Work

Towards the end-goal of a thorough comprehen-
sion of the field of cloud computing and a more rapid



adoption from the scientific community, we claimed
in this paper that well-named REST APIs might at-
tract client developers to use them. A better compre-
hension of the technology involves the right choice of
lexicon used to describe the cloud computing APIs.
We supported our claim by performing, to the best
of our knowledge, the first study extracting, organis-
ing and analysing the lexicon of the REST APIs of
several cloud providers. We included in our study
the REST APIs provided by Google Cloud Platform,
OpenStack, and OCCI.

We thus presented three contributions. For our
first contribution, we presented CLOUDLEX, our ap-
proach to building the lexicon of cloud computing
REST APIs, introducing a conceptual model and pro-
viding a toolkit to extract and analyse the lexicon of
cloud computing REST APIs. For our second contri-
bution, we shared a full dataset of services, resources,
and terms used in the three studied REST APIs. Fi-
nally, analysing our dataset, we showed that the three
APIs formed a lexicon of 352 different terms (nouns
and verbs) to express all provided services, in which
there are only 17 shared terms, representing less than
5% (17/352) of terms used simultaneously by two
APIs. Thus, the three APIs do not share a common
lexicon, and we conclude that there is not a consen-
sus actually on which terms to use on cloud com-
puting systems. However, we found that the cloud
computing REST APIs follow, in general, the good
lexicon practices for REST APIs.

A part of our future work is related to threats to
validity presented in Section 3.5. Mainly, this in-
volves the analysis and contrast of more APIs with
more naming practices to cover other possible charac-
teristics. We plan to consider other REST APIs, from
other cloud providers, e.g., Amazon, open source im-
plementations, e.g., CloudStack, and standards, e.g.,
DTMF’s CIMI. Another future work is to build an on-
tology of cloud computing APIs, establishing seman-
tic joins between services and resources from differ-
ent providers in order to deal with semantic interop-
erability between clouds.

Last but not least, this work is the first contribu-
tion towards understanding cloud computing lexical
aspects, claiming that a deep understanding of the na-
ture of API and a common lexicon will further boost
the cloud computing adoption.

Acknowledgment

This work is co-funded by the French PIA
OCCIware research and development project (www.
occiware.org) and by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

REFERENCES

Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R.,
Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Pat-
terson, D., and Rabkin, A. (2010). A View of Cloud
Computing. Communications of the ACM, 53(4):50.

Carlos Rodríguez, C., Baez, M., Daniel, F., Casati, F.,
Carlos, J., Canali, L., and Percannella, G. (2016).
REST APIs : A Large-Scale Analysis of Compliance
with Principles and Best Practices. In Proceedings
of 16th International Conference on Web Engineering
(ICWE2016), pages 21–39.

Davis, D. and Pilz, G. (2012). Cloud Infrastructure Man-
agement Interface (CIMI) Model and REST Interface
over HTTP. DMTF Specification Document DSP-
0263, Distributed Management Task Force, Inc.

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California, Irvine.

Hausenblas, M. (2011). On Entities in the Web of Data,
pages 425–440. Springer New York, New York, NY.

Masse, M. (2011). REST API Design Rulebook, volume 53.
O’Reilly Media.

Nyren, R., Edmonds, A., Papaspyrou, A., Metsch, T., and
Parak, B. (2016). Open Cloud Computing Interface –
Core. OCCI-WG Specification Document 1.2, Open
Grid Forum.

Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc,
Y.-G., and Tremblay, G. (2015). Are RESTful
APIs Well-Designed? Detection of their Linguistic
(Anti)Patterns. In Proceedings of International Con-
ference on Service-Oriented Computing, volume 8954
of LNCS, pages 171–187.

Parrish, A. (2010). Social Network APIs : A Revised Lex-
ical Analysis. decontextualize : words and projects
[Online; accessed 14-July-2016].

Petrillo, F., Merle, P., Moha, N., and Guéhéneuc, Y.-G.
(2016). Are REST APIs for Cloud Computing Well-
Designed? An Exploratory Study. In Proceedings
of 14th International Conference on Service-Oriented
Computing, ICSOC 2016, pages 157–170.

Youseff, L., Butrico, M., and Silva, D. D. (2008). To-
ward a Unified Ontology of Cloud Computing. In
Proceedings of 2008 Grid Computing Environments
Workshop, pages 1–10.

Zhang, C. and Budgen, D. (2012). What Do We Know
about the Effectiveness of Software Design Pat-
terns? IEEE Transactions on Software Engineering,
38(5):1213–1231.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud Com-
puting: State-of-the-Art and Research Challenges.
Journal of Internet Services and Applications, 1(1):7–
18.

Zhou, W., Li, L., Luo, M., and Chou, W. (2014). REST API
Design Patterns for SDN Northbound API. In 2014
28th International Conference on Advanced Informa-
tion Networking and Applications Workshops, pages
358–365. IEEE.


